BurritOS/src/kernel/thread_manager.rs

521 lines
21 KiB
Rust
Raw Normal View History

use std::{rc::Rc, cell::{RefCell, Ref}};
2023-03-08 21:10:51 +01:00
2023-04-12 14:49:08 +02:00
use crate::{utility::{list::List, objaddr::ObjAddr}, simulator::{machine::{NUM_INT_REGS, NUM_FP_REGS, Machine}, interrupt::InterruptStatus, error::{MachineOk, MachineError}}};
2023-03-08 21:10:51 +01:00
2023-04-12 15:32:46 +02:00
use super::{thread::Thread, process::Process};
2023-03-08 21:10:51 +01:00
pub const SIMULATORSTACKSIZE: usize = 32 * 1024;
2023-03-08 21:10:51 +01:00
2023-03-14 15:16:40 +01:00
/// # Thread manager
///
/// An instance of this struct is responsible for managing threads on behalf of the system
2023-03-08 21:10:51 +01:00
#[derive(PartialEq)]
pub struct ThreadManager {
2023-03-14 15:16:40 +01:00
/// Current running thread
2023-03-13 20:55:46 +01:00
pub g_current_thread: Option<Rc<RefCell<Thread>>>,
2023-03-14 15:16:40 +01:00
/// The thread to be destroyed next
2023-03-13 20:55:46 +01:00
pub g_thread_to_be_destroyed: Option<Rc<RefCell<Thread>>>,
2023-03-14 15:16:40 +01:00
/// The list of alive threads
pub g_alive: List<Rc<RefCell<Thread>>>,
/// Thread in ready state waiting to become active
ready_list: List<Rc<RefCell<Thread>>>,
obj_addrs: ObjAddr,
debug: bool
2023-03-08 21:10:51 +01:00
}
impl ThreadManager {
2023-03-08 21:10:51 +01:00
2023-03-14 15:16:40 +01:00
/// Thread manager constructor
pub fn new(debug: bool) -> Self {
2023-03-08 21:10:51 +01:00
Self {
g_current_thread: Option::None,
g_thread_to_be_destroyed: Option::None,
g_alive: List::default(),
ready_list: List::default(),
2023-04-12 14:49:08 +02:00
obj_addrs: ObjAddr::init(),
debug
}
}
/// Mark a thread as aready, but not necessarily running yet.
///
/// Put it in the ready list, for later scheduling onto the CPU.
///
/// ## Pamameter
///
/// **thread** is the thread to be put on the read list
pub fn ready_to_run(&mut self, thread: Rc<RefCell<Thread>>) {
self.ready_list.push(thread);
}
/// Return the next thread to be scheduled onto the CPU.
/// If there are no ready threads, return Option::None
///
/// Thread is removed from the ready list.
///
/// **return** Thread thread to be scheduled
pub fn find_next_to_run(&mut self) -> Option<Rc<RefCell<Thread>>> {
self.ready_list.pop()
}
/// Dispatch the CPU to next_thread. Save the state of the old thread
/// and load the state of the new thread.
///
/// We assume the state of the previously running thread has already been changed from running to blocked or ready.
