4487 lines
136 KiB
C
4487 lines
136 KiB
C
|
/* Data flow analysis for GNU compiler.
|
|||
|
Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GNU CC.
|
|||
|
|
|||
|
GNU CC is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2, or (at your option)
|
|||
|
any later version.
|
|||
|
|
|||
|
GNU CC is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with GNU CC; see the file COPYING. If not, write to
|
|||
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|||
|
Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
|
|||
|
/* This file contains the data flow analysis pass of the compiler.
|
|||
|
It computes data flow information
|
|||
|
which tells combine_instructions which insns to consider combining
|
|||
|
and controls register allocation.
|
|||
|
|
|||
|
Additional data flow information that is too bulky to record
|
|||
|
is generated during the analysis, and is used at that time to
|
|||
|
create autoincrement and autodecrement addressing.
|
|||
|
|
|||
|
The first step is dividing the function into basic blocks.
|
|||
|
find_basic_blocks does this. Then life_analysis determines
|
|||
|
where each register is live and where it is dead.
|
|||
|
|
|||
|
** find_basic_blocks **
|
|||
|
|
|||
|
find_basic_blocks divides the current function's rtl
|
|||
|
into basic blocks. It records the beginnings and ends of the
|
|||
|
basic blocks in the vectors basic_block_head and basic_block_end,
|
|||
|
and the number of blocks in n_basic_blocks.
|
|||
|
|
|||
|
find_basic_blocks also finds any unreachable loops
|
|||
|
and deletes them.
|
|||
|
|
|||
|
** life_analysis **
|
|||
|
|
|||
|
life_analysis is called immediately after find_basic_blocks.
|
|||
|
It uses the basic block information to determine where each
|
|||
|
hard or pseudo register is live.
|
|||
|
|
|||
|
** live-register info **
|
|||
|
|
|||
|
The information about where each register is live is in two parts:
|
|||
|
the REG_NOTES of insns, and the vector basic_block_live_at_start.
|
|||
|
|
|||
|
basic_block_live_at_start has an element for each basic block,
|
|||
|
and the element is a bit-vector with a bit for each hard or pseudo
|
|||
|
register. The bit is 1 if the register is live at the beginning
|
|||
|
of the basic block.
|
|||
|
|
|||
|
Two types of elements can be added to an insn's REG_NOTES.
|
|||
|
A REG_DEAD note is added to an insn's REG_NOTES for any register
|
|||
|
that meets both of two conditions: The value in the register is not
|
|||
|
needed in subsequent insns and the insn does not replace the value in
|
|||
|
the register (in the case of multi-word hard registers, the value in
|
|||
|
each register must be replaced by the insn to avoid a REG_DEAD note).
|
|||
|
|
|||
|
In the vast majority of cases, an object in a REG_DEAD note will be
|
|||
|
used somewhere in the insn. The (rare) exception to this is if an
|
|||
|
insn uses a multi-word hard register and only some of the registers are
|
|||
|
needed in subsequent insns. In that case, REG_DEAD notes will be
|
|||
|
provided for those hard registers that are not subsequently needed.
|
|||
|
Partial REG_DEAD notes of this type do not occur when an insn sets
|
|||
|
only some of the hard registers used in such a multi-word operand;
|
|||
|
omitting REG_DEAD notes for objects stored in an insn is optional and
|
|||
|
the desire to do so does not justify the complexity of the partial
|
|||
|
REG_DEAD notes.
|
|||
|
|
|||
|
REG_UNUSED notes are added for each register that is set by the insn
|
|||
|
but is unused subsequently (if every register set by the insn is unused
|
|||
|
and the insn does not reference memory or have some other side-effect,
|
|||
|
the insn is deleted instead). If only part of a multi-word hard
|
|||
|
register is used in a subsequent insn, REG_UNUSED notes are made for
|
|||
|
the parts that will not be used.
|
|||
|
|
|||
|
To determine which registers are live after any insn, one can
|
|||
|
start from the beginning of the basic block and scan insns, noting
|
|||
|
which registers are set by each insn and which die there.
|
|||
|
|
|||
|
** Other actions of life_analysis **
|
|||
|
|
|||
|
life_analysis sets up the LOG_LINKS fields of insns because the
|
|||
|
information needed to do so is readily available.
|
|||
|
|
|||
|
life_analysis deletes insns whose only effect is to store a value
|
|||
|
that is never used.
|
|||
|
|
|||
|
life_analysis notices cases where a reference to a register as
|
|||
|
a memory address can be combined with a preceding or following
|
|||
|
incrementation or decrementation of the register. The separate
|
|||
|
instruction to increment or decrement is deleted and the address
|
|||
|
is changed to a POST_INC or similar rtx.
|
|||
|
|
|||
|
Each time an incrementing or decrementing address is created,
|
|||
|
a REG_INC element is added to the insn's REG_NOTES list.
|
|||
|
|
|||
|
life_analysis fills in certain vectors containing information about
|
|||
|
register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
|
|||
|
reg_n_calls_crosses and reg_basic_block.
|
|||
|
|
|||
|
life_analysis sets current_function_sp_is_unchanging if the function
|
|||
|
doesn't modify the stack pointer. */
|
|||
|
|
|||
|
#include "config.h"
|
|||
|
#include "system.h"
|
|||
|
#include "rtl.h"
|
|||
|
#include "basic-block.h"
|
|||
|
#include "insn-config.h"
|
|||
|
#include "regs.h"
|
|||
|
#include "hard-reg-set.h"
|
|||
|
#include "flags.h"
|
|||
|
#include "output.h"
|
|||
|
#include "except.h"
|
|||
|
#include "toplev.h"
|
|||
|
#include "recog.h"
|
|||
|
|
|||
|
#include "obstack.h"
|
|||
|
#define obstack_chunk_alloc xmalloc
|
|||
|
#define obstack_chunk_free free
|
|||
|
|
|||
|
#define XNMALLOC(TYPE, COUNT) ((TYPE *) xmalloc ((COUNT) * sizeof (TYPE)))
|
|||
|
|
|||
|
/* The contents of the current function definition are allocated
|
|||
|
in this obstack, and all are freed at the end of the function.
|
|||
|
For top-level functions, this is temporary_obstack.
|
|||
|
Separate obstacks are made for nested functions. */
|
|||
|
|
|||
|
extern struct obstack *function_obstack;
|
|||
|
|
|||
|
/* List of labels that must never be deleted. */
|
|||
|
extern rtx forced_labels;
|
|||
|
|
|||
|
/* Get the basic block number of an insn.
|
|||
|
This info should not be expected to remain available
|
|||
|
after the end of life_analysis. */
|
|||
|
|
|||
|
/* This is the limit of the allocated space in the following two arrays. */
|
|||
|
|
|||
|
static int max_uid_for_flow;
|
|||
|
|
|||
|
#define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
|
|||
|
|
|||
|
/* This is where the BLOCK_NUM values are really stored.
|
|||
|
This is set up by find_basic_blocks and used there and in life_analysis,
|
|||
|
and then freed. */
|
|||
|
|
|||
|
int *uid_block_number;
|
|||
|
|
|||
|
/* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
|
|||
|
|
|||
|
#define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
|
|||
|
static char *uid_volatile;
|
|||
|
|
|||
|
/* Nonzero if the second flow pass has completed. */
|
|||
|
int flow2_completed;
|
|||
|
|
|||
|
/* Number of basic blocks in the current function. */
|
|||
|
|
|||
|
int n_basic_blocks;
|
|||
|
|
|||
|
/* Maximum register number used in this function, plus one. */
|
|||
|
|
|||
|
int max_regno;
|
|||
|
|
|||
|
/* Indexed by n, giving various register information */
|
|||
|
|
|||
|
varray_type reg_n_info;
|
|||
|
|
|||
|
/* Size of the reg_n_info table. */
|
|||
|
|
|||
|
unsigned int reg_n_max;
|
|||
|
|
|||
|
/* Element N is the next insn that uses (hard or pseudo) register number N
|
|||
|
within the current basic block; or zero, if there is no such insn.
|
|||
|
This is valid only during the final backward scan in propagate_block. */
|
|||
|
|
|||
|
static rtx *reg_next_use;
|
|||
|
|
|||
|
/* Size of a regset for the current function,
|
|||
|
in (1) bytes and (2) elements. */
|
|||
|
|
|||
|
int regset_bytes;
|
|||
|
int regset_size;
|
|||
|
|
|||
|
/* Element N is first insn in basic block N.
|
|||
|
This info lasts until we finish compiling the function. */
|
|||
|
|
|||
|
rtx *x_basic_block_head;
|
|||
|
|
|||
|
/* Element N is last insn in basic block N.
|
|||
|
This info lasts until we finish compiling the function. */
|
|||
|
|
|||
|
rtx *x_basic_block_end;
|
|||
|
|
|||
|
/* Element N indicates whether basic block N can be reached through a
|
|||
|
computed jump. */
|
|||
|
|
|||
|
char *basic_block_computed_jump_target;
|
|||
|
|
|||
|
/* Element N is a regset describing the registers live
|
|||
|
at the start of basic block N.
|
|||
|
This info lasts until we finish compiling the function. */
|
|||
|
|
|||
|
regset *basic_block_live_at_start;
|
|||
|
|
|||
|
/* Regset of regs live when calls to `setjmp'-like functions happen. */
|
|||
|
|
|||
|
regset regs_live_at_setjmp;
|
|||
|
|
|||
|
/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
|
|||
|
that have to go in the same hard reg.
|
|||
|
The first two regs in the list are a pair, and the next two
|
|||
|
are another pair, etc. */
|
|||
|
rtx regs_may_share;
|
|||
|
|
|||
|
/* Pointer to head of predecessor/successor block list. */
|
|||
|
static int_list_block *flow_int_list_blocks;
|
|||
|
|
|||
|
/* Element N is the list of successors of basic block N. */
|
|||
|
static int_list_ptr *basic_block_succ;
|
|||
|
|
|||
|
/* Element N is the list of predecessors of basic block N. */
|
|||
|
static int_list_ptr *basic_block_pred;
|
|||
|
|
|||
|
/* Element N is depth within loops of the last insn in basic block number N.
|
|||
|
Freed after life_analysis. */
|
|||
|
|
|||
|
static short *basic_block_loop_depth;
|
|||
|
|
|||
|
/* Depth within loops of basic block being scanned for lifetime analysis,
|
|||
|
plus one. This is the weight attached to references to registers. */
|
|||
|
|
|||
|
static int loop_depth;
|
|||
|
|
|||
|
/* During propagate_block, this is non-zero if the value of CC0 is live. */
|
|||
|
|
|||
|
static int cc0_live;
|
|||
|
|
|||
|
/* During propagate_block, this contains a list of all the MEMs we are
|
|||
|
tracking for dead store elimination.
|
|||
|
|
|||
|
?!? Note we leak memory by not free-ing items on this list. We need to
|
|||
|
write some generic routines to operate on memory lists since cse, gcse,
|
|||
|
loop, sched, flow and possibly other passes all need to do basically the
|
|||
|
same operations on these lists. */
|
|||
|
|
|||
|
static rtx mem_set_list;
|
|||
|
|
|||
|
/* Set of registers that may be eliminable. These are handled specially
|
|||
|
in updating regs_ever_live. */
|
|||
|
|
|||
|
static HARD_REG_SET elim_reg_set;
|
|||
|
|
|||
|
/* Forward declarations */
|
|||
|
static void find_basic_blocks_1 PROTO((rtx, rtx));
|
|||
|
static void add_edge PROTO((int, int));
|
|||
|
static void add_edge_to_label PROTO((int, rtx));
|
|||
|
static void make_edges PROTO((int));
|
|||
|
static void mark_label_ref PROTO((int, rtx));
|
|||
|
static void delete_unreachable_blocks PROTO((void));
|
|||
|
static int delete_block PROTO((int));
|
|||
|
static void life_analysis_1 PROTO((rtx, int));
|
|||
|
static void propagate_block PROTO((regset, rtx, rtx, int,
|
|||
|
regset, int));
|
|||
|
static int set_noop_p PROTO((rtx));
|
|||
|
static int noop_move_p PROTO((rtx));
|
|||
|
static void record_volatile_insns PROTO((rtx));
|
|||
|
static void mark_regs_live_at_end PROTO((regset));
|
|||
|
static int insn_dead_p PROTO((rtx, regset, int, rtx));
|
|||
|
static int libcall_dead_p PROTO((rtx, regset, rtx, rtx));
|
|||
|
static void mark_set_regs PROTO((regset, regset, rtx,
|
|||
|
rtx, regset));
|
|||
|
static void mark_set_1 PROTO((regset, regset, rtx,
|
|||
|
rtx, regset));
|
|||
|
#ifdef AUTO_INC_DEC
|
|||
|
static void find_auto_inc PROTO((regset, rtx, rtx));
|
|||
|
static int try_pre_increment_1 PROTO((rtx));
|
|||
|
static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT));
|
|||
|
#endif
|
|||
|
static void mark_used_regs PROTO((regset, regset, rtx, int, rtx));
|
|||
|
void dump_flow_info PROTO((FILE *));
|
|||
|
static void add_pred_succ PROTO ((int, int, int_list_ptr *,
|
|||
|
int_list_ptr *, int *, int *));
|
|||
|
static int_list_ptr alloc_int_list_node PROTO ((int_list_block **));
|
|||
|
static int_list_ptr add_int_list_node PROTO ((int_list_block **,
|
|||
|
int_list **, int));
|
|||
|
/* CYGNUS LOCAL LRS */
|
|||
|
void init_regset_vector PROTO ((regset *, int,
|
|||
|
struct obstack *));
|
|||
|
static void count_reg_sets_1 PROTO ((rtx));
|
|||
|
static void count_reg_sets PROTO ((rtx));
|
|||
|
static void count_reg_references PROTO ((rtx));
|
|||
|
static void notice_stack_pointer_modification PROTO ((rtx, rtx));
|
|||
|
static void invalidate_mems_from_autoinc PROTO ((rtx));
|
|||
|
|
|||
|
/* Find basic blocks of the current function.
|
|||
|
F is the first insn of the function and NREGS the number of register numbers
|
|||
|
in use. */
|
|||
|
|
|||
|
void
|
|||
|
find_basic_blocks (f, nregs, file)
|
|||
|
rtx f;
|
|||
|
int nregs;
|
|||
|
FILE *file;
|
|||
|
{
|
|||
|
register rtx insn;
|
|||
|
register int i;
|
|||
|
rtx nonlocal_label_list = nonlocal_label_rtx_list ();
|
|||
|
|
|||
|
/* Avoid leaking memory if this is called multiple times per compiled
|
|||
|
function. */
|
|||
|
free_bb_memory ();
|
|||
|
|
|||
|
/* Count the basic blocks. Also find maximum insn uid value used. */
|
|||
|
|
|||
|
{
|
|||
|
rtx prev_call = 0;
|
|||
|
register RTX_CODE prev_code = JUMP_INSN;
|
|||
|
register RTX_CODE code;
|
|||
|
int eh_region = 0;
|
|||
|
int call_had_abnormal_edge = 0;
|
|||
|
|
|||
|
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
code = GET_CODE (insn);
|
|||
|
|
|||
|
/* A basic block starts at label, or after something that can jump. */
|
|||
|
if (code == CODE_LABEL
|
|||
|
|| (GET_RTX_CLASS (code) == 'i'
|
|||
|
&& (prev_code == JUMP_INSN
|
|||
|
|| (prev_code == CALL_INSN && call_had_abnormal_edge)
|
|||
|
|| prev_code == BARRIER)))
|
|||
|
{
|
|||
|
i++;
|
|||
|
|
|||
|
/* If the previous insn was a call that did not create an
|
|||
|
abnormal edge, we want to add a nop so that the CALL_INSN
|
|||
|
itself is not at basic block end. This allows us to easily
|
|||
|
distinguish between normal calls and those which create
|
|||
|
abnormal edges in the flow graph. */
|
|||
|
|
|||
|
if (i > 0 && !call_had_abnormal_edge && prev_call != 0)
|
|||
|
{
|
|||
|
rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
|
|||
|
emit_insn_after (nop, prev_call);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (code == CALL_INSN)
|
|||
|
{
|
|||
|
rtx note = find_reg_note(insn, REG_EH_REGION, NULL_RTX);
|
|||
|
|
|||
|
/* We change the code of the CALL_INSN, so that it won't start a
|
|||
|
new block. */
|
|||
|
if (note && XINT (XEXP (note, 0), 0) == 0)
|
|||
|
code = INSN;
|
|||
|
else
|
|||
|
{
|
|||
|
prev_call = insn;
|
|||
|
call_had_abnormal_edge = (nonlocal_label_list != 0
|
|||
|
|| eh_region);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
else if (code != NOTE && code != BARRIER)
|
|||
|
prev_call = 0;
|
|||
|
|
|||
|
if (code != NOTE)
|
|||
|
prev_code = code;
|
|||
|
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
|
|||
|
++eh_region;
|
|||
|
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
|
|||
|
--eh_region;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
n_basic_blocks = i;
|
|||
|
|
|||
|
max_uid_for_flow = get_max_uid ();
|
|||
|
#ifdef AUTO_INC_DEC
|
|||
|
/* Leave space for insns life_analysis makes in some cases for auto-inc.