///
/// Global variable g_current_thread become next_thread
///
/// ## Parameter
///
/// **next_thread** thread to dispatch to the CPU
pub fn switch_to(&mut self, machine: &mut Machine, next_thread: Rc<RefCell<Thread>>) {
match self.get_g_current_thread() {
Some(old) => {
let old1 = Rc::clone(old);
let old2 = Rc::clone(old);
self.thread_save_processor_state(machine, old1);
// old_thread.save_simulator_state();
if old2 != next_thread {
self.debug(format!("switching from \"{}\" to \"{}\"", old2.borrow().get_name(), next_thread.borrow().get_name()));
self.thread_restore_processor_state(machine, Rc::clone(&next_thread));
// next_thread.restore_simulator_state();
2023-04-13 02:10:09 +02:00
debug_assert!(!self.ready_list.contains(&next_thread));
self.set_g_current_thread(Some(next_thread));
}
},
None => {
self.thread_restore_processor_state(machine, Rc::clone(&next_thread));
// next_thread.restore_simulator_state();
self.set_g_current_thread(Some(next_thread));
}
2023-03-08 21:10:51 +01:00
}
if let Some(th) = self.get_g_thread_to_be_destroyed() {
drop(th);
self.g_thread_to_be_destroyed = None
}
2023-03-08 21:10:51 +01:00
}
/// Start a thread, attaching it to a process
2023-04-11 17:47:36 +02:00
pub fn start_thread(&mut self, thread: Rc<RefCell<Thread>>, owner: Rc<RefCell<Process>>, func_pc: u64, sp_loc: u64, argument: i64) {
let mut thread_m = thread.borrow_mut();
2023-03-13 20:55:46 +01:00
assert_eq!(thread_m.process, Option::None);
thread_m.process = Option::Some(Rc::clone(&owner));
let ptr = sp_loc; // todo addrspace
thread_m.init_thread_context(func_pc, ptr, argument);
owner.borrow_mut().num_thread += 1;
self.get_g_alive().push(Rc::clone(&thread));
self.ready_to_run(Rc::clone(&thread));
2023-03-08 21:10:51 +01:00
}
/// Wait for another thread to finish its execution
pub fn thread_join(&mut self, machine: &mut Machine, waiter: Rc<RefCell<Thread>>, waiting_for: Rc<RefCell<Thread>>) {
let waiting_for = Rc::clone(&waiting_for);
while self.get_g_alive().contains(&waiting_for) {
2023-04-13 02:10:09 +02:00
self.debug(format!("Joining \"{}\" to \"{}\"", waiter.borrow().get_name(), waiting_for.borrow().get_name()));
self.thread_yield(machine, Rc::clone(&waiter));
2023-03-08 21:10:51 +01:00
}
}
/// Relinquish the CPU if any other thread is runnable.
///
/// Cannot use yield as a function name -> reserved name in rust
pub fn thread_yield(&mut self, machine: &mut Machine, thread: Rc<RefCell<Thread>>) {
let old_status = machine.interrupt.set_status(crate::simulator::interrupt::InterruptStatus::InterruptOff);
2023-03-11 14:48:56 +01:00
self.debug(format!("Yeilding thread: {}", thread.borrow().get_name()));
debug_assert_eq!(&Option::Some(Rc::clone(&thread)), self.get_g_current_thread());
let next_thread = self.find_next_to_run();
2023-03-15 15:20:20 +01:00
if let Some(next_thread) = next_thread {
self.ready_to_run(thread);
self.switch_to(machine, next_thread);
2023-03-11 14:48:56 +01:00
}
machine.interrupt.set_status(old_status);
2023-03-08 21:10:51 +01:00
}
/// Put the thread to sleep and relinquish the processor
2023-03-15 17:57:53 +01:00
pub fn thread_sleep(&mut self, machine: &mut Machine, thread: Rc<RefCell<Thread>>) {
2023-04-05 12:01:31 +02:00
debug_assert_eq!(Option::Some(Rc::clone(&thread)), self.g_current_thread);
debug_assert_eq!(machine.interrupt.get_status(), InterruptStatus::InterruptOff);
let mut next_thread = self.find_next_to_run();
2023-03-15 15:20:20 +01:00
while next_thread.is_none() {
eprintln!("Nobody to run => idle");
machine.interrupt.idle();
next_thread = self.find_next_to_run();
2023-03-13 20:55:46 +01:00
}
self.switch_to(machine, Rc::clone(&next_thread.unwrap()));
}
/// Finish the execution of the thread and prepare its deallocation
pub fn thread_finish(&mut self, machine: &mut Machine, thread: Rc<RefCell<Thread>>) {
2023-03-15 15:20:20 +01:00
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
self.set_g_thread_to_be_destroyed(Option::Some(Rc::clone(&thread)));
2023-03-22 14:30:21 +01:00
self.g_alive.remove(Rc::clone(&thread));
self.debug(format!("Sleeping thread {}", thread.borrow().get_name()));
2023-03-15 15:20:20 +01:00
// g_objets_addrs->removeObject(self.thread) // a ajouté plus tard
2023-03-15 17:57:53 +01:00
self.thread_sleep(machine, Rc::clone(&thread));
2023-03-15 15:20:20 +01:00
machine.interrupt.set_status(old_status);
}
2023-03-22 17:17:53 +01:00
/// Save the CPU state of a user program on a context switch.