|
|||
|
These cases are rare, so we don't need too much space. */
|
|||
|
max_uid_for_flow += max_uid_for_flow / 10;
|
|||
|
#endif
|
|||
|
|
|||
|
/* Allocate some tables that last till end of compiling this function
|
|||
|
and some needed only in find_basic_blocks and life_analysis. */
|
|||
|
|
|||
|
x_basic_block_head = XNMALLOC (rtx, n_basic_blocks);
|
|||
|
x_basic_block_end = XNMALLOC (rtx, n_basic_blocks);
|
|||
|
basic_block_succ = XNMALLOC (int_list_ptr, n_basic_blocks);
|
|||
|
basic_block_pred = XNMALLOC (int_list_ptr, n_basic_blocks);
|
|||
|
bzero ((char *)basic_block_succ, n_basic_blocks * sizeof (int_list_ptr));
|
|||
|
bzero ((char *)basic_block_pred, n_basic_blocks * sizeof (int_list_ptr));
|
|||
|
|
|||
|
basic_block_computed_jump_target = (char *) oballoc (n_basic_blocks);
|
|||
|
basic_block_loop_depth = XNMALLOC (short, n_basic_blocks);
|
|||
|
uid_block_number = XNMALLOC (int, (max_uid_for_flow + 1));
|
|||
|
uid_volatile = XNMALLOC (char, (max_uid_for_flow + 1));
|
|||
|
bzero (uid_volatile, max_uid_for_flow + 1);
|
|||
|
|
|||
|
find_basic_blocks_1 (f, nonlocal_label_list);
|
|||
|
}
|
|||
|
|
|||
|
/* For communication between find_basic_blocks_1 and its subroutines. */
|
|||
|
|
|||
|
/* An array of CODE_LABELs, indexed by UID for the start of the active
|
|||
|
EH handler for each insn in F. */
|
|||
|
static int *active_eh_region;
|
|||
|
static int *nested_eh_region;
|
|||
|
|
|||
|
/* Element N nonzero if basic block N can actually be reached. */
|
|||
|
|
|||
|
static char *block_live_static;
|
|||
|
|
|||
|
/* List of label_refs to all labels whose addresses are taken
|
|||
|
and used as data. */
|
|||
|
static rtx label_value_list;
|
|||
|
|
|||
|
/* a list of non-local labels in the function. */
|
|||
|
static rtx nonlocal_label_list;
|
|||
|
|
|||
|
/* Find all basic blocks of the function whose first insn is F.
|
|||
|
Store the correct data in the tables that describe the basic blocks,
|
|||
|
set up the chains of references for each CODE_LABEL, and
|
|||
|
delete any entire basic blocks that cannot be reached.
|
|||
|
|
|||
|
NONLOCAL_LABELS is a list of non-local labels in the function.
|
|||
|
Blocks that are otherwise unreachable may be reachable with a non-local
|
|||
|
goto. */
|
|||
|
|
|||
|
static void
|
|||
|
find_basic_blocks_1 (f, nonlocal_labels)
|
|||
|
rtx f, nonlocal_labels;
|
|||
|
{
|
|||
|
register rtx insn;
|
|||
|
register int i;
|
|||
|
register char *block_live = (char *) alloca (n_basic_blocks);
|
|||
|
register char *block_marked = (char *) alloca (n_basic_blocks);
|
|||
|
rtx note, eh_note;
|
|||
|
enum rtx_code prev_code, code;
|
|||
|
int depth;
|
|||
|
int call_had_abnormal_edge = 0;
|
|||
|
|
|||
|
active_eh_region = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int));
|
|||
|
nested_eh_region = (int *) alloca ((max_label_num () + 1) * sizeof (int));
|
|||
|
nonlocal_label_list = nonlocal_labels;
|
|||
|
|
|||
|
label_value_list = 0;
|
|||
|
block_live_static = block_live;
|
|||
|
bzero (block_live, n_basic_blocks);
|
|||
|
bzero (block_marked, n_basic_blocks);
|
|||
|
bzero (basic_block_computed_jump_target, n_basic_blocks);
|
|||
|
bzero ((char *) active_eh_region, (max_uid_for_flow + 1) * sizeof (int));
|
|||
|
bzero ((char *) nested_eh_region, (max_label_num () + 1) * sizeof (int));
|
|||
|
current_function_has_computed_jump = 0;
|
|||
|
|
|||
|
/* Initialize with just block 0 reachable and no blocks marked. */
|
|||
|
if (n_basic_blocks > 0)
|
|||
|
block_live[0] = 1;
|
|||
|
|
|||
|
/* Initialize the ref chain of each label to 0. Record where all the
|
|||
|
blocks start and end and their depth in loops. For each insn, record
|
|||
|
the block it is in. Also mark as reachable any blocks headed by labels
|
|||
|
that must not be deleted. */
|
|||
|
|
|||
|
for (eh_note = NULL_RTX, insn = f, i = -1, prev_code = JUMP_INSN, depth = 1;
|
|||
|
insn; insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
code = GET_CODE (insn);
|
|||
|
if (code == NOTE)
|
|||
|
{
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
|
|||
|
depth++;
|
|||
|
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
|
|||
|
depth--;
|
|||
|
}
|
|||
|
|
|||
|
/* A basic block starts at label, or after something that can jump. */
|
|||
|
else if (code == CODE_LABEL
|
|||
|
|| (GET_RTX_CLASS (code) == 'i'
|
|||
|
&& (prev_code == JUMP_INSN
|
|||
|
|| (prev_code == CALL_INSN && call_had_abnormal_edge)
|
|||
|
|| prev_code == BARRIER)))
|
|||
|
{
|
|||
|
BLOCK_HEAD (++i) = insn;
|
|||
|
BLOCK_END (i) = insn;
|
|||
|
basic_block_loop_depth[i] = depth;
|
|||
|
|
|||
|
if (code == CODE_LABEL)
|
|||
|
{
|
|||
|
LABEL_REFS (insn) = insn;
|
|||
|
/* Any label that cannot be deleted
|
|||
|
is considered to start a reachable block. */
|
|||
|
if (LABEL_PRESERVE_P (insn))
|
|||
|
block_live[i] = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
else if (GET_RTX_CLASS (code) == 'i')
|
|||
|
{
|
|||
|
BLOCK_END (i) = insn;
|
|||
|
basic_block_loop_depth[i] = depth;
|
|||
|
}
|
|||
|
|
|||
|
if (GET_RTX_CLASS (code) == 'i')
|
|||
|
{
|
|||
|
/* Make a list of all labels referred to other than by jumps. */
|
|||
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
|||
|
if (REG_NOTE_KIND (note) == REG_LABEL
|
|||
|
&& XEXP (note, 0) != eh_return_stub_label)
|
|||
|
label_value_list = gen_rtx_EXPR_LIST (VOIDmode, XEXP (note, 0),
|
|||
|
label_value_list);
|
|||
|
}
|
|||
|
|
|||
|
/* Keep a lifo list of the currently active exception notes. */
|
|||
|
if (GET_CODE (insn) == NOTE)
|
|||
|
{
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
|
|||
|
{
|
|||
|
if (eh_note)
|
|||
|
nested_eh_region [NOTE_BLOCK_NUMBER (insn)] =
|
|||
|
NOTE_BLOCK_NUMBER (XEXP (eh_note, 0));
|
|||
|
else
|
|||
|
nested_eh_region [NOTE_BLOCK_NUMBER (insn)] = 0;
|
|||
|
eh_note = gen_rtx_EXPR_LIST (VOIDmode,
|
|||
|
insn, eh_note);
|
|||
|
}
|
|||
|
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
|
|||
|
eh_note = XEXP (eh_note, 1);
|
|||
|
}
|
|||
|
/* If we encounter a CALL_INSN, note which exception handler it
|
|||
|
might pass control to.
|
|||
|
|
|||
|
If doing asynchronous exceptions, record the active EH handler
|
|||
|
for every insn, since most insns can throw. */
|
|||
|
else if (eh_note
|
|||
|
&& (asynchronous_exceptions
|
|||
|
|| (GET_CODE (insn) == CALL_INSN)))
|
|||
|
active_eh_region[INSN_UID (insn)] =
|
|||
|
NOTE_BLOCK_NUMBER (XEXP (eh_note, 0));
|
|||
|
BLOCK_NUM (insn) = i;
|
|||
|
|
|||
|
/* We change the code of the CALL_INSN, so that it won't start a
|
|||
|
new block if it doesn't throw. */
|
|||
|
if (code == CALL_INSN)
|
|||
|
{
|
|||
|
rtx rnote = find_reg_note(insn, REG_EH_REGION, NULL_RTX);
|
|||
|
if (rnote && XINT (XEXP (rnote, 0), 0) == 0)
|
|||
|
code = INSN;
|
|||
|
}
|
|||
|
|
|||
|
/* Record whether this call created an edge. */
|
|||
|
if (code == CALL_INSN)
|
|||
|
call_had_abnormal_edge = (nonlocal_label_list != 0 || eh_note);
|
|||
|
|
|||
|
if (code != NOTE)
|
|||
|
prev_code = code;
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
if (i + 1 != n_basic_blocks)
|
|||
|
abort ();
|
|||
|
|
|||
|
/* Now find which basic blocks can actually be reached
|
|||
|
and put all jump insns' LABEL_REFS onto the ref-chains
|
|||
|
of their target labels. */
|
|||
|
|
|||
|
if (n_basic_blocks > 0)
|
|||
|
{
|
|||
|
int something_marked = 1;
|
|||
|
|
|||
|
/* Pass over all blocks, marking each block that is reachable
|
|||
|
and has not yet been marked.
|
|||
|
Keep doing this until, in one pass, no blocks have been marked.
|
|||
|
Then blocks_live and blocks_marked are identical and correct.
|
|||
|
In addition, all jumps actually reachable have been marked. */
|
|||
|
|
|||
|
while (something_marked)
|
|||
|
{
|
|||
|
something_marked = 0;
|
|||
|
for (i = 0; i < n_basic_blocks; i++)
|
|||
|
if (block_live[i] && !block_marked[i])
|
|||
|
{
|
|||
|
int_list_ptr p;
|
|||
|
|
|||
|
block_marked[i] = 1;
|
|||
|
something_marked = 1;
|
|||
|
|
|||
|
make_edges (i);
|
|||
|
|
|||
|
for (p = basic_block_succ[i]; p; p = p->next)
|
|||
|
block_live[INT_LIST_VAL (p)] = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* This should never happen. If it does that means we've computed an
|
|||
|
incorrect flow graph, which can lead to aborts/crashes later in the
|
|||
|
compiler or incorrect code generation.
|
|||
|
|
|||
|
We used to try and continue here, but that's just asking for trouble
|
|||
|
later during the compile or at runtime. It's easier to debug the
|
|||
|
problem here than later! */
|
|||
|
for (i = 1; i < n_basic_blocks; i++)
|
|||
|
if (block_live[i] && basic_block_pred[i] == 0)
|
|||
|
abort ();
|
|||
|
|
|||
|
if (! reload_completed)
|
|||
|
delete_unreachable_blocks ();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Record INSN's block number as BB. */
|
|||
|
|
|||
|
void
|
|||
|
set_block_num (insn, bb)
|
|||
|
rtx insn;
|
|||
|
int bb;
|
|||
|
{
|
|||
|
if (INSN_UID (insn) >= max_uid_for_flow)
|
|||
|
{
|
|||
|
/* Add one-eighth the size so we don't keep calling xrealloc. */
|
|||
|
max_uid_for_flow = INSN_UID (insn) + (INSN_UID (insn) + 7) / 8;
|
|||
|
uid_block_number = (int *)
|
|||
|
xrealloc (uid_block_number, (max_uid_for_flow + 1) * sizeof (int));
|
|||
|
}
|
|||
|
BLOCK_NUM (insn) = bb;
|
|||
|
}
|
|||
|
|
|||
|
/* Subroutines of find_basic_blocks. */
|
|||
|
|
|||
|
void
|
|||
|
free_bb_memory ()
|
|||
|
{
|
|||
|
free_int_list (&flow_int_list_blocks);
|
|||
|
}
|
|||
|
|
|||
|
/* Make an edge in the cfg from block PRED to block SUCC. */
|
|||
|
static void
|
|||
|
add_edge (pred, succ)
|
|||
|
int pred, succ;
|
|||
|
{
|
|||
|
int_list *p;
|
|||
|
|
|||
|
for (p = basic_block_pred[succ]; p ; p = p->next)
|
|||
|
if (p->val == pred)
|
|||
|
return;
|
|||
|
|
|||
|
add_int_list_node (&flow_int_list_blocks, basic_block_pred + succ, pred);
|
|||
|
add_int_list_node (&flow_int_list_blocks, basic_block_succ + pred, succ);
|
|||
|
}
|
|||
|
|
|||
|
/* Make an edge in the cfg from block PRED to the block starting with
|
|||
|
label LABEL. */
|
|||
|
static void
|
|||
|
add_edge_to_label (pred, label)
|
|||
|
int pred;
|
|||
|
rtx label;
|
|||
|
{
|
|||
|
/* If the label was never emitted, this insn is junk,
|
|||
|
but avoid a crash trying to refer to BLOCK_NUM (label).
|
|||
|
This can happen as a result of a syntax error
|
|||
|
and a diagnostic has already been printed. */
|
|||
|
if (INSN_UID (label) == 0)
|
|||
|
return;
|
|||
|
|
|||
|
add_edge (pred, BLOCK_NUM (label));
|
|||
|
}
|
|||
|
|
|||
|
/* Check expression X for label references. If one is found, add an edge
|
|||
|
from basic block PRED to the block beginning with the label. */
|
|||
|
|
|||
|
static void
|
|||
|
mark_label_ref (pred, x)
|
|||
|
int pred;
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
register RTX_CODE code;
|
|||
|
register int i;
|
|||
|
register char *fmt;
|
|||
|
|
|||
|
code = GET_CODE (x);
|
|||
|
if (code == LABEL_REF)
|
|||
|
{
|
|||
|
add_edge_to_label (pred, XEXP (x, 0));
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
fmt = GET_RTX_FORMAT (code);
|
|||
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
mark_label_ref (pred, XEXP (x, i));
|
|||
|
if (fmt[i] == 'E')
|
|||
|
{
|
|||
|
register int j;
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
mark_label_ref (pred, XVECEXP (x, i, j));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* For basic block I, make edges and mark live all blocks which are reachable
|
|||
|
from it. */
|
|||
|
static void
|
|||
|
make_edges (i)
|
|||
|
int i;
|
|||
|
{
|
|||
|
rtx insn, x;
|
|||
|
rtx pending_eh_region = NULL_RTX;
|
|||
|
|
|||
|
/* See if control drops into the next block. */
|
|||
|
if (i + 1 < n_basic_blocks)
|
|||
|
{
|
|||
|
for (insn = PREV_INSN (BLOCK_HEAD (i + 1));
|
|||
|
insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
|
|||
|
;
|
|||
|
|
|||
|
if (insn && GET_CODE (insn) != BARRIER)
|
|||
|
add_edge (i, i + 1);
|
|||
|
}
|
|||
|
|
|||
|
insn = BLOCK_END (i);
|
|||
|
if (GET_CODE (insn) == JUMP_INSN)
|
|||
|
mark_label_ref (i, PATTERN (insn));
|
|||
|
|
|||
|
/* If we have any forced labels, mark them as potentially reachable from
|
|||
|
this block. */
|
|||
|
for (x = forced_labels; x; x = XEXP (x, 1))
|
|||
|
if (! LABEL_REF_NONLOCAL_P (x))
|
|||
|
add_edge_to_label (i, XEXP (x, 0));
|
|||
|
|
|||
|
/* Now scan the insns for this block, we may need to make edges for some of
|
|||
|
them to various non-obvious locations (exception handlers, nonlocal
|
|||
|
labels, etc). */
|
|||
|
for (insn = BLOCK_HEAD (i);
|
|||
|
insn != NEXT_INSN (BLOCK_END (i));
|
|||
|
insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
{
|
|||
|
rtx note;
|
|||
|
/* References to labels in non-jumping insns have REG_LABEL notes
|
|||
|
attached to them.
|
|||
|
|
|||
|
This can happen for computed gotos; we don't care about them
|
|||
|
here since the values are also on the label_value_list and will
|
|||
|
be marked live if we find a live computed goto.
|
|||
|
|
|||
|
This can also happen when we take the address of a label to pass
|
|||
|
as an argument to __throw. Note throw only uses the value to
|
|||
|
determine what handler should be called -- ie the label is not
|
|||
|
used as a jump target, it just marks regions in the code.
|
|||
|
|
|||
|
In theory we should be able to ignore the REG_LABEL notes, but
|
|||
|
we have to make sure that the label and associated insns aren't
|
|||
|
marked dead, so we make the block in question live and create an
|
|||
|
edge from this insn to the label. This is not strictly correct,
|
|||
|
but it is close enough for now.
|
|||
|
|
|||
|
See below for code that handles the eh_stub label specially. */
|
|||
|
for (note = REG_NOTES (insn);
|
|||
|
note;
|
|||
|
note = XEXP (note, 1))
|
|||
|
{
|
|||
|
if (REG_NOTE_KIND (note) == REG_LABEL
|
|||
|
&& XEXP (note, 0) != eh_return_stub_label)
|
|||
|
add_edge_to_label (i, XEXP (note, 0));
|
|||
|
}
|
|||
|
|
|||
|
/* If this is a computed jump, then mark it as reaching everything
|
|||
|
on the label_value_list and forced_labels list. */
|
|||
|
if (computed_jump_p (insn))
|
|||
|
{
|
|||
|
current_function_has_computed_jump = 1;
|
|||
|
for (x = label_value_list; x; x = XEXP (x, 1))
|
|||
|
{
|
|||
|
int b = BLOCK_NUM (XEXP (x, 0));
|
|||
|
basic_block_computed_jump_target[b] = 1;
|
|||
|
add_edge (i, b);
|
|||
|
}
|
|||
|
|
|||
|
for (x = forced_labels; x; x = XEXP (x, 1))
|
|||
|
{
|
|||
|
int b = BLOCK_NUM (XEXP (x, 0));
|
|||
|
basic_block_computed_jump_target[b] = 1;
|
|||
|
add_edge (i, b);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If this is a call with an EH_RETHROW note, then we
|
|||
|
know its a rethrow call, and we know exactly where
|
|||
|
this call can end up going. */
|
|||
|
else if (GET_CODE (insn) == CALL_INSN
|
|||
|
&& (note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX)))
|
|||
|
{
|
|||
|
int region = XINT (XEXP (note, 0), 0);
|
|||
|
/* if nested region is not 0, we know for sure it has been
|
|||
|
processed. If it is zero, we dont know whether its an
|
|||
|
outer region, or hasn't been seen yet, so defer it */
|
|||
|
if (nested_eh_region[region] != 0)
|
|||
|
{
|
|||
|
/* start with the first region OUTSIDE the one specified
|
|||
|
in the rethrow parameter. (since a rethrow behaves
|
|||
|
as if a handler in the region didn't handle the
|
|||
|
exception, so the handlers for the next outer region
|
|||
|
are going to get a shot at it.*/
|
|||
|
for ( region = nested_eh_region[region]; region;
|
|||
|
region = nested_eh_region[region])
|
|||
|
{
|
|||
|
handler_info *ptr = get_first_handler (region);
|
|||
|
for ( ; ptr ; ptr = ptr->next)
|
|||
|
add_edge_to_label (i, ptr->handler_label);
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Push this region onto a list, and after we've done the
|
|||
|
whole procedure, we'll process everything on the list */
|
|||
|
pending_eh_region = gen_rtx_EXPR_LIST (VOIDmode, insn,
|
|||
|
pending_eh_region);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If this is a CALL_INSN, then mark it as reaching the active EH
|
|||
|
handler for this CALL_INSN. If we're handling asynchronous
|
|||
|
exceptions mark every insn as reaching the active EH handler.
|
|||
|
|
|||
|
Also mark the CALL_INSN as reaching any nonlocal goto sites. */
|
|||
|
else if (asynchronous_exceptions
|
|||
|
|| (GET_CODE (insn) == CALL_INSN
|
|||
|
&& ! find_reg_note (insn, REG_RETVAL, NULL_RTX)))
|
|||
|
{
|
|||
|
int region = active_eh_region[INSN_UID (insn)];
|
|||
|
note = find_reg_note(insn, REG_EH_REGION, NULL_RTX);
|
|||
|
|
|||
|
/* Override region if we see a REG_EH_REGION note. */
|
|||
|
if (note)
|
|||
|
region = XINT (XEXP (note, 0), 0);
|
|||
|
|
|||
|
if (region)
|
|||
|
{
|
|||
|
handler_info *ptr;
|
|||
|
region = active_eh_region[INSN_UID (insn)];
|
|||
|
for ( ; region; region = nested_eh_region[region])
|
|||
|
{
|
|||
|
ptr = get_first_handler (region);
|
|||
|
for ( ; ptr ; ptr = ptr->next)
|
|||
|
add_edge_to_label (i, ptr->handler_label);
|
|||
|
}
|
|||
|
}
|
|||
|
if (! asynchronous_exceptions)
|
|||
|
{
|
|||
|
for (x = nonlocal_label_list; x; x = XEXP (x, 1))
|
|||
|
add_edge_to_label (i, XEXP (x, 0));
|
|||
|
}
|
|||
|
/* ??? This could be made smarter: in some cases it's possible
|
|||
|
to tell that certain calls will not do a nonlocal goto.
|
|||
|
|
|||
|
For example, if the nested functions that do the nonlocal
|
|||
|
gotos do not have their addresses taken, then only calls to
|
|||
|
those functions or to other nested functions that use them
|
|||
|
could possibly do nonlocal gotos. */
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
while (pending_eh_region != NULL_RTX)
|
|||
|
{
|
|||
|
rtx insn = XEXP (pending_eh_region, 0);
|
|||
|
rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
|
|||
|
int region = XINT (XEXP (note, 0), 0);
|
|||
|
/* start with the first region OUTSIDE the one specified
|
|||
|
in the rethrow parameter */
|
|||
|
for ( region = nested_eh_region[region]; region;
|
|||
|
region = nested_eh_region[region])
|
|||
|
{
|
|||
|
handler_info *ptr = get_first_handler (region);
|
|||
|
for ( ; ptr ; ptr = ptr->next)
|
|||
|
add_edge_to_label (BLOCK_NUM (insn), ptr->handler_label);
|
|||
|
}
|
|||
|
pending_eh_region = XEXP (pending_eh_region, 1);
|
|||
|
}
|
|||
|
|
|||
|
/* We know something about the structure of the function __throw in
|
|||
|
libgcc2.c. It is the only function that ever contains eh_stub labels.
|
|||
|
It modifies its return address so that the last block returns to one of
|
|||
|
the eh_stub labels within it. So we have to make additional edges in
|
|||
|
the flow graph. */
|
|||
|
if (i + 1 == n_basic_blocks && eh_return_stub_label != 0)
|
|||
|
add_edge_to_label (i, eh_return_stub_label);
|
|||
|
}
|
|||
|
|
|||
|
/* Now delete the code for any basic blocks that can't be reached.
|
|||
|
They can occur because jump_optimize does not recognize unreachable loops
|
|||
|
as unreachable. */
|
|||
|
static void
|
|||
|
delete_unreachable_blocks ()
|
|||
|
{
|
|||
|
int deleted_handler = 0;
|
|||
|
int deleted = 0;
|
|||
|
int i, j;
|
|||
|
rtx insn;
|
|||
|
int *block_num_map = XNMALLOC (int, n_basic_blocks);
|
|||
|
|
|||
|
for (i = n_basic_blocks - 1; i >= 0; i--)
|
|||
|
if (! block_live_static[i])
|
|||
|
deleted_handler |= delete_block (i);
|
|||
|
|
|||
|
for (i = 0; i < n_basic_blocks; i++)
|
|||
|
if (block_live_static[i])
|
|||
|
block_num_map[i] = i - deleted;
|
|||
|
else
|
|||
|
{
|
|||
|
deleted++;
|
|||
|
block_num_map[i] = -1;
|
|||
|
}
|
|||
|
|
|||
|
/* Eliminate all traces of the deleted blocks by renumbering the remaining
|
|||
|
ones. */
|
|||
|
for (i = j = 0; i < n_basic_blocks; i++)
|
|||
|
{
|
|||
|
int_list_ptr p;
|
|||
|
|
|||
|
if (block_num_map[i] == -1)
|
|||
|
continue;
|
|||
|
|
|||
|
for (p = basic_block_pred[i]; p; p = p->next)
|
|||
|
INT_LIST_VAL (p) = block_num_map[INT_LIST_VAL (p)];
|
|||
|
for (p = basic_block_succ[i]; p; p = p->next)
|
|||
|
INT_LIST_VAL (p) = block_num_map[INT_LIST_VAL (p)];
|
|||
|
|
|||
|
if (i != j)
|
|||
|
{
|
|||
|
rtx tmp = BLOCK_HEAD (i);
|
|||
|
for (;;)
|
|||
|
{
|
|||
|
BLOCK_NUM (tmp) = j;
|
|||
|
if (tmp == BLOCK_END (i))
|
|||
|
break;
|
|||
|
tmp = NEXT_INSN (tmp);
|
|||
|
}
|
|||
|
BLOCK_HEAD (j) = BLOCK_HEAD (i);
|
|||
|
BLOCK_END (j) = BLOCK_END (i);
|
|||
|
basic_block_pred[j] = basic_block_pred[i];
|
|||
|
basic_block_succ[j] = basic_block_succ[i];
|
|||
|
basic_block_loop_depth[j] = basic_block_loop_depth[i];
|
|||
|
basic_block_computed_jump_target[j]
|
|||
|
= basic_block_computed_jump_target[i];
|
|||
|
}
|
|||
|
j++;
|
|||
|
}
|
|||
|
n_basic_blocks -= deleted;
|
|||
|
free (block_num_map);
|
|||
|
|
|||
|
/* If we deleted an exception handler, we may have EH region
|
|||
|
begin/end blocks to remove as well. */
|
|||
|
if (deleted_handler)
|
|||
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
|||
|
if (GET_CODE (insn) == NOTE)
|
|||
|
{
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG ||
|
|||
|
NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
|
|||
|
{
|
|||
|
int num = CODE_LABEL_NUMBER (insn);
|
|||
|
/* A NULL handler indicates a region is no longer needed,
|
|||
|
unless its the target of a rethrow. */
|
|||
|
if (get_first_handler (num) == NULL && !rethrow_used (num))
|
|||
|
{
|
|||
|
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
|||
|
NOTE_SOURCE_FILE (insn) = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Delete the insns in a (non-live) block. We physically delete every
|
|||
|
non-note insn except the start and end (so BLOCK_HEAD/END needn't
|
|||
|
be updated), we turn the latter into NOTE_INSN_DELETED notes.
|
|||
|
|
|||
|
We use to "delete" the insns by turning them into notes, but we may be
|
|||
|
deleting lots of insns that subsequent passes would otherwise have to
|
|||
|
process. Secondly, lots of deleted blocks in a row can really slow down
|
|||
|
propagate_block since it will otherwise process insn-turned-notes multiple
|
|||
|
times when it looks for loop begin/end notes.
|
|||
|
|
|||
|
Return nonzero if we deleted an exception handler. */
|
|||
|
static int
|
|||
|
delete_block (i)
|
|||
|
int i;
|
|||
|
{
|
|||
|
int deleted_handler = 0;
|
|||
|
rtx insn;
|
|||
|
rtx kept_head = 0;
|
|||
|
rtx kept_tail = 0;
|
|||
|
|
|||
|
/* If the head of this block is a CODE_LABEL, then it might
|
|||
|
be the label for an exception handler which can't be
|
|||
|
reached.
|
|||
|
|
|||
|
We need to remove the label from the exception_handler_label
|
|||
|
list and remove the associated NOTE_EH_REGION_BEG and
|
|||
|
NOTE_EH_REGION_END notes. */
|
|||
|
insn = BLOCK_HEAD (i);
|
|||
|
if (GET_CODE (insn) == CODE_LABEL)
|
|||
|
{
|
|||
|
rtx x, *prev = &exception_handler_labels;
|
|||
|
|
|||
|
for (x = exception_handler_labels; x; x = XEXP (x, 1))
|
|||
|
{
|
|||
|
if (XEXP (x, 0) == insn)
|
|||
|
{
|
|||
|
/* Found a match, splice this label out of the
|
|||
|
EH label list. */
|
|||
|
*prev = XEXP (x, 1);
|
|||
|
XEXP (x, 1) = NULL_RTX;
|
|||
|
XEXP (x, 0) = NULL_RTX;
|
|||
|
|
|||
|
/* Remove the handler from all regions */
|
|||
|
remove_handler (insn);
|
|||
|
deleted_handler = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
prev = &XEXP (x, 1);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Walk the insns of the block, building a chain of NOTEs that need to be
|
|||
|
kept. */
|
|||
|
insn = BLOCK_HEAD (i);
|
|||
|
for (;;)
|
|||
|
{
|
|||
|
if (GET_CODE (insn) == BARRIER)
|
|||
|
abort ();
|
|||
|
else if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
|
|||
|
{
|
|||
|
if (kept_head == 0)
|
|||
|
kept_head = kept_tail = insn;
|
|||
|
else
|
|||
|
{
|
|||
|
NEXT_INSN (kept_tail) = insn;
|
|||
|
PREV_INSN (insn) = kept_tail;
|
|||
|
kept_tail = insn;
|
|||
|
}
|
|||
|
}
|
|||
|
if (insn == BLOCK_END (i))
|
|||
|
break;
|
|||
|
insn = NEXT_INSN (insn);
|
|||
|
}
|
|||
|
insn = NEXT_INSN (insn);
|
|||
|
|
|||
|
/* BARRIERs are between basic blocks, not part of one.
|
|||
|
Delete a BARRIER if the preceding jump is deleted.
|
|||
|
We cannot alter a BARRIER into a NOTE
|
|||
|
because it is too short; but we can really delete
|
|||
|
it because it is not part of a basic block. */
|
|||
|
if (insn != 0 && GET_CODE (insn) == BARRIER)
|
|||
|
insn = NEXT_INSN (insn);
|
|||
|
|
|||
|
/* Now unchain all of the block, and put the chain of kept notes in its
|
|||
|
place. */
|
|||
|
if (kept_head == 0)
|
|||
|
{
|
|||
|
NEXT_INSN (PREV_INSN (BLOCK_HEAD (i))) = insn;
|
|||
|
if (insn != 0)
|
|||
|
PREV_INSN (insn) = PREV_INSN (BLOCK_HEAD (i));
|
|||
|
else
|
|||
|
set_last_insn (PREV_INSN (BLOCK_HEAD(i)));
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
NEXT_INSN (PREV_INSN (BLOCK_HEAD (i))) = kept_head;
|
|||
|
if (insn != 0)
|
|||
|
PREV_INSN (insn) = kept_tail;
|
|||
|
|
|||
|
PREV_INSN (kept_head) = PREV_INSN (BLOCK_HEAD (i));
|
|||
|
NEXT_INSN (kept_tail) = insn;
|
|||
|
|
|||
|
/* This must happen after NEXT_INSN (kept_tail) has been reinitialized
|
|||
|
since set_last_insn will abort if it detects a non-NULL NEXT_INSN
|
|||
|
field in its argument. */
|
|||
|
if (insn == NULL_RTX)
|
|||
|
set_last_insn (kept_tail);
|
|||
|
}
|
|||
|
|
|||
|
/* Each time we delete some basic blocks,
|
|||
|
see if there is a jump around them that is
|
|||
|
being turned into a no-op. If so, delete it. */
|
|||
|
|
|||
|
if (block_live_static[i - 1])
|
|||
|
{
|
|||
|
register int j;
|
|||
|
for (j = i + 1; j < n_basic_blocks; j++)
|
|||
|
if (block_live_static[j])
|
|||
|
{
|
|||
|
rtx label;
|
|||
|
insn = BLOCK_END (i - 1);
|
|||
|
if (GET_CODE (insn) == JUMP_INSN
|
|||
|
/* An unconditional jump is the only possibility
|
|||
|
we must check for, since a conditional one
|
|||
|
would make these blocks live. */
|
|||
|
&& simplejump_p (insn)
|
|||
|
&& (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
|
|||
|
&& INSN_UID (label) != 0
|
|||
|
&& BLOCK_NUM (label) == j)
|
|||
|
{
|
|||
|
PUT_CODE (insn, NOTE);
|
|||
|
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
|||
|
NOTE_SOURCE_FILE (insn) = 0;
|
|||
|
if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
|
|||
|
abort ();
|
|||
|
delete_insn (NEXT_INSN (insn));
|
|||
|
}
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return deleted_handler;
|
|||
|
}
|
|||
|
|
|||
|
/* Perform data flow analysis.