2023-03-15 17:57:53 +01:00
pub fn thread_save_processor_state(&mut self, machine: &mut Machine, thread: Rc<RefCell<Thread>>) {
let mut t = thread.borrow_mut();
2023-03-15 15:20:20 +01:00
for i in 0..NUM_INT_REGS {
2023-03-15 17:57:53 +01:00
t.thread_context.int_registers[i] = machine.read_int_register(i);
2023-03-15 15:20:20 +01:00
}
for i in 0..NUM_FP_REGS {
2023-03-15 17:57:53 +01:00
t.thread_context.float_registers[i] = machine.read_fp_register(i);
}
t.thread_context.pc = machine.pc;
}
2023-03-22 17:17:53 +01:00
/// Restore the CPU state of a user program on a context switch.
2023-03-15 17:57:53 +01:00
pub fn thread_restore_processor_state(&self, machine: &mut Machine, thread: Rc<RefCell<Thread>>) {
2023-03-15 15:20:20 +01:00
let t: Ref<_> = thread.borrow();
for i in 0..NUM_INT_REGS {
machine.write_int_register(i, t.thread_context.int_registers[i]);
}
machine.pc = t.thread_context.pc;
}
/// Decrement the value, and wait if it becomes < 0. Checking the
/// value and decrementing must be done atomically, so we
/// need to disable interrupts before checking the value.
///
/// Note that thread_manager::thread_sleep assumes that interrupts are disabled
/// when it is called.
///
/// ### Parameters
/// - *id_sema* id of the semaphore, stored in [`ObjAddr`], id given by user program thought exceptions
/// - *machine* Current state of the machine
2023-04-12 14:49:08 +02:00
pub fn sem_p(&mut self, id_sema: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
match self.get_g_current_thread() {
Some(thread) => {
let rc1_thread = Rc::clone(thread);
let rc2_thread = Rc::clone(thread);
let sema = self.get_obj_addrs().search_semaphore(id_sema as i32);
if let Some(sema) = sema {
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
sema.counter -= 1;
if sema.counter < 0 {
sema.waiting_queue.push(rc1_thread);
self.thread_sleep(machine, rc2_thread);
}
machine.interrupt.set_status(old_status);
Ok(MachineOk::Ok)
} else {
Err("Cannot find semaphore")?
}
},
None => unreachable!("Current thread should not be None")
}
}
/// Increment semaphore value, waking up a waiting thread if any.
/// As with P(), this operation must be atomic, so we need to disable
/// interrupts.
///
/// scheduler::ready_to_run() assumes that interrupts
/// are disabled when it is called.
///
/// ### Parameters
/// - *id_sema* id of the semaphore, stored in [`ObjAddr`], id given by user program thought exceptions
/// - **machine** the machine where the threads are executed
2023-04-12 14:49:08 +02:00
pub fn sem_v(&mut self, id_sema: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
let sema = self.get_obj_addrs().search_semaphore(id_sema as i32);
match sema {
Some(sema) => {
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
sema.counter += 1;
match sema.waiting_queue.pop() {
Some(thread) => self.ready_to_run(thread),
None => ()
}
machine.interrupt.set_status(old_status);
Ok(MachineOk::Ok)
},
None => {
Err("Cannot find semaphore")?
}
}
}
2023-04-13 00:17:34 +02:00
/// Wait until the lock become free. Checking the
/// state of the lock (free or busy) and modify it must be done
/// atomically, so we need to disable interrupts before checking
/// the value of free.
///
/// Note that thread_manager::thread_seep assumes that interrupts are disabled
/// when it is called.
///
/// ### Parameters
/// - **id** id of the lock, stored in [`ObjAddr`], id given by user program thought exceptions
/// - **machine** the machine where the threads are executed
pub fn lock_acquire(&mut self, id: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
match self.get_g_current_thread() {
Some(thread) => {
let rc_thread = Rc::clone(thread);
let lock = self.get_obj_addrs().search_lock(id);
match lock {
Some(lock) => {
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
if lock.free {
lock.free = false;
lock.owner = Some(Rc::clone(&rc_thread))
} else {
let thread = Rc::clone(&rc_thread);
lock.waiting_queue.push(Rc::clone(&thread));
self.thread_sleep(machine, Rc::clone(&thread));
}
machine.interrupt.set_status(old_status);
Ok(MachineOk::Ok)
},
None => Err("Cannot find lock")?