|
|||
|
F is the first insn of the function and NREGS the number of register numbers
|
|||
|
in use. */
|
|||
|
|
|||
|
void
|
|||
|
life_analysis (f, nregs, file)
|
|||
|
rtx f;
|
|||
|
int nregs;
|
|||
|
FILE *file;
|
|||
|
{
|
|||
|
#ifdef ELIMINABLE_REGS
|
|||
|
register size_t i;
|
|||
|
static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
|
|||
|
#endif
|
|||
|
|
|||
|
/* Record which registers will be eliminated. We use this in
|
|||
|
mark_used_regs. */
|
|||
|
|
|||
|
CLEAR_HARD_REG_SET (elim_reg_set);
|
|||
|
|
|||
|
#ifdef ELIMINABLE_REGS
|
|||
|
for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
|
|||
|
SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
|
|||
|
#else
|
|||
|
SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
|
|||
|
#endif
|
|||
|
|
|||
|
/* We want alias analysis information for local dead store elimination. */
|
|||
|
init_alias_analysis ();
|
|||
|
life_analysis_1 (f, nregs);
|
|||
|
end_alias_analysis ();
|
|||
|
|
|||
|
if (file)
|
|||
|
dump_flow_info (file);
|
|||
|
|
|||
|
free_basic_block_vars (1);
|
|||
|
}
|
|||
|
|
|||
|
/* Free the variables allocated by find_basic_blocks.
|
|||
|
|
|||
|
KEEP_HEAD_END_P is non-zero if BLOCK_HEAD and BLOCK_END
|
|||
|
are not to be freed. */
|
|||
|
|
|||
|
void
|
|||
|
free_basic_block_vars (keep_head_end_p)
|
|||
|
int keep_head_end_p;
|
|||
|
{
|
|||
|
if (basic_block_loop_depth)
|
|||
|
{
|
|||
|
free (basic_block_loop_depth);
|
|||
|
basic_block_loop_depth = 0;
|
|||
|
}
|
|||
|
if (uid_block_number)
|
|||
|
{
|
|||
|
free (uid_block_number);
|
|||
|
uid_block_number = 0;
|
|||
|
}
|
|||
|
if (uid_volatile)
|
|||
|
{
|
|||
|
free (uid_volatile);
|
|||
|
uid_volatile = 0;
|
|||
|
}
|
|||
|
|
|||
|
if (! keep_head_end_p && x_basic_block_head)
|
|||
|
{
|
|||
|
free (x_basic_block_head);
|
|||
|
x_basic_block_head = 0;
|
|||
|
free (x_basic_block_end);
|
|||
|
x_basic_block_end = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Return nonzero if the destination of SET equals the source. */
|
|||
|
static int
|
|||
|
set_noop_p (set)
|
|||
|
rtx set;
|
|||
|
{
|
|||
|
rtx src = SET_SRC (set);
|
|||
|
rtx dst = SET_DEST (set);
|
|||
|
if (GET_CODE (src) == REG && GET_CODE (dst) == REG
|
|||
|
&& REGNO (src) == REGNO (dst))
|
|||
|
return 1;
|
|||
|
if (GET_CODE (src) != SUBREG || GET_CODE (dst) != SUBREG
|
|||
|
|| SUBREG_WORD (src) != SUBREG_WORD (dst))
|
|||
|
return 0;
|
|||
|
src = SUBREG_REG (src);
|
|||
|
dst = SUBREG_REG (dst);
|
|||
|
if (GET_CODE (src) == REG && GET_CODE (dst) == REG
|
|||
|
&& REGNO (src) == REGNO (dst))
|
|||
|
return 1;
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Return nonzero if an insn consists only of SETs, each of which only sets a
|
|||
|
value to itself. */
|
|||
|
static int
|
|||
|
noop_move_p (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
rtx pat = PATTERN (insn);
|
|||
|
|
|||
|
/* Insns carrying these notes are useful later on. */
|
|||
|
if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
|
|||
|
return 0;
|
|||
|
|
|||
|
if (GET_CODE (pat) == SET && set_noop_p (pat))
|
|||
|
return 1;
|
|||
|
|
|||
|
if (GET_CODE (pat) == PARALLEL)
|
|||
|
{
|
|||
|
int i;
|
|||
|
/* If nothing but SETs of registers to themselves,
|
|||
|
this insn can also be deleted. */
|
|||
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
|||
|
{
|
|||
|
rtx tem = XVECEXP (pat, 0, i);
|
|||
|
|
|||
|
if (GET_CODE (tem) == USE
|
|||
|
|| GET_CODE (tem) == CLOBBER)
|
|||
|
continue;
|
|||
|
|
|||
|
if (GET_CODE (tem) != SET || ! set_noop_p (tem))
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
return 1;
|
|||
|
}
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
notice_stack_pointer_modification (x, pat)
|
|||
|
rtx x;
|
|||
|
rtx pat ATTRIBUTE_UNUSED;
|
|||
|
{
|
|||
|
if (x == stack_pointer_rtx
|
|||
|
/* The stack pointer is only modified indirectly as the result
|
|||
|
of a push until later in flow. See the comments in rtl.texi
|
|||
|
regarding Embedded Side-Effects on Addresses. */
|
|||
|
|| (GET_CODE (x) == MEM
|
|||
|
&& (GET_CODE (XEXP (x, 0)) == PRE_DEC
|
|||
|
|| GET_CODE (XEXP (x, 0)) == PRE_INC
|
|||
|
|| GET_CODE (XEXP (x, 0)) == POST_DEC
|
|||
|
|| GET_CODE (XEXP (x, 0)) == POST_INC)
|
|||
|
&& XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
|
|||
|
current_function_sp_is_unchanging = 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Record which insns refer to any volatile memory
|
|||
|
or for any reason can't be deleted just because they are dead stores.
|
|||
|
Also, delete any insns that copy a register to itself.
|
|||
|
And see if the stack pointer is modified. */
|
|||
|
static void
|
|||
|
record_volatile_insns (f)
|
|||
|
rtx f;
|
|||
|
{
|
|||
|
rtx insn;
|
|||
|
for (insn = f; insn; insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
enum rtx_code code1 = GET_CODE (insn);
|
|||
|
if (code1 == CALL_INSN)
|
|||
|
INSN_VOLATILE (insn) = 1;
|
|||
|
else if (code1 == INSN || code1 == JUMP_INSN)
|
|||
|
{
|
|||
|
if (GET_CODE (PATTERN (insn)) != USE
|
|||
|
&& volatile_refs_p (PATTERN (insn)))
|
|||
|
INSN_VOLATILE (insn) = 1;
|
|||
|
|
|||
|
/* A SET that makes space on the stack cannot be dead.
|
|||
|
(Such SETs occur only for allocating variable-size data,
|
|||
|
so they will always have a PLUS or MINUS according to the
|
|||
|
direction of stack growth.)
|
|||
|
Even if this function never uses this stack pointer value,
|
|||
|
signal handlers do! */
|
|||
|
else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
|
|||
|
&& SET_DEST (PATTERN (insn)) == stack_pointer_rtx
|
|||
|
#ifdef STACK_GROWS_DOWNWARD
|
|||
|
&& GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
|
|||
|
#else
|
|||
|
&& GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
|
|||
|
#endif
|
|||
|
&& XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
|
|||
|
INSN_VOLATILE (insn) = 1;
|
|||
|
|
|||
|
/* Delete (in effect) any obvious no-op moves. */
|
|||
|
else if (noop_move_p (insn))
|
|||
|
{
|
|||
|
PUT_CODE (insn, NOTE);
|
|||
|
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
|||
|
NOTE_SOURCE_FILE (insn) = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Check if insn modifies the stack pointer. */
|
|||
|
if ( current_function_sp_is_unchanging
|
|||
|
&& GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
note_stores (PATTERN (insn), notice_stack_pointer_modification);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Mark those regs which are needed at the end of the function as live
|
|||
|
at the end of the last basic block. */
|
|||
|
static void
|
|||
|
mark_regs_live_at_end (set)
|
|||
|
regset set;
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
#ifdef EXIT_IGNORE_STACK
|
|||
|
if (! EXIT_IGNORE_STACK
|
|||
|
|| (! FRAME_POINTER_REQUIRED
|
|||
|
&& ! current_function_calls_alloca
|
|||
|
&& flag_omit_frame_pointer)
|
|||
|
|| current_function_sp_is_unchanging)
|
|||
|
#endif
|
|||
|
/* If exiting needs the right stack value,
|
|||
|
consider the stack pointer live at the end of the function. */
|
|||
|
SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
|
|||
|
|
|||
|
/* Mark the frame pointer is needed at the end of the function. If
|
|||
|
we end up eliminating it, it will be removed from the live list
|
|||
|
of each basic block by reload. */
|
|||
|
|
|||
|
SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
|
|||
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
|||
|
/* If they are different, also mark the hard frame pointer as live */
|
|||
|
SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
|
|||
|
#endif
|
|||
|
|
|||
|
|
|||
|
/* Mark all global registers and all registers used by the epilogue
|
|||
|
as being live at the end of the function since they may be
|
|||
|
referenced by our caller. */
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
if (global_regs[i]
|
|||
|
#ifdef EPILOGUE_USES
|
|||
|
|| EPILOGUE_USES (i)
|
|||
|
#endif
|
|||
|
)
|
|||
|
SET_REGNO_REG_SET (set, i);
|
|||
|
}
|
|||
|
|
|||
|
/* Determine which registers are live at the start of each
|
|||
|
basic block of the function whose first insn is F.
|
|||
|
NREGS is the number of registers used in F.
|
|||
|
We allocate the vector basic_block_live_at_start
|
|||
|
and the regsets that it points to, and fill them with the data.
|
|||
|
regset_size and regset_bytes are also set here. */
|
|||
|
|
|||
|
static void
|
|||
|
life_analysis_1 (f, nregs)
|
|||
|
rtx f;
|
|||
|
int nregs;
|
|||
|
{
|
|||
|
int first_pass;
|
|||
|
int changed;
|
|||
|
/* For each basic block, a bitmask of regs
|
|||
|
live on exit from the block. */
|
|||
|
regset *basic_block_live_at_end;
|
|||
|
/* For each basic block, a bitmask of regs
|
|||
|
live on entry to a successor-block of this block.
|
|||
|
If this does not match basic_block_live_at_end,
|
|||
|
that must be updated, and the block must be rescanned. */
|
|||
|
regset *basic_block_new_live_at_end;
|
|||
|
/* For each basic block, a bitmask of regs
|
|||
|
whose liveness at the end of the basic block
|
|||
|
can make a difference in which regs are live on entry to the block.
|
|||
|
These are the regs that are set within the basic block,
|
|||
|
possibly excluding those that are used after they are set. */
|
|||
|
regset *basic_block_significant;
|
|||
|
register int i;
|
|||
|
char save_regs_ever_live[FIRST_PSEUDO_REGISTER];
|
|||
|
|
|||
|
struct obstack flow_obstack;
|
|||
|
|
|||
|
gcc_obstack_init (&flow_obstack);
|
|||
|
|
|||
|
max_regno = nregs;
|
|||
|
|
|||
|
/* The post-reload life analysis have (on a global basis) the same registers
|
|||
|
live as was computed by reload itself.
|
|||
|
|
|||
|
Otherwise elimination offsets and such may be incorrect.
|
|||
|
|
|||
|
Reload will make some registers as live even though they do not appear
|
|||
|
in the rtl. */
|
|||
|
if (reload_completed)
|
|||
|
bcopy (regs_ever_live, save_regs_ever_live, (sizeof (regs_ever_live)));
|
|||
|
|
|||
|
bzero (regs_ever_live, sizeof regs_ever_live);
|
|||
|
|
|||
|
/* Allocate and zero out many data structures
|
|||
|
that will record the data from lifetime analysis. */
|
|||
|
|
|||
|
allocate_for_life_analysis ();
|
|||
|
|
|||
|
reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
|
|||
|
bzero ((char *) reg_next_use, nregs * sizeof (rtx));
|
|||
|
|
|||
|
/* Set up several regset-vectors used internally within this function.
|
|||
|
Their meanings are documented above, with their declarations. */
|
|||
|
|
|||
|
basic_block_live_at_end
|
|||
|
= (regset *) alloca (n_basic_blocks * sizeof (regset));
|
|||
|
|
|||
|
/* Don't use alloca since that leads to a crash rather than an error message
|
|||
|
if there isn't enough space.
|
|||
|
Don't use oballoc since we may need to allocate other things during
|
|||
|
this function on the temporary obstack. */
|
|||
|
init_regset_vector (basic_block_live_at_end, n_basic_blocks, &flow_obstack);
|
|||
|
|
|||
|
basic_block_new_live_at_end
|
|||
|
= (regset *) alloca (n_basic_blocks * sizeof (regset));
|
|||
|
init_regset_vector (basic_block_new_live_at_end, n_basic_blocks,
|
|||
|
&flow_obstack);
|
|||
|
|
|||
|
basic_block_significant
|
|||
|
= (regset *) alloca (n_basic_blocks * sizeof (regset));
|
|||
|
init_regset_vector (basic_block_significant, n_basic_blocks, &flow_obstack);
|
|||
|
|
|||
|
/* Assume that the stack pointer is unchanging if alloca hasn't been used.
|
|||
|
This will be cleared by record_volatile_insns if it encounters an insn
|
|||
|
which modifies the stack pointer. */
|
|||
|
current_function_sp_is_unchanging = !current_function_calls_alloca;
|
|||
|
|
|||
|
record_volatile_insns (f);
|
|||
|
|
|||
|
if (n_basic_blocks > 0)
|
|||
|
{
|
|||
|
mark_regs_live_at_end (basic_block_live_at_end[n_basic_blocks - 1]);
|
|||
|
COPY_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
|
|||
|
basic_block_live_at_end[n_basic_blocks - 1]);
|
|||
|
}
|
|||
|
|
|||
|
/* Propagate life info through the basic blocks
|
|||
|
around the graph of basic blocks.
|
|||
|
|
|||
|
This is a relaxation process: each time a new register
|
|||
|
is live at the end of the basic block, we must scan the block
|
|||
|
to determine which registers are, as a consequence, live at the beginning
|
|||
|
of that block. These registers must then be marked live at the ends
|
|||
|
of all the blocks that can transfer control to that block.
|
|||
|
The process continues until it reaches a fixed point. */
|
|||
|
|
|||
|
first_pass = 1;
|
|||
|
changed = 1;
|
|||
|
while (changed)
|
|||
|
{
|
|||
|
changed = 0;
|
|||
|
for (i = n_basic_blocks - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
int consider = first_pass;
|
|||
|
int must_rescan = first_pass;
|
|||
|
register int j;
|
|||
|
|
|||
|
if (!first_pass)
|
|||
|
{
|
|||
|
/* Set CONSIDER if this block needs thinking about at all
|
|||
|
(that is, if the regs live now at the end of it
|
|||
|
are not the same as were live at the end of it when
|
|||
|
we last thought about it).
|
|||
|
Set must_rescan if it needs to be thought about
|
|||
|
instruction by instruction (that is, if any additional
|
|||
|
reg that is live at the end now but was not live there before
|
|||
|
is one of the significant regs of this basic block). */
|
|||
|
|
|||
|
EXECUTE_IF_AND_COMPL_IN_REG_SET
|
|||
|
(basic_block_new_live_at_end[i],
|
|||
|
basic_block_live_at_end[i], 0, j,
|
|||
|
{
|
|||
|
consider = 1;
|
|||
|
if (REGNO_REG_SET_P (basic_block_significant[i], j))
|
|||
|
{
|
|||
|
must_rescan = 1;
|
|||
|
goto done;
|
|||
|
}
|
|||
|
});
|
|||
|
done:
|
|||
|
if (! consider)
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
/* The live_at_start of this block may be changing,
|
|||
|
so another pass will be required after this one. */
|
|||
|
changed = 1;
|
|||
|
|
|||
|
if (! must_rescan)
|
|||
|
{
|
|||
|
/* No complete rescan needed;
|
|||
|
just record those variables newly known live at end
|
|||
|
as live at start as well. */
|
|||
|
IOR_AND_COMPL_REG_SET (basic_block_live_at_start[i],
|
|||
|
basic_block_new_live_at_end[i],
|
|||
|
basic_block_live_at_end[i]);
|
|||
|
|
|||
|
IOR_AND_COMPL_REG_SET (basic_block_live_at_end[i],
|
|||
|
basic_block_new_live_at_end[i],
|
|||
|
basic_block_live_at_end[i]);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Update the basic_block_live_at_start
|
|||
|
by propagation backwards through the block. */
|
|||
|
COPY_REG_SET (basic_block_live_at_end[i],
|
|||
|
basic_block_new_live_at_end[i]);
|
|||
|
COPY_REG_SET (basic_block_live_at_start[i],
|
|||
|
basic_block_live_at_end[i]);
|
|||
|
propagate_block (basic_block_live_at_start[i],
|
|||
|
BLOCK_HEAD (i), BLOCK_END (i), 0,
|
|||
|
first_pass ? basic_block_significant[i]
|
|||
|
: (regset) 0,
|
|||
|
i);
|
|||
|
}
|
|||
|
|
|||
|
{
|
|||
|
int_list_ptr p;
|
|||
|
|
|||
|
/* Update the basic_block_new_live_at_end's of
|
|||
|
all the blocks that reach this one. */
|
|||
|
for (p = basic_block_pred[i]; p; p = p->next)
|
|||
|
{
|
|||
|
register int from_block = INT_LIST_VAL (p);
|
|||
|
IOR_REG_SET (basic_block_new_live_at_end[from_block],
|
|||
|
basic_block_live_at_start[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
#ifdef USE_C_ALLOCA
|
|||
|
alloca (0);
|
|||
|
#endif
|
|||
|
}
|
|||
|
first_pass = 0;
|
|||
|
}
|
|||
|
|
|||
|
/* The only pseudos that are live at the beginning of the function are
|
|||
|
those that were not set anywhere in the function. local-alloc doesn't
|
|||
|
know how to handle these correctly, so mark them as not local to any
|
|||
|
one basic block. */
|
|||
|
|
|||
|
if (n_basic_blocks > 0)
|
|||
|
EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[0],
|
|||
|
FIRST_PSEUDO_REGISTER, i,
|
|||
|
{
|
|||
|
REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
|
|||
|
});
|
|||
|
|
|||
|
/* Now the life information is accurate.
|
|||
|
Make one more pass over each basic block
|
|||
|
to delete dead stores, create autoincrement addressing
|
|||
|
and record how many times each register is used, is set, or dies.
|
|||
|
|
|||
|
To save time, we operate directly in basic_block_live_at_end[i],
|
|||
|
thus destroying it (in fact, converting it into a copy of
|
|||
|
basic_block_live_at_start[i]). This is ok now because
|
|||
|
basic_block_live_at_end[i] is no longer used past this point. */
|
|||
|
|
|||
|
for (i = 0; i < n_basic_blocks; i++)
|
|||
|
{
|
|||
|
propagate_block (basic_block_live_at_end[i],
|
|||
|
BLOCK_HEAD (i), BLOCK_END (i), 1,
|
|||
|
(regset) 0, i);
|
|||
|
#ifdef USE_C_ALLOCA
|
|||
|
alloca (0);
|
|||
|
#endif
|
|||
|
}
|
|||
|
|
|||
|
#if 0
|
|||
|
/* Something live during a setjmp should not be put in a register
|
|||
|
on certain machines which restore regs from stack frames
|
|||
|
rather than from the jmpbuf.
|
|||
|
But we don't need to do this for the user's variables, since
|
|||
|
ANSI says only volatile variables need this. */
|
|||
|
#ifdef LONGJMP_RESTORE_FROM_STACK
|
|||
|
EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
|
|||
|
FIRST_PSEUDO_REGISTER, i,
|
|||
|
{
|
|||
|
if (regno_reg_rtx[i] != 0
|
|||
|
&& ! REG_USERVAR_P (regno_reg_rtx[i]))
|
|||
|
{
|
|||
|
REG_LIVE_LENGTH (i) = -1;
|
|||
|
REG_BASIC_BLOCK (i) = -1;
|
|||
|
}
|
|||
|
});
|
|||
|
#endif
|
|||
|
#endif
|
|||
|
|
|||
|
/* We have a problem with any pseudoreg that
|
|||
|
lives across the setjmp. ANSI says that if a
|
|||
|
user variable does not change in value
|
|||
|
between the setjmp and the longjmp, then the longjmp preserves it.
|
|||
|
This includes longjmp from a place where the pseudo appears dead.
|
|||
|
(In principle, the value still exists if it is in scope.)
|
|||
|
If the pseudo goes in a hard reg, some other value may occupy
|
|||
|
that hard reg where this pseudo is dead, thus clobbering the pseudo.
|
|||
|
Conclusion: such a pseudo must not go in a hard reg. */
|
|||
|
EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
|
|||
|
FIRST_PSEUDO_REGISTER, i,
|
|||
|
{
|
|||
|
if (regno_reg_rtx[i] != 0)
|
|||
|
{
|
|||
|
REG_LIVE_LENGTH (i) = -1;
|
|||
|
REG_BASIC_BLOCK (i) = -1;
|
|||
|
}
|
|||
|
});
|
|||
|
|
|||
|
/* Restore regs_ever_live that was provided by reload. */
|
|||
|
if (reload_completed)
|
|||
|
bcopy (save_regs_ever_live, regs_ever_live, (sizeof (regs_ever_live)));
|
|||
|
|
|||
|
free_regset_vector (basic_block_live_at_end, n_basic_blocks);
|
|||
|
free_regset_vector (basic_block_new_live_at_end, n_basic_blocks);
|
|||
|
free_regset_vector (basic_block_significant, n_basic_blocks);
|
|||
|
basic_block_live_at_end = (regset *)0;
|
|||
|
basic_block_new_live_at_end = (regset *)0;
|
|||
|
basic_block_significant = (regset *)0;
|
|||
|
|
|||
|
obstack_free (&flow_obstack, NULL_PTR);
|
|||
|
}
|
|||
|
|
|||
|
/* Subroutines of life analysis. */
|
|||
|
|
|||
|
/* Allocate the permanent data structures that represent the results
|
|||
|
of life analysis. Not static since used also for stupid life analysis. */
|
|||
|
|
|||
|
void
|
|||
|
allocate_for_life_analysis ()
|
|||
|
{
|
|||
|
register int i;
|
|||
|
|
|||
|
/* Recalculate the register space, in case it has grown. Old style
|
|||
|
vector oriented regsets would set regset_{size,bytes} here also. */
|
|||
|
allocate_reg_info (max_regno, FALSE, FALSE);
|
|||
|
|
|||
|
/* Because both reg_scan and flow_analysis want to set up the REG_N_SETS
|
|||
|
information, explicitly reset it here. The allocation should have
|
|||
|
already happened on the previous reg_scan pass. Make sure in case
|
|||
|
some more registers were allocated. */
|
|||
|
for (i = 0; i < max_regno; i++)
|
|||
|
REG_N_SETS (i) = 0;
|
|||
|
|
|||
|
basic_block_live_at_start
|
|||
|
= (regset *) oballoc (n_basic_blocks * sizeof (regset));
|
|||
|
init_regset_vector (basic_block_live_at_start, n_basic_blocks,
|
|||
|
function_obstack);
|
|||
|
|
|||
|
regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (function_obstack);
|
|||
|
CLEAR_REG_SET (regs_live_at_setjmp);
|
|||
|
}
|
|||
|
|
|||
|
/* Make each element of VECTOR point at a regset. The vector has
|
|||
|
NELTS elements, and space is allocated from the ALLOC_OBSTACK
|
|||
|
obstack. */
|
|||
|
|
|||
|
/* CYGNUS LOCAL LRS */
|
|||
|
void
|
|||
|
init_regset_vector (vector, nelts, alloc_obstack)
|
|||
|
regset *vector;
|
|||
|
int nelts;
|
|||
|
struct obstack *alloc_obstack;
|
|||
|
{
|
|||
|
register int i;
|
|||
|
|
|||
|
for (i = 0; i < nelts; i++)
|
|||
|
{
|
|||
|
vector[i] = OBSTACK_ALLOC_REG_SET (alloc_obstack);
|
|||
|
CLEAR_REG_SET (vector[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Release any additional space allocated for each element of VECTOR point
|
|||
|
other than the regset header itself. The vector has NELTS elements. */
|
|||
|
|
|||
|
void
|
|||
|
free_regset_vector (vector, nelts)
|
|||
|
regset *vector;
|
|||
|
int nelts;
|
|||
|
{
|
|||
|
register int i;
|
|||
|
|
|||
|
for (i = 0; i < nelts; i++)
|
|||
|
FREE_REG_SET (vector[i]);
|
|||
|
}
|
|||
|
|
|||
|
/* Compute the registers live at the beginning of a basic block
|
|||
|
from those live at the end.
|
|||
|
|
|||
|
When called, OLD contains those live at the end.
|
|||
|
On return, it contains those live at the beginning.
|
|||
|
FIRST and LAST are the first and last insns of the basic block.
|
|||
|
|
|||
|
FINAL is nonzero if we are doing the final pass which is not
|
|||
|
for computing the life info (since that has already been done)
|
|||
|
but for acting on it. On this pass, we delete dead stores,
|
|||
|
set up the logical links and dead-variables lists of instructions,
|
|||
|
and merge instructions for autoincrement and autodecrement addresses.
|
|||
|
|
|||
|
SIGNIFICANT is nonzero only the first time for each basic block.
|
|||
|
If it is nonzero, it points to a regset in which we store
|
|||
|
a 1 for each register that is set within the block.
|
|||
|
|
|||
|
BNUM is the number of the basic block. */
|
|||
|
|
|||
|
static void
|
|||
|
propagate_block (old, first, last, final, significant, bnum)
|
|||
|
register regset old;
|
|||
|
rtx first;
|
|||
|
rtx last;
|
|||
|
int final;
|
|||
|
regset significant;
|
|||
|
int bnum;
|
|||
|
{
|
|||
|
register rtx insn;
|
|||
|
rtx prev;
|
|||
|
regset live;
|
|||
|
regset dead;
|
|||
|
|
|||
|
/* The loop depth may change in the middle of a basic block. Since we
|
|||
|
scan from end to beginning, we start with the depth at the end of the
|
|||
|
current basic block, and adjust as we pass ends and starts of loops. */
|
|||
|
loop_depth = basic_block_loop_depth[bnum];
|
|||
|
|
|||
|
dead = ALLOCA_REG_SET ();
|
|||
|
live = ALLOCA_REG_SET ();
|
|||
|
|
|||
|
cc0_live = 0;
|
|||
|
mem_set_list = NULL_RTX;
|
|||
|
|
|||
|
/* Include any notes at the end of the block in the scan.
|
|||
|
This is in case the block ends with a call to setjmp. */
|
|||
|
|
|||
|
while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
|
|||
|
{
|
|||
|
/* Look for loop boundaries, we are going forward here. */
|
|||
|
last = NEXT_INSN (last);
|
|||
|
if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
|
|||
|
loop_depth++;
|
|||
|
else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
|
|||
|
loop_depth--;
|
|||
|
}
|
|||
|
|
|||
|
if (final)
|
|||
|
{
|
|||
|
register int i;
|
|||
|
|
|||
|
/* Process the regs live at the end of the block.
|
|||
|
Mark them as not local to any one basic block. */
|
|||
|
EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
|
|||
|
{
|
|||
|
REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
|
|||
|
});
|
|||
|
}
|
|||
|
|
|||
|
/* Scan the block an insn at a time from end to beginning. */
|
|||
|
|
|||
|
for (insn = last; ; insn = prev)
|
|||
|
{
|
|||
|
prev = PREV_INSN (insn);
|
|||
|
|
|||
|
if (GET_CODE (insn) == NOTE)
|
|||
|
{
|
|||
|
/* Look for loop boundaries, remembering that we are going
|
|||
|
backwards. */
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
|
|||
|
loop_depth++;
|
|||
|
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
|
|||
|
loop_depth--;
|
|||
|
|
|||
|
/* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
|
|||
|
Abort now rather than setting register status incorrectly. */
|
|||
|
if (loop_depth == 0)
|
|||
|
abort ();
|
|||
|
|
|||
|
/* If this is a call to `setjmp' et al,
|
|||
|
warn if any non-volatile datum is live. */
|
|||
|
|
|||
|
if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
|
|||
|
IOR_REG_SET (regs_live_at_setjmp, old);
|
|||
|
}
|
|||
|
|
|||
|
/* Update the life-status of regs for this insn.
|
|||
|
First DEAD gets which regs are set in this insn
|
|||
|
then LIVE gets which regs are used in this insn.
|
|||
|
Then the regs live before the insn
|
|||
|
are those live after, with DEAD regs turned off,
|
|||
|
and then LIVE regs turned on. */
|
|||
|
|
|||
|
else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
{
|
|||
|
register int i;
|
|||
|
rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
|
|||
|
int insn_is_dead
|
|||
|
= (insn_dead_p (PATTERN (insn), old, 0, REG_NOTES (insn))
|
|||
|
/* Don't delete something that refers to volatile storage! */
|
|||
|
&& ! INSN_VOLATILE (insn));
|
|||
|
int libcall_is_dead
|
|||
|
= (insn_is_dead && note != 0
|
|||
|
&& libcall_dead_p (PATTERN (insn), old, note, insn));
|
|||
|
|
|||
|
/* If an instruction consists of just dead store(s) on final pass,
|
|||
|
"delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
|
|||
|
We could really delete it with delete_insn, but that
|
|||
|
can cause trouble for first or last insn in a basic block. */
|
|||
|
if (final && insn_is_dead)
|
|||
|
{
|
|||
|
PUT_CODE (insn, NOTE);
|
|||
|
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
|||
|
NOTE_SOURCE_FILE (insn) = 0;
|
|||
|
|
|||
|
/* CC0 is now known to be dead. Either this insn used it,
|
|||
|
in which case it doesn't anymore, or clobbered it,
|
|||
|
so the next insn can't use it. */
|
|||
|
cc0_live = 0;
|
|||
|
|
|||
|
/* If this insn is copying the return value from a library call,
|
|||
|
delete the entire library call. */
|
|||
|
if (libcall_is_dead)
|
|||
|
{
|
|||
|
rtx first = XEXP (note, 0);
|
|||
|
rtx p = insn;
|
|||
|
while (INSN_DELETED_P (first))
|
|||
|
first = NEXT_INSN (first);
|
|||
|
while (p != first)
|
|||
|
{
|
|||
|
p = PREV_INSN (p);
|
|||
|
PUT_CODE (p, NOTE);
|
|||
|
NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
|
|||
|
NOTE_SOURCE_FILE (p) = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
goto flushed;
|
|||
|
}
|
|||
|
|
|||
|
CLEAR_REG_SET (dead);
|
|||
|
CLEAR_REG_SET (live);
|
|||
|
|
|||
|
/* See if this is an increment or decrement that can be
|
|||
|
merged into a following memory address. */
|
|||
|
#ifdef AUTO_INC_DEC
|
|||
|
{
|
|||
|
register rtx x = single_set (insn);
|
|||
|
|
|||
|
/* Does this instruction increment or decrement a register? */
|
|||
|
if (!reload_completed
|
|||
|
&& final && x != 0
|
|||
|
&& GET_CODE (SET_DEST (x)) == REG
|
|||
|
&& (GET_CODE (SET_SRC (x)) == PLUS
|
|||
|
|| GET_CODE (SET_SRC (x)) == MINUS)
|
|||
|
&& XEXP (SET_SRC (x), 0) == SET_DEST (x)
|
|||
|
&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
|
|||
|
/* Ok, look for a following memory ref we can combine with.
|
|||
|
If one is found, change the memory ref to a PRE_INC
|
|||
|
or PRE_DEC, cancel this insn, and return 1.
|
|||
|
Return 0 if nothing has been done. */
|
|||
|
&& try_pre_increment_1 (insn))
|
|||
|
goto flushed;
|
|||
|
}
|
|||
|
#endif /* AUTO_INC_DEC */
|
|||
|
|
|||
|
/* If this is not the final pass, and this insn is copying the
|
|||
|
value of a library call and it's dead, don't scan the
|
|||
|
insns that perform the library call, so that the call's
|
|||
|
arguments are not marked live. */
|
|||
|
if (libcall_is_dead)
|
|||
|
{
|
|||
|
/* Mark the dest reg as `significant'. */
|
|||
|
mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
|
|||
|
|
|||
|
insn = XEXP (note, 0);
|
|||
|
prev = PREV_INSN (insn);
|
|||
|
}
|
|||
|
else if (GET_CODE (PATTERN (insn)) == SET
|
|||
|
&& SET_DEST (PATTERN (insn)) == stack_pointer_rtx
|
|||
|
&& GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
|
|||
|
&& XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
|
|||
|
&& GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
|
|||
|
/* We have an insn to pop a constant amount off the stack.
|
|||
|
(Such insns use PLUS regardless of the direction of the stack,
|
|||
|
and any insn to adjust the stack by a constant is always a pop.)
|
|||
|
These insns, if not dead stores, have no effect on life. */
|
|||
|
;
|
|||
|
else
|
|||
|
{
|
|||
|
/* Any regs live at the time of a call instruction
|
|||
|
must not go in a register clobbered by calls.