}
},
None => unreachable!("Current thread should not be None")
}
}
/// Wake up a waiter if necessary, or release it if no thread is waiting.
pub fn lock_release(&mut self, id: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
let current_thread = self.get_g_current_thread();
match current_thread {
Some(thread) => {
let current_thread = Rc::clone(&thread);
let mut lock_option = self.get_obj_addrs().search_lock(id).cloned();
match lock_option {
Some(mut lock) => {
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
match &lock.owner {
Some(lock_owner) => {
if Rc::ptr_eq(&current_thread, lock_owner) {
match lock.waiting_queue.pop() {
Some(thread) => {
lock.owner = Some(thread);
match &lock.owner {
Some(x) => {
self.ready_to_run(Rc::clone(x));
lock.free = true;
},
None => ()
}
},
None => {
lock.free = true;
lock.owner = None;
}
}
}
},
None => ()
}
machine.interrupt.set_status(old_status);
Ok(MachineOk::Ok)
},
None => Err("Cannot find lock")?
}
},
None => unreachable!("Current thread should not be None")
}
}
2023-03-08 21:10:51 +01:00
/// Currently running thread
pub fn get_g_current_thread(&mut self) -> &Option<Rc<RefCell<Thread>>> {
&self.g_current_thread
2023-03-08 21:10:51 +01:00
}
/// Thread to be destroyed by [...]
///
/// TODO: Finish the comment with the relevant value
pub fn get_g_thread_to_be_destroyed(&mut self) -> &Option<Rc<RefCell<Thread>>> {
&self.g_thread_to_be_destroyed
2023-03-08 21:10:51 +01:00
}
/// List of alive threads
pub fn get_g_alive(&mut self) -> &mut List<Rc<RefCell<Thread>>> {
2023-03-08 21:10:51 +01:00
&mut self.g_alive
}
/// Set currently running thread
2023-03-13 20:55:46 +01:00
pub fn set_g_current_thread(&mut self, thread: Option<Rc<RefCell<Thread>>>) {
2023-03-08 21:10:51 +01:00
self.g_current_thread = thread
}
/// Set thread to be destroyed next
2023-03-13 20:55:46 +01:00
pub fn set_g_thread_to_be_destroyed(&mut self, thread: Option<Rc<RefCell<Thread>>>) {
2023-03-08 21:10:51 +01:00
self.g_thread_to_be_destroyed = thread
}
2023-04-12 14:49:08 +02:00
pub fn get_obj_addrs(&mut self) -> &mut ObjAddr {
&mut self.obj_addrs
}
fn debug(&self, message: String) {
if self.debug {
println!("{}", message);
}
}
2023-03-22 15:52:48 +01:00
}
#[cfg(test)]
mod test {
use std::{rc::Rc, cell::RefCell};
2023-04-12 15:32:46 +02:00
use crate::{simulator::{machine::Machine, loader}, kernel::{system::System, thread::Thread, process::Process, thread_manager::ThreadManager, synch::Semaphore}};
use crate::kernel::synch::Lock;
#[test]
fn test_thread_context() {
let mut machine = Machine::new(true);
let (loader, ptr) = loader::Loader::new("./target/guac/halt.guac", &mut machine, 0).expect("IO Error");
let start_pc = loader.elf_header.entrypoint;
let system = &mut System::new(true);
let thread1 = Thread::new("th1");
let thread1 = Rc::new(RefCell::new(thread1));
system.get_thread_manager().get_g_alive().push(Rc::clone(&thread1));
let owner1 = Process { num_thread: 0 };
2023-04-11 17:47:36 +02:00
let owner1 = Rc::new(RefCell::new(owner1));
system.get_thread_manager().start_thread(Rc::clone(&thread1), owner1, loader.elf_header.entrypoint, ptr, -1);
debug_assert_eq!(thread1.borrow_mut().thread_context.pc, start_pc);
debug_assert!(system.get_thread_manager().get_g_alive().contains(&Rc::clone(&thread1)));
let to_run = system.get_thread_manager().find_next_to_run().unwrap();
2023-04-05 12:01:31 +02:00
debug_assert_eq!(to_run, Rc::clone(&thread1));
system.get_thread_manager().switch_to(&mut machine, Rc::clone(&to_run));
2023-04-05 12:01:31 +02:00