|
|||
|
Find all regs now live and record this for them. */
|
|||
|
|
|||
|
if (GET_CODE (insn) == CALL_INSN && final)
|
|||
|
EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
|
|||
|
{
|
|||
|
REG_N_CALLS_CROSSED (i)++;
|
|||
|
});
|
|||
|
|
|||
|
/* LIVE gets the regs used in INSN;
|
|||
|
DEAD gets those set by it. Dead insns don't make anything
|
|||
|
live. */
|
|||
|
|
|||
|
mark_set_regs (old, dead, PATTERN (insn),
|
|||
|
final ? insn : NULL_RTX, significant);
|
|||
|
|
|||
|
/* If an insn doesn't use CC0, it becomes dead since we
|
|||
|
assume that every insn clobbers it. So show it dead here;
|
|||
|
mark_used_regs will set it live if it is referenced. */
|
|||
|
cc0_live = 0;
|
|||
|
|
|||
|
if (! insn_is_dead)
|
|||
|
mark_used_regs (old, live, PATTERN (insn), final, insn);
|
|||
|
|
|||
|
/* Sometimes we may have inserted something before INSN (such as
|
|||
|
a move) when we make an auto-inc. So ensure we will scan
|
|||
|
those insns. */
|
|||
|
#ifdef AUTO_INC_DEC
|
|||
|
prev = PREV_INSN (insn);
|
|||
|
#endif
|
|||
|
|
|||
|
if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
|
|||
|
{
|
|||
|
register int i;
|
|||
|
|
|||
|
rtx note;
|
|||
|
|
|||
|
for (note = CALL_INSN_FUNCTION_USAGE (insn);
|
|||
|
note;
|
|||
|
note = XEXP (note, 1))
|
|||
|
if (GET_CODE (XEXP (note, 0)) == USE)
|
|||
|
mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
|
|||
|
final, insn);
|
|||
|
|
|||
|
/* Each call clobbers all call-clobbered regs that are not
|
|||
|
global or fixed. Note that the function-value reg is a
|
|||
|
call-clobbered reg, and mark_set_regs has already had
|
|||
|
a chance to handle it. */
|
|||
|
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
if (call_used_regs[i] && ! global_regs[i]
|
|||
|
&& ! fixed_regs[i])
|
|||
|
SET_REGNO_REG_SET (dead, i);
|
|||
|
|
|||
|
/* The stack ptr is used (honorarily) by a CALL insn. */
|
|||
|
SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
|
|||
|
|
|||
|
/* Calls may also reference any of the global registers,
|
|||
|
so they are made live. */
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
if (global_regs[i])
|
|||
|
mark_used_regs (old, live,
|
|||
|
gen_rtx_REG (reg_raw_mode[i], i),
|
|||
|
final, insn);
|
|||
|
|
|||
|
/* Calls also clobber memory. */
|
|||
|
mem_set_list = NULL_RTX;
|
|||
|
}
|
|||
|
|
|||
|
/* Update OLD for the registers used or set. */
|
|||
|
AND_COMPL_REG_SET (old, dead);
|
|||
|
IOR_REG_SET (old, live);
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
/* On final pass, update counts of how many insns each reg is live
|
|||
|
at. */
|
|||
|
if (final)
|
|||
|
EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
|
|||
|
{ REG_LIVE_LENGTH (i)++; });
|
|||
|
}
|
|||
|
flushed: ;
|
|||
|
if (insn == first)
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
FREE_REG_SET (dead);
|
|||
|
FREE_REG_SET (live);
|
|||
|
}
|
|||
|
|
|||
|
/* Return 1 if X (the body of an insn, or part of it) is just dead stores
|
|||
|
(SET expressions whose destinations are registers dead after the insn).
|
|||
|
NEEDED is the regset that says which regs are alive after the insn.
|
|||
|
|
|||
|
Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
|
|||
|
|
|||
|
If X is the entire body of an insn, NOTES contains the reg notes
|
|||
|
pertaining to the insn. */
|
|||
|
|
|||
|
static int
|
|||
|
insn_dead_p (x, needed, call_ok, notes)
|
|||
|
rtx x;
|
|||
|
regset needed;
|
|||
|
int call_ok;
|
|||
|
rtx notes ATTRIBUTE_UNUSED;
|
|||
|
{
|
|||
|
enum rtx_code code = GET_CODE (x);
|
|||
|
|
|||
|
#ifdef AUTO_INC_DEC
|
|||
|
/* If flow is invoked after reload, we must take existing AUTO_INC
|
|||
|
expresions into account. */
|
|||
|
if (reload_completed)
|
|||
|
{
|
|||
|
for ( ; notes; notes = XEXP (notes, 1))
|
|||
|
{
|
|||
|
if (REG_NOTE_KIND (notes) == REG_INC)
|
|||
|
{
|
|||
|
int regno = REGNO (XEXP (notes, 0));
|
|||
|
|
|||
|
/* Don't delete insns to set global regs. */
|
|||
|
if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
|
|||
|
|| REGNO_REG_SET_P (needed, regno))
|
|||
|
return 0;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
/* If setting something that's a reg or part of one,
|
|||
|
see if that register's altered value will be live. */
|
|||
|
|
|||
|
if (code == SET)
|
|||
|
{
|
|||
|
rtx r = SET_DEST (x);
|
|||
|
|
|||
|
/* A SET that is a subroutine call cannot be dead. */
|
|||
|
if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
|
|||
|
return 0;
|
|||
|
|
|||
|
#ifdef HAVE_cc0
|
|||
|
if (GET_CODE (r) == CC0)
|
|||
|
return ! cc0_live;
|
|||
|
#endif
|
|||
|
|
|||
|
if (GET_CODE (r) == MEM && ! MEM_VOLATILE_P (r))
|
|||
|
{
|
|||
|
rtx temp;
|
|||
|
/* Walk the set of memory locations we are currently tracking
|
|||
|
and see if one is an identical match to this memory location.
|
|||
|
If so, this memory write is dead (remember, we're walking
|
|||
|
backwards from the end of the block to the start. */
|
|||
|
temp = mem_set_list;
|
|||
|
while (temp)
|
|||
|
{
|
|||
|
if (rtx_equal_p (XEXP (temp, 0), r))
|
|||
|
return 1;
|
|||
|
temp = XEXP (temp, 1);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
while (GET_CODE (r) == SUBREG || GET_CODE (r) == STRICT_LOW_PART
|
|||
|
|| GET_CODE (r) == ZERO_EXTRACT)
|
|||
|
r = SUBREG_REG (r);
|
|||
|
|
|||
|
if (GET_CODE (r) == REG)
|
|||
|
{
|
|||
|
int regno = REGNO (r);
|
|||
|
|
|||
|
/* Don't delete insns to set global regs. */
|
|||
|
if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
|
|||
|
/* Make sure insns to set frame pointer aren't deleted. */
|
|||
|
|| regno == FRAME_POINTER_REGNUM
|
|||
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
|||
|
|| regno == HARD_FRAME_POINTER_REGNUM
|
|||
|
#endif
|
|||
|
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
|||
|
/* Make sure insns to set arg pointer are never deleted
|
|||
|
(if the arg pointer isn't fixed, there will be a USE for
|
|||
|
it, so we can treat it normally). */
|
|||
|
|| (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
|
|||
|
#endif
|
|||
|
|| REGNO_REG_SET_P (needed, regno))
|
|||
|
return 0;
|
|||
|
|
|||
|
/* If this is a hard register, verify that subsequent words are
|
|||
|
not needed. */
|
|||
|
if (regno < FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
|
|||
|
|
|||
|
while (--n > 0)
|
|||
|
if (REGNO_REG_SET_P (needed, regno+n))
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
return 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If performing several activities,
|
|||
|
insn is dead if each activity is individually dead.
|
|||
|
Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
|
|||
|
that's inside a PARALLEL doesn't make the insn worth keeping. */
|
|||
|
else if (code == PARALLEL)
|
|||
|
{
|
|||
|
int i = XVECLEN (x, 0);
|
|||
|
|
|||
|
for (i--; i >= 0; i--)
|
|||
|
if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
|
|||
|
&& GET_CODE (XVECEXP (x, 0, i)) != USE
|
|||
|
&& ! insn_dead_p (XVECEXP (x, 0, i), needed, call_ok, NULL_RTX))
|
|||
|
return 0;
|
|||
|
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
/* A CLOBBER of a pseudo-register that is dead serves no purpose. That
|
|||
|
is not necessarily true for hard registers. */
|
|||
|
else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
|
|||
|
&& REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
|
|||
|
&& ! REGNO_REG_SET_P (needed, REGNO (XEXP (x, 0))))
|
|||
|
return 1;
|
|||
|
|
|||
|
/* We do not check other CLOBBER or USE here. An insn consisting of just
|
|||
|
a CLOBBER or just a USE should not be deleted. */
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* If X is the pattern of the last insn in a libcall, and assuming X is dead,
|
|||
|
return 1 if the entire library call is dead.
|
|||
|
This is true if X copies a register (hard or pseudo)
|
|||
|
and if the hard return reg of the call insn is dead.
|
|||
|
(The caller should have tested the destination of X already for death.)
|
|||
|
|
|||
|
If this insn doesn't just copy a register, then we don't
|
|||
|
have an ordinary libcall. In that case, cse could not have
|
|||
|
managed to substitute the source for the dest later on,
|
|||
|
so we can assume the libcall is dead.
|
|||
|
|
|||
|
NEEDED is the bit vector of pseudoregs live before this insn.
|
|||
|
NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
|
|||
|
|
|||
|
static int
|
|||
|
libcall_dead_p (x, needed, note, insn)
|
|||
|
rtx x;
|
|||
|
regset needed;
|
|||
|
rtx note;
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
register RTX_CODE code = GET_CODE (x);
|
|||
|
|
|||
|
if (code == SET)
|
|||
|
{
|
|||
|
register rtx r = SET_SRC (x);
|
|||
|
if (GET_CODE (r) == REG)
|
|||
|
{
|
|||
|
rtx call = XEXP (note, 0);
|
|||
|
rtx call_pat;
|
|||
|
register int i;
|
|||
|
|
|||
|
/* Find the call insn. */
|
|||
|
while (call != insn && GET_CODE (call) != CALL_INSN)
|
|||
|
call = NEXT_INSN (call);
|
|||
|
|
|||
|
/* If there is none, do nothing special,
|
|||
|
since ordinary death handling can understand these insns. */
|
|||
|
if (call == insn)
|
|||
|
return 0;
|
|||
|
|
|||
|
/* See if the hard reg holding the value is dead.
|
|||
|
If this is a PARALLEL, find the call within it. */
|
|||
|
call_pat = PATTERN (call);
|
|||
|
if (GET_CODE (call_pat) == PARALLEL)
|
|||
|
{
|
|||
|
for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
|
|||
|
if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
|
|||
|
&& GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
|
|||
|
break;
|
|||
|
|
|||
|
/* This may be a library call that is returning a value
|
|||
|
via invisible pointer. Do nothing special, since
|
|||
|
ordinary death handling can understand these insns. */
|
|||
|
if (i < 0)
|
|||
|
return 0;
|
|||
|
|
|||
|
call_pat = XVECEXP (call_pat, 0, i);
|
|||
|
}
|
|||
|
|
|||
|
return insn_dead_p (call_pat, needed, 1, REG_NOTES (call));
|
|||
|
}
|
|||
|
}
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Return 1 if register REGNO was used before it was set, i.e. if it is
|
|||
|
live at function entry. Don't count global register variables, variables
|
|||
|
in registers that can be used for function arg passing, or variables in
|
|||
|
fixed hard registers. */
|
|||
|
|
|||
|
int
|
|||
|
regno_uninitialized (regno)
|
|||
|
int regno;
|
|||
|
{
|
|||
|
if (n_basic_blocks == 0
|
|||
|
|| (regno < FIRST_PSEUDO_REGISTER
|
|||
|
&& (global_regs[regno]
|
|||
|
|| fixed_regs[regno]
|
|||
|
|| FUNCTION_ARG_REGNO_P (regno))))
|
|||
|
return 0;
|
|||
|
|
|||
|
return REGNO_REG_SET_P (basic_block_live_at_start[0], regno);
|
|||
|
}
|
|||
|
|
|||
|
/* 1 if register REGNO was alive at a place where `setjmp' was called
|
|||
|
and was set more than once or is an argument.
|
|||
|
Such regs may be clobbered by `longjmp'. */
|
|||
|
|
|||
|
int
|
|||
|
regno_clobbered_at_setjmp (regno)
|
|||
|
int regno;
|
|||
|
{
|
|||
|
if (n_basic_blocks == 0)
|
|||
|
return 0;
|
|||
|
|
|||
|
return ((REG_N_SETS (regno) > 1
|
|||
|
|| REGNO_REG_SET_P (basic_block_live_at_start[0], regno))
|
|||
|
&& REGNO_REG_SET_P (regs_live_at_setjmp, regno));
|
|||
|
}
|
|||
|
|
|||
|
/* INSN references memory, possibly using autoincrement addressing modes.
|
|||
|
Find any entries on the mem_set_list that need to be invalidated due
|
|||
|
to an address change. */
|
|||
|
static void
|
|||
|
invalidate_mems_from_autoinc (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
rtx note = REG_NOTES (insn);
|
|||
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
|||
|
{
|
|||
|
if (REG_NOTE_KIND (note) == REG_INC)
|
|||
|
{
|
|||
|
rtx temp = mem_set_list;
|
|||
|
rtx prev = NULL_RTX;
|
|||
|
|
|||
|
while (temp)
|
|||
|
{
|
|||
|
if (reg_overlap_mentioned_p (XEXP (note, 0), XEXP (temp, 0)))
|
|||
|
{
|
|||
|
/* Splice temp out of list. */
|
|||
|
if (prev)
|
|||
|
XEXP (prev, 1) = XEXP (temp, 1);
|
|||
|
else
|
|||
|
mem_set_list = XEXP (temp, 1);
|
|||
|
}
|
|||
|
else
|
|||
|
prev = temp;
|
|||
|
temp = XEXP (temp, 1);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Process the registers that are set within X.
|
|||
|
Their bits are set to 1 in the regset DEAD,
|
|||
|
because they are dead prior to this insn.
|
|||
|
|
|||
|
If INSN is nonzero, it is the insn being processed
|
|||
|
and the fact that it is nonzero implies this is the FINAL pass
|
|||
|
in propagate_block. In this case, various info about register
|
|||
|
usage is stored, LOG_LINKS fields of insns are set up. */
|
|||
|
|
|||
|
static void
|
|||
|
mark_set_regs (needed, dead, x, insn, significant)
|
|||
|
regset needed;
|
|||
|
regset dead;
|
|||
|
rtx x;
|
|||
|
rtx insn;
|
|||
|
regset significant;
|
|||
|
{
|
|||
|
register RTX_CODE code = GET_CODE (x);
|
|||
|
|
|||
|
if (code == SET || code == CLOBBER)
|
|||
|
mark_set_1 (needed, dead, x, insn, significant);
|
|||
|
else if (code == PARALLEL)
|
|||
|
{
|
|||
|
register int i;
|
|||
|
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
code = GET_CODE (XVECEXP (x, 0, i));
|
|||
|
if (code == SET || code == CLOBBER)
|
|||
|
mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Process a single SET rtx, X. */
|
|||
|
|
|||
|
static void
|
|||
|
mark_set_1 (needed, dead, x, insn, significant)
|
|||
|
regset needed;
|
|||
|
regset dead;
|
|||
|
rtx x;
|
|||
|
rtx insn;
|
|||
|
regset significant;
|
|||
|
{
|
|||
|
register int regno;
|
|||
|
register rtx reg = SET_DEST (x);
|
|||
|
|
|||
|
/* Some targets place small structures in registers for
|
|||
|
return values of functions. We have to detect this
|
|||
|
case specially here to get correct flow information. */
|
|||
|
if (GET_CODE (reg) == PARALLEL
|
|||
|
&& GET_MODE (reg) == BLKmode)
|
|||
|
{
|
|||
|
register int i;
|
|||
|
|
|||
|
for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
|
|||
|
mark_set_1 (needed, dead, XVECEXP (reg, 0, i), insn, significant);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* Modifying just one hardware register of a multi-reg value
|
|||
|
or just a byte field of a register
|
|||
|
does not mean the value from before this insn is now dead.
|
|||
|
But it does mean liveness of that register at the end of the block
|
|||
|
is significant.
|
|||
|
|
|||
|
Within mark_set_1, however, we treat it as if the register is
|
|||
|
indeed modified. mark_used_regs will, however, also treat this
|
|||
|
register as being used. Thus, we treat these insns as setting a
|
|||
|
new value for the register as a function of its old value. This
|
|||
|
cases LOG_LINKS to be made appropriately and this will help combine. */
|
|||
|
|
|||
|
while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
|
|||
|
|| GET_CODE (reg) == SIGN_EXTRACT
|
|||
|
|| GET_CODE (reg) == STRICT_LOW_PART)
|
|||
|
reg = XEXP (reg, 0);
|
|||
|
|
|||
|
/* If this set is a MEM, then it kills any aliased writes.
|
|||
|
If this set is a REG, then it kills any MEMs which use the reg. */
|
|||
|
if (GET_CODE (reg) == MEM
|
|||
|
|| GET_CODE (reg) == REG)
|
|||
|
{
|
|||
|
rtx temp = mem_set_list;
|
|||
|
rtx prev = NULL_RTX;
|
|||
|
|
|||
|
while (temp)
|
|||
|
{
|
|||
|
if ((GET_CODE (reg) == MEM
|
|||
|
&& output_dependence (XEXP (temp, 0), reg))
|
|||
|
|| (GET_CODE (reg) == REG
|
|||
|
&& reg_overlap_mentioned_p (reg, XEXP (temp, 0))))
|
|||
|
{
|
|||
|
/* Splice this entry out of the list. */
|
|||
|
if (prev)
|
|||
|
XEXP (prev, 1) = XEXP (temp, 1);
|
|||
|
else
|
|||
|
mem_set_list = XEXP (temp, 1);
|
|||
|
}
|
|||
|
else
|
|||
|
prev = temp;
|
|||
|
temp = XEXP (temp, 1);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If the memory reference had embedded side effects (autoincrement
|
|||
|
address modes. Then we may need to kill some entries on the
|
|||
|
memory set list. */
|
|||
|
if (insn && GET_CODE (reg) == MEM)
|
|||
|
invalidate_mems_from_autoinc (insn);
|
|||
|
|
|||
|
if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
|
|||
|
/* There are no REG_INC notes for SP, so we can't assume we'll see
|
|||
|
everything that invalidates it. To be safe, don't eliminate any
|
|||
|
stores though SP; none of them should be redundant anyway. */
|
|||
|
&& ! reg_mentioned_p (stack_pointer_rtx, reg))
|
|||
|
mem_set_list = gen_rtx_EXPR_LIST (VOIDmode, reg, mem_set_list);
|
|||
|
|
|||
|
if (GET_CODE (reg) == REG
|
|||
|
&& (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
|
|||
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
|||
|
&& regno != HARD_FRAME_POINTER_REGNUM
|
|||
|
#endif
|
|||
|
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
|||
|
&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
|
|||
|
#endif
|
|||
|
&& ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
|
|||
|
/* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
|
|||
|
{
|
|||
|
int some_needed = REGNO_REG_SET_P (needed, regno);
|
|||
|
int some_not_needed = ! some_needed;
|
|||
|
|
|||
|
/* Mark it as a significant register for this basic block. */
|
|||
|
if (significant)
|
|||
|
SET_REGNO_REG_SET (significant, regno);
|
|||
|
|
|||
|
/* Mark it as dead before this insn. */
|
|||
|
SET_REGNO_REG_SET (dead, regno);
|
|||
|
|
|||
|
/* A hard reg in a wide mode may really be multiple registers.
|
|||
|
If so, mark all of them just like the first. */
|
|||
|
if (regno < FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
int n;
|
|||
|
|
|||
|
/* Nothing below is needed for the stack pointer; get out asap.
|
|||
|
Eg, log links aren't needed, since combine won't use them. */
|
|||
|
if (regno == STACK_POINTER_REGNUM)
|
|||
|
return;
|
|||
|
|
|||
|
n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
|
|||
|
while (--n > 0)
|
|||
|
{
|
|||
|
int regno_n = regno + n;
|
|||
|
int needed_regno = REGNO_REG_SET_P (needed, regno_n);
|
|||
|
if (significant)
|
|||
|
SET_REGNO_REG_SET (significant, regno_n);
|
|||
|
|
|||
|
SET_REGNO_REG_SET (dead, regno_n);
|
|||
|
some_needed |= needed_regno;
|
|||
|
some_not_needed |= ! needed_regno;
|
|||
|
}
|
|||
|
}
|
|||
|
/* Additional data to record if this is the final pass. */
|
|||
|
if (insn)
|
|||
|
{
|
|||
|
register rtx y = reg_next_use[regno];
|
|||
|
register int blocknum = BLOCK_NUM (insn);
|
|||
|
|
|||
|
/* If this is a hard reg, record this function uses the reg. */
|
|||
|
|
|||
|
if (regno < FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
register int i;
|
|||
|
int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
|
|||
|
|
|||
|
for (i = regno; i < endregno; i++)
|
|||
|
{
|
|||
|
/* The next use is no longer "next", since a store
|
|||
|
intervenes. */
|
|||
|
reg_next_use[i] = 0;
|
|||
|
|
|||
|
regs_ever_live[i] = 1;
|
|||
|
REG_N_SETS (i)++;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* The next use is no longer "next", since a store
|
|||
|
intervenes. */
|
|||
|
reg_next_use[regno] = 0;
|
|||
|
|
|||
|
/* Keep track of which basic blocks each reg appears in. */
|
|||
|
|
|||
|
if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
|
|||
|
REG_BASIC_BLOCK (regno) = blocknum;
|
|||
|
else if (REG_BASIC_BLOCK (regno) != blocknum)
|
|||
|
REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
|
|||
|
|
|||
|
/* Count (weighted) references, stores, etc. This counts a
|
|||
|
register twice if it is modified, but that is correct. */
|
|||
|
REG_N_SETS (regno)++;
|
|||
|
|
|||
|
REG_N_REFS (regno) += loop_depth;
|
|||
|
|
|||
|
/* The insns where a reg is live are normally counted
|
|||
|
elsewhere, but we want the count to include the insn
|
|||
|
where the reg is set, and the normal counting mechanism
|
|||
|
would not count it. */
|
|||
|
REG_LIVE_LENGTH (regno)++;
|
|||
|
}
|
|||
|
|
|||
|
if (! some_not_needed)
|
|||
|
{
|
|||
|
/* Make a logical link from the next following insn
|
|||
|
that uses this register, back to this insn.
|
|||
|
The following insns have already been processed.
|
|||
|
|
|||
|
We don't build a LOG_LINK for hard registers containing
|
|||
|
in ASM_OPERANDs. If these registers get replaced,
|
|||
|
we might wind up changing the semantics of the insn,
|
|||
|
even if reload can make what appear to be valid assignments
|
|||
|
later. */
|
|||
|
if (y && (BLOCK_NUM (y) == blocknum)
|
|||
|
&& (regno >= FIRST_PSEUDO_REGISTER
|
|||
|
|| asm_noperands (PATTERN (y)) < 0))
|
|||
|
LOG_LINKS (y)
|
|||
|
= gen_rtx_INSN_LIST (VOIDmode, insn, LOG_LINKS (y));
|
|||
|
}
|
|||
|
else if (! some_needed)
|
|||
|
{
|
|||
|
/* Note that dead stores have already been deleted when possible
|
|||
|
If we get here, we have found a dead store that cannot
|
|||
|
be eliminated (because the same insn does something useful).
|
|||
|
Indicate this by marking the reg being set as dying here. */
|
|||
|
REG_NOTES (insn)
|
|||
|
= gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
|
|||
|
REG_N_DEATHS (REGNO (reg))++;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* This is a case where we have a multi-word hard register
|
|||
|
and some, but not all, of the words of the register are
|
|||
|
needed in subsequent insns. Write REG_UNUSED notes
|
|||
|
for those parts that were not needed. This case should
|
|||
|
be rare. */
|
|||
|
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
|
|||
|
i >= 0; i--)
|
|||
|
if (!REGNO_REG_SET_P (needed, regno + i))
|
|||
|
REG_NOTES (insn)
|
|||
|
= gen_rtx_EXPR_LIST (REG_UNUSED,
|
|||
|
gen_rtx_REG (reg_raw_mode[regno + i],
|
|||
|
regno + i),
|
|||
|
REG_NOTES (insn));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
else if (GET_CODE (reg) == REG)
|
|||
|
reg_next_use[regno] = 0;
|
|||
|
|
|||
|
/* If this is the last pass and this is a SCRATCH, show it will be dying
|
|||
|
here and count it. */
|
|||
|
else if (GET_CODE (reg) == SCRATCH && insn != 0)
|
|||
|
{
|
|||
|
REG_NOTES (insn)
|
|||
|
= gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#ifdef AUTO_INC_DEC
|
|||
|
|
|||
|
/* X is a MEM found in INSN. See if we can convert it into an auto-increment
|
|||
|
reference. */
|
|||
|
|
|||
|
static void
|
|||
|
find_auto_inc (needed, x, insn)
|
|||
|
regset needed;
|
|||
|
rtx x;
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
rtx addr = XEXP (x, 0);
|
|||
|
HOST_WIDE_INT offset = 0;
|
|||
|
rtx set;
|
|||
|
|
|||
|
/* Here we detect use of an index register which might be good for
|
|||
|
postincrement, postdecrement, preincrement, or predecrement. */
|
|||
|
|
|||
|
if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
|
|||
|
offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
|
|||
|
|
|||
|
if (GET_CODE (addr) == REG)
|
|||
|
{
|
|||
|
register rtx y;
|
|||
|
register int size = GET_MODE_SIZE (GET_MODE (x));
|
|||
|
rtx use;
|
|||
|
rtx incr;
|
|||
|
int regno = REGNO (addr);
|
|||
|
|
|||
|
/* Is the next use an increment that might make auto-increment? */
|
|||
|
if ((incr = reg_next_use[regno]) != 0
|
|||
|
&& (set = single_set (incr)) != 0
|
|||
|
&& GET_CODE (set) == SET
|
|||
|
&& BLOCK_NUM (incr) == BLOCK_NUM (insn)
|
|||
|
/* Can't add side effects to jumps; if reg is spilled and
|
|||
|
reloaded, there's no way to store back the altered value. */
|
|||
|
&& GET_CODE (insn) != JUMP_INSN
|
|||
|
&& (y = SET_SRC (set), GET_CODE (y) == PLUS)
|
|||
|
&& XEXP (y, 0) == addr
|
|||
|
&& GET_CODE (XEXP (y, 1)) == CONST_INT
|
|||
|
&& ((HAVE_POST_INCREMENT
|
|||
|
&& (INTVAL (XEXP (y, 1)) == size && offset == 0))
|
|||
|
|| (HAVE_POST_DECREMENT
|
|||
|
&& (INTVAL (XEXP (y, 1)) == - size && offset == 0))
|
|||
|
|| (HAVE_PRE_INCREMENT
|
|||
|
&& (INTVAL (XEXP (y, 1)) == size && offset == size))
|
|||
|
|| (HAVE_PRE_DECREMENT
|
|||
|
&& (INTVAL (XEXP (y, 1)) == - size && offset == - size)))
|
|||
|
/* Make sure this reg appears only once in this insn. */
|
|||
|
&& (use = find_use_as_address (PATTERN (insn), addr, offset),
|
|||
|
use != 0 && use != (rtx) 1))
|
|||
|
{
|
|||
|
rtx q = SET_DEST (set);
|
|||
|
enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
|
|||
|
? (offset ? PRE_INC : POST_INC)
|
|||
|
: (offset ? PRE_DEC : POST_DEC));
|
|||
|
|
|||
|
if (dead_or_set_p (incr, addr))
|
|||
|
{
|
|||
|
/* This is the simple case. Try to make the auto-inc. If
|
|||
|
we can't, we are done. Otherwise, we will do any
|
|||
|
needed updates below. */
|
|||
|
if (! validate_change (insn, &XEXP (x, 0),
|
|||
|
gen_rtx_fmt_e (inc_code, Pmode, addr),
|
|||
|
0))
|
|||
|
return;
|
|||
|
}
|
|||
|
else if (GET_CODE (q) == REG
|
|||
|
/* PREV_INSN used here to check the semi-open interval
|
|||
|
[insn,incr). */
|
|||
|
&& ! reg_used_between_p (q, PREV_INSN (insn), incr)
|
|||
|
/* We must also check for sets of q as q may be
|
|||
|
a call clobbered hard register and there may
|
|||
|
be a call between PREV_INSN (insn) and incr. */
|
|||
|
&& ! reg_set_between_p (q, PREV_INSN (insn), incr))
|
|||
|
{
|
|||
|
/* We have *p followed sometime later by q = p+size.
|
|||
|
Both p and q must be live afterward,
|
|||
|
and q is not used between INSN and its assignment.
|
|||
|
Change it to q = p, ...*q..., q = q+size.
|
|||
|
Then fall into the usual case. */
|
|||
|
rtx insns, temp;
|
|||
|
|
|||
|
start_sequence ();
|
|||
|
emit_move_insn (q, addr);
|
|||
|
insns = get_insns ();
|
|||
|
end_sequence ();
|
|||
|
|
|||
|
/* If anything in INSNS have UID's that don't fit within the
|
|||
|
extra space we allocate earlier, we can't make this auto-inc.
|
|||
|
This should never happen. */
|
|||
|
for (temp = insns; temp; temp = NEXT_INSN (temp))
|
|||
|
{
|
|||
|
if (INSN_UID (temp) > max_uid_for_flow)
|
|||
|
return;
|
|||
|
BLOCK_NUM (temp) = BLOCK_NUM (insn);
|
|||
|
}
|
|||
|
|
|||
|
/* If we can't make the auto-inc, or can't make the
|
|||
|
replacement into Y, exit. There's no point in making
|
|||
|
the change below if we can't do the auto-inc and doing
|
|||
|
so is not correct in the pre-inc case. */
|
|||
|
|
|||
|
validate_change (insn, &XEXP (x, 0),
|
|||
|
gen_rtx_fmt_e (inc_code, Pmode, q),
|
|||
|
1);
|
|||
|
validate_change (incr, &XEXP (y, 0), q, 1);
|
|||
|
if (! apply_change_group ())
|
|||
|
return;
|
|||
|
|
|||
|
/* We now know we'll be doing this change, so emit the
|
|||
|
new insn(s) and do the updates. */
|
|||
|
emit_insns_before (insns, insn);
|
|||
|
|
|||
|
if (BLOCK_HEAD (BLOCK_NUM (insn)) == insn)
|
|||
|
BLOCK_HEAD (BLOCK_NUM (insn)) = insns;
|
|||
|
|
|||
|
/* INCR will become a NOTE and INSN won't contain a
|
|||
|
use of ADDR. If a use of ADDR was just placed in
|
|||
|
the insn before INSN, make that the next use.
|
|||
|
Otherwise, invalidate it. */
|
|||
|
if (GET_CODE (PREV_INSN (insn)) == INSN
|
|||
|
&& GET_CODE (PATTERN (PREV_INSN (insn))) == SET
|
|||
|
&& SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
|
|||
|
reg_next_use[regno] = PREV_INSN (insn);
|
|||
|
else
|
|||
|
reg_next_use[regno] = 0;
|
|||
|
|
|||
|
addr = q;
|
|||
|
regno = REGNO (q);
|
|||
|
|
|||
|
/* REGNO is now used in INCR which is below INSN, but
|
|||
|
it previously wasn't live here. If we don't mark
|
|||
|
it as needed, we'll put a REG_DEAD note for it
|
|||
|
on this insn, which is incorrect. */
|
|||
|
SET_REGNO_REG_SET (needed, regno);
|
|||
|
|
|||
|
/* If there are any calls between INSN and INCR, show
|
|||
|
that REGNO now crosses them. */
|
|||
|
for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
|
|||
|
if (GET_CODE (temp) == CALL_INSN)
|
|||
|
REG_N_CALLS_CROSSED (regno)++;
|
|||
|
}
|
|||
|
else
|
|||
|
return;
|
|||
|
|
|||
|
/* If we haven't returned, it means we were able to make the
|
|||
|
auto-inc, so update the status. First, record that this insn
|
|||
|
has an implicit side effect. */
|
|||
|
|
|||
|
REG_NOTES (insn)
|
|||
|
= gen_rtx_EXPR_LIST (REG_INC, addr, REG_NOTES (insn));
|
|||
|
|
|||
|
/* Modify the old increment-insn to simply copy
|
|||
|
the already-incremented value of our register. */
|
|||
|
if (! validate_change (incr, &SET_SRC (set), addr, 0))
|
|||
|
abort ();
|
|||
|
|
|||
|
/* If that makes it a no-op (copying the register into itself) delete
|
|||
|
it so it won't appear to be a "use" and a "set" of this
|
|||
|
register. */
|
|||
|
if (SET_DEST (set) == addr)
|
|||
|
{
|
|||
|
PUT_CODE (incr, NOTE);
|
|||
|
NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
|
|||
|
NOTE_SOURCE_FILE (incr) = 0;
|
|||
|
}
|
|||
|
|
|||
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
/* Count an extra reference to the reg. When a reg is
|
|||
|
incremented, spilling it is worse, so we want to make
|
|||
|
that less likely. */
|
|||
|
REG_N_REFS (regno) += loop_depth;
|
|||
|
|
|||
|
/* Count the increment as a setting of the register,
|
|||
|
even though it isn't a SET in rtl. */
|
|||
|
REG_N_SETS (regno)++;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
#endif /* AUTO_INC_DEC */
|
|||
|
|
|||
|
/* Scan expression X and store a 1-bit in LIVE for each reg it uses.
|
|||
|
This is done assuming the registers needed from X
|
|||
|
are those that have 1-bits in NEEDED.
|
|||
|
|
|||
|
On the final pass, FINAL is 1. This means try for autoincrement
|
|||
|
and count the uses and deaths of each pseudo-reg.