debug_assert_eq!(system.get_thread_manager().g_current_thread, Option::Some(Rc::clone(&thread1)));
debug_assert_eq!(machine.pc, loader.elf_header.entrypoint);
2023-04-05 12:01:31 +02:00
machine.run(system);
}
2023-03-22 15:52:48 +01:00
#[test]
fn test_lock(){
let mut machine = Machine::new(true);
let mut thread_manager = ThreadManager::new(true);
let lock = Lock::new();
let lock_id = thread_manager.get_obj_addrs().add_lock(lock);
let thread = Rc::new(RefCell::new(Thread::new("test_lock")));
thread_manager.ready_to_run(Rc::clone(&thread));
thread_manager.set_g_current_thread(Some(thread));
thread_manager.lock_acquire(lock_id, &mut machine).expect("lock acquire return an error: ");
{
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
assert!(!lock.free);
assert!(lock.waiting_queue.is_empty());
}
thread_manager.lock_release(lock_id, &mut machine).expect("lock release return an error: ");
{
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
assert!(!lock.free);
assert!(lock.waiting_queue.is_empty());
}
}
#[test]
fn test_semaphore_single() {
// Init
let mut machine = Machine::new(true);
let mut thread_manager = ThreadManager::new(true);
let semaphore = Semaphore::new(1);
let sema_id = thread_manager.get_obj_addrs().add_semaphore(semaphore);
let thread = Rc::new(RefCell::new(Thread::new("test_semaphore")));
thread_manager.ready_to_run(Rc::clone(&thread));
thread_manager.set_g_current_thread(Some(thread));
// P
thread_manager.sem_p(sema_id, &mut machine).expect("semaphore P return an error: ");
{
let semaphore = thread_manager.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 0);
assert!(semaphore.waiting_queue.is_empty());
}
// V
thread_manager.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
{
let semaphore = thread_manager.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 1);
assert!(semaphore.waiting_queue.is_empty());
}
}
#[test]
fn test_semaphore_multiple() {
// Init
let mut tm = ThreadManager::new(true);
let mut machine = Machine::new(true);
2023-04-12 15:32:46 +02:00
let semaphore = Semaphore::new(2);
let sema_id = tm.get_obj_addrs().add_semaphore(semaphore);
let thread1 = Rc::new(RefCell::new(Thread::new("test_semaphore_1")));
let thread2 = Rc::new(RefCell::new(Thread::new("test_semaphore_2")));
let thread3 = Rc::new(RefCell::new(Thread::new("test_semaphore_3")));
// let mut borrow_tm = tm.borrow_mut();
// let scheduler = &mut tm.g_scheduler;
tm.ready_to_run(Rc::clone(&thread1));
tm.ready_to_run(Rc::clone(&thread2));
tm.ready_to_run(Rc::clone(&thread3));
// P
tm.set_g_current_thread(Some(Rc::clone(&thread1)));
tm.sem_p(sema_id, &mut machine).expect("semaphore P return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 1);
assert!(semaphore.waiting_queue.is_empty());
}
tm.set_g_current_thread(Some(Rc::clone(&thread2)));
tm.sem_p(sema_id, &mut machine).expect("semaphore P return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 0);
assert!(semaphore.waiting_queue.is_empty());
}
tm.set_g_current_thread(Some(Rc::clone(&thread3)));
tm.sem_p( sema_id, &mut machine).expect("semaphore P return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, -1);
assert!(semaphore.waiting_queue.iter().count() == 1);
}
// V
tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 0);
assert!(semaphore.waiting_queue.is_empty());
}
tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 1);
assert!(semaphore.waiting_queue.is_empty());
}
tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 2);
assert!(semaphore.waiting_queue.is_empty());
}
}
2023-03-08 21:10:51 +01:00
}