|
|||
|
|
|||
|
INSN is the containing instruction. If INSN is dead, this function is not
|
|||
|
called. */
|
|||
|
|
|||
|
static void
|
|||
|
mark_used_regs (needed, live, x, final, insn)
|
|||
|
regset needed;
|
|||
|
regset live;
|
|||
|
rtx x;
|
|||
|
int final;
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
register RTX_CODE code;
|
|||
|
register int regno;
|
|||
|
int i;
|
|||
|
|
|||
|
retry:
|
|||
|
code = GET_CODE (x);
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case LABEL_REF:
|
|||
|
case SYMBOL_REF:
|
|||
|
case CONST_INT:
|
|||
|
case CONST:
|
|||
|
case CONST_DOUBLE:
|
|||
|
case PC:
|
|||
|
case ADDR_VEC:
|
|||
|
case ADDR_DIFF_VEC:
|
|||
|
return;
|
|||
|
|
|||
|
#ifdef HAVE_cc0
|
|||
|
case CC0:
|
|||
|
cc0_live = 1;
|
|||
|
return;
|
|||
|
#endif
|
|||
|
|
|||
|
case CLOBBER:
|
|||
|
/* If we are clobbering a MEM, mark any registers inside the address
|
|||
|
as being used. */
|
|||
|
if (GET_CODE (XEXP (x, 0)) == MEM)
|
|||
|
mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
|
|||
|
return;
|
|||
|
|
|||
|
case MEM:
|
|||
|
/* Invalidate the data for the last MEM stored, but only if MEM is
|
|||
|
something that can be stored into. */
|
|||
|
if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
|
|||
|
&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
|
|||
|
; /* needn't clear the memory set list */
|
|||
|
else
|
|||
|
{
|
|||
|
rtx temp = mem_set_list;
|
|||
|
rtx prev = NULL_RTX;
|
|||
|
|
|||
|
while (temp)
|
|||
|
{
|
|||
|
if (anti_dependence (XEXP (temp, 0), x))
|
|||
|
{
|
|||
|
/* Splice temp out of the list. */
|
|||
|
if (prev)
|
|||
|
XEXP (prev, 1) = XEXP (temp, 1);
|
|||
|
else
|
|||
|
mem_set_list = XEXP (temp, 1);
|
|||
|
}
|
|||
|
else
|
|||
|
prev = temp;
|
|||
|
temp = XEXP (temp, 1);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If the memory reference had embedded side effects (autoincrement
|
|||
|
address modes. Then we may need to kill some entries on the
|
|||
|
memory set list. */
|
|||
|
if (insn)
|
|||
|
invalidate_mems_from_autoinc (insn);
|
|||
|
|
|||
|
#ifdef AUTO_INC_DEC
|
|||
|
if (final)
|
|||
|
find_auto_inc (needed, x, insn);
|
|||
|
#endif
|
|||
|
break;
|
|||
|
|
|||
|
case SUBREG:
|
|||
|
if (GET_CODE (SUBREG_REG (x)) == REG
|
|||
|
&& REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
|
|||
|
&& (GET_MODE_SIZE (GET_MODE (x))
|
|||
|
!= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
|
|||
|
REG_CHANGES_SIZE (REGNO (SUBREG_REG (x))) = 1;
|
|||
|
|
|||
|
/* While we're here, optimize this case. */
|
|||
|
x = SUBREG_REG (x);
|
|||
|
|
|||
|
/* In case the SUBREG is not of a register, don't optimize */
|
|||
|
if (GET_CODE (x) != REG)
|
|||
|
{
|
|||
|
mark_used_regs (needed, live, x, final, insn);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* ... fall through ... */
|
|||
|
|
|||
|
case REG:
|
|||
|
/* See a register other than being set
|
|||
|
=> mark it as needed. */
|
|||
|
|
|||
|
regno = REGNO (x);
|
|||
|
{
|
|||
|
int some_needed = REGNO_REG_SET_P (needed, regno);
|
|||
|
int some_not_needed = ! some_needed;
|
|||
|
|
|||
|
SET_REGNO_REG_SET (live, regno);
|
|||
|
|
|||
|
/* A hard reg in a wide mode may really be multiple registers.
|
|||
|
If so, mark all of them just like the first. */
|
|||
|
if (regno < FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
int n;
|
|||
|
|
|||
|
/* For stack ptr or fixed arg pointer,
|
|||
|
nothing below can be necessary, so waste no more time. */
|
|||
|
if (regno == STACK_POINTER_REGNUM
|
|||
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
|||
|
|| regno == HARD_FRAME_POINTER_REGNUM
|
|||
|
#endif
|
|||
|
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
|||
|
|| (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
|
|||
|
#endif
|
|||
|
|| regno == FRAME_POINTER_REGNUM)
|
|||
|
{
|
|||
|
/* If this is a register we are going to try to eliminate,
|
|||
|
don't mark it live here. If we are successful in
|
|||
|
eliminating it, it need not be live unless it is used for
|
|||
|
pseudos, in which case it will have been set live when
|
|||
|
it was allocated to the pseudos. If the register will not
|
|||
|
be eliminated, reload will set it live at that point. */
|
|||
|
|
|||
|
if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
|
|||
|
regs_ever_live[regno] = 1;
|
|||
|
return;
|
|||
|
}
|
|||
|
/* No death notes for global register variables;
|
|||
|
their values are live after this function exits. */
|
|||
|
if (global_regs[regno])
|
|||
|
{
|
|||
|
if (final)
|
|||
|
reg_next_use[regno] = insn;
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
n = HARD_REGNO_NREGS (regno, GET_MODE (x));
|
|||
|
while (--n > 0)
|
|||
|
{
|
|||
|
int regno_n = regno + n;
|
|||
|
int needed_regno = REGNO_REG_SET_P (needed, regno_n);
|
|||
|
|
|||
|
SET_REGNO_REG_SET (live, regno_n);
|
|||
|
some_needed |= needed_regno;
|
|||
|
some_not_needed |= ! needed_regno;
|
|||
|
}
|
|||
|
}
|
|||
|
if (final)
|
|||
|
{
|
|||
|
/* Record where each reg is used, so when the reg
|
|||
|
is set we know the next insn that uses it. */
|
|||
|
|
|||
|
reg_next_use[regno] = insn;
|
|||
|
|
|||
|
if (regno < FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
/* If a hard reg is being used,
|
|||
|
record that this function does use it. */
|
|||
|
|
|||
|
i = HARD_REGNO_NREGS (regno, GET_MODE (x));
|
|||
|
if (i == 0)
|
|||
|
i = 1;
|
|||
|
do
|
|||
|
regs_ever_live[regno + --i] = 1;
|
|||
|
while (i > 0);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Keep track of which basic block each reg appears in. */
|
|||
|
|
|||
|
register int blocknum = BLOCK_NUM (insn);
|
|||
|
|
|||
|
if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
|
|||
|
REG_BASIC_BLOCK (regno) = blocknum;
|
|||
|
else if (REG_BASIC_BLOCK (regno) != blocknum)
|
|||
|
REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
|
|||
|
|
|||
|
/* Count (weighted) number of uses of each reg. */
|
|||
|
|
|||
|
REG_N_REFS (regno) += loop_depth;
|
|||
|
}
|
|||
|
|
|||
|
/* Record and count the insns in which a reg dies.
|
|||
|
If it is used in this insn and was dead below the insn
|
|||
|
then it dies in this insn. If it was set in this insn,
|
|||
|
we do not make a REG_DEAD note; likewise if we already
|
|||
|
made such a note. */
|
|||
|
|
|||
|
if (some_not_needed
|
|||
|
&& ! dead_or_set_p (insn, x)
|
|||
|
#if 0
|
|||
|
&& (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
|
|||
|
#endif
|
|||
|
)
|
|||
|
{
|
|||
|
/* Check for the case where the register dying partially
|
|||
|
overlaps the register set by this insn. */
|
|||
|
if (regno < FIRST_PSEUDO_REGISTER
|
|||
|
&& HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
|
|||
|
{
|
|||
|
int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
|
|||
|
while (--n >= 0)
|
|||
|
some_needed |= dead_or_set_regno_p (insn, regno + n);
|
|||
|
}
|
|||
|
|
|||
|
/* If none of the words in X is needed, make a REG_DEAD
|
|||
|
note. Otherwise, we must make partial REG_DEAD notes. */
|
|||
|
if (! some_needed)
|
|||
|
{
|
|||
|
REG_NOTES (insn)
|
|||
|
= gen_rtx_EXPR_LIST (REG_DEAD, x, REG_NOTES (insn));
|
|||
|
REG_N_DEATHS (regno)++;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
/* Don't make a REG_DEAD note for a part of a register
|
|||
|
that is set in the insn. */
|
|||
|
|
|||
|
for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
|
|||
|
i >= 0; i--)
|
|||
|
if (!REGNO_REG_SET_P (needed, regno + i)
|
|||
|
&& ! dead_or_set_regno_p (insn, regno + i))
|
|||
|
REG_NOTES (insn)
|
|||
|
= gen_rtx_EXPR_LIST (REG_DEAD,
|
|||
|
gen_rtx_REG (reg_raw_mode[regno + i],
|
|||
|
regno + i),
|
|||
|
REG_NOTES (insn));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
return;
|
|||
|
|
|||
|
case SET:
|
|||
|
{
|
|||
|
register rtx testreg = SET_DEST (x);
|
|||
|
int mark_dest = 0;
|
|||
|
|
|||
|
/* If storing into MEM, don't show it as being used. But do
|
|||
|
show the address as being used. */
|
|||
|
if (GET_CODE (testreg) == MEM)
|
|||
|
{
|
|||
|
#ifdef AUTO_INC_DEC
|
|||
|
if (final)
|
|||
|
find_auto_inc (needed, testreg, insn);
|
|||
|
#endif
|
|||
|
mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
|
|||
|
mark_used_regs (needed, live, SET_SRC (x), final, insn);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* Storing in STRICT_LOW_PART is like storing in a reg
|
|||
|
in that this SET might be dead, so ignore it in TESTREG.
|
|||
|
but in some other ways it is like using the reg.
|
|||
|
|
|||
|
Storing in a SUBREG or a bit field is like storing the entire
|
|||
|
register in that if the register's value is not used
|
|||
|
then this SET is not needed. */
|
|||
|
while (GET_CODE (testreg) == STRICT_LOW_PART
|
|||
|
|| GET_CODE (testreg) == ZERO_EXTRACT
|
|||
|
|| GET_CODE (testreg) == SIGN_EXTRACT
|
|||
|
|| GET_CODE (testreg) == SUBREG)
|
|||
|
{
|
|||
|
if (GET_CODE (testreg) == SUBREG
|
|||
|
&& GET_CODE (SUBREG_REG (testreg)) == REG
|
|||
|
&& REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
|
|||
|
&& (GET_MODE_SIZE (GET_MODE (testreg))
|
|||
|
!= GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
|
|||
|
REG_CHANGES_SIZE (REGNO (SUBREG_REG (testreg))) = 1;
|
|||
|
|
|||
|
/* Modifying a single register in an alternate mode
|
|||
|
does not use any of the old value. But these other
|
|||
|
ways of storing in a register do use the old value. */
|
|||
|
if (GET_CODE (testreg) == SUBREG
|
|||
|
&& !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
|
|||
|
;
|
|||
|
else
|
|||
|
mark_dest = 1;
|
|||
|
|
|||
|
testreg = XEXP (testreg, 0);
|
|||
|
}
|
|||
|
|
|||
|
/* If this is a store into a register,
|
|||
|
recursively scan the value being stored. */
|
|||
|
|
|||
|
if ((GET_CODE (testreg) == PARALLEL
|
|||
|
&& GET_MODE (testreg) == BLKmode)
|
|||
|
|| (GET_CODE (testreg) == REG
|
|||
|
&& (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
|
|||
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
|||
|
&& regno != HARD_FRAME_POINTER_REGNUM
|
|||
|
#endif
|
|||
|
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
|||
|
&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
|
|||
|
#endif
|
|||
|
))
|
|||
|
/* We used to exclude global_regs here, but that seems wrong.
|
|||
|
Storing in them is like storing in mem. */
|
|||
|
{
|
|||
|
mark_used_regs (needed, live, SET_SRC (x), final, insn);
|
|||
|
if (mark_dest)
|
|||
|
mark_used_regs (needed, live, SET_DEST (x), final, insn);
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case RETURN:
|
|||
|
/* If exiting needs the right stack value, consider this insn as
|
|||
|
using the stack pointer. In any event, consider it as using
|
|||
|
all global registers and all registers used by return. */
|
|||
|
|
|||
|
#ifdef EXIT_IGNORE_STACK
|
|||
|
if (! EXIT_IGNORE_STACK
|
|||
|
|| (! FRAME_POINTER_REQUIRED
|
|||
|
&& ! current_function_calls_alloca
|
|||
|
&& flag_omit_frame_pointer)
|
|||
|
|| current_function_sp_is_unchanging)
|
|||
|
#endif
|
|||
|
SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
|
|||
|
|
|||
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|||
|
if (global_regs[i]
|
|||
|
#ifdef EPILOGUE_USES
|
|||
|
|| EPILOGUE_USES (i)
|
|||
|
#endif
|
|||
|
)
|
|||
|
SET_REGNO_REG_SET (live, i);
|
|||
|
break;
|
|||
|
|
|||
|
case ASM_OPERANDS:
|
|||
|
case UNSPEC_VOLATILE:
|
|||
|
case TRAP_IF:
|
|||
|
case ASM_INPUT:
|
|||
|
{
|
|||
|
/* Traditional and volatile asm instructions must be considered to use
|
|||
|
and clobber all hard registers, all pseudo-registers and all of
|
|||
|
memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
|
|||
|
|
|||
|
Consider for instance a volatile asm that changes the fpu rounding
|
|||
|
mode. An insn should not be moved across this even if it only uses
|
|||
|
pseudo-regs because it might give an incorrectly rounded result.
|
|||
|
|
|||
|
?!? Unfortunately, marking all hard registers as live causes massive
|
|||
|
problems for the register allocator and marking all pseudos as live
|
|||
|
creates mountains of uninitialized variable warnings.
|
|||
|
|
|||
|
So for now, just clear the memory set list and mark any regs
|
|||
|
we can find in ASM_OPERANDS as used. */
|
|||
|
if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
|
|||
|
mem_set_list = NULL_RTX;
|
|||
|
|
|||
|
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
|
|||
|
We can not just fall through here since then we would be confused
|
|||
|
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
|
|||
|
traditional asms unlike their normal usage. */
|
|||
|
if (code == ASM_OPERANDS)
|
|||
|
{
|
|||
|
int j;
|
|||
|
|
|||
|
for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
|
|||
|
mark_used_regs (needed, live, ASM_OPERANDS_INPUT (x, j),
|
|||
|
final, insn);
|
|||
|
}
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* Recursively scan the operands of this expression. */
|
|||
|
|
|||
|
{
|
|||
|
register char *fmt = GET_RTX_FORMAT (code);
|
|||
|
register int i;
|
|||
|
|
|||
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
{
|
|||
|
/* Tail recursive case: save a function call level. */
|
|||
|
if (i == 0)
|
|||
|
{
|
|||
|
x = XEXP (x, 0);
|
|||
|
goto retry;
|
|||
|
}
|
|||
|
mark_used_regs (needed, live, XEXP (x, i), final, insn);
|
|||
|
}
|
|||
|
else if (fmt[i] == 'E')
|
|||
|
{
|
|||
|
register int j;
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#ifdef AUTO_INC_DEC
|
|||
|
|
|||
|
static int
|
|||
|
try_pre_increment_1 (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
/* Find the next use of this reg. If in same basic block,
|
|||
|
make it do pre-increment or pre-decrement if appropriate. */
|
|||
|
rtx x = single_set (insn);
|
|||
|
HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
|
|||
|
* INTVAL (XEXP (SET_SRC (x), 1)));
|
|||
|
int regno = REGNO (SET_DEST (x));
|
|||
|
rtx y = reg_next_use[regno];
|
|||
|
if (y != 0
|
|||
|
&& BLOCK_NUM (y) == BLOCK_NUM (insn)
|
|||
|
/* Don't do this if the reg dies, or gets set in y; a standard addressing
|
|||
|
mode would be better. */
|
|||
|
&& ! dead_or_set_p (y, SET_DEST (x))
|
|||
|
&& try_pre_increment (y, SET_DEST (x), amount))
|
|||
|
{
|
|||
|
/* We have found a suitable auto-increment
|
|||
|
and already changed insn Y to do it.
|
|||
|
So flush this increment-instruction. */
|
|||
|
PUT_CODE (insn, NOTE);
|
|||
|
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
|||
|
NOTE_SOURCE_FILE (insn) = 0;
|
|||
|
/* Count a reference to this reg for the increment
|
|||
|
insn we are deleting. When a reg is incremented.
|
|||
|
spilling it is worse, so we want to make that
|
|||
|
less likely. */
|
|||
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
REG_N_REFS (regno) += loop_depth;
|
|||
|
REG_N_SETS (regno)++;
|
|||
|
}
|
|||
|
return 1;
|
|||
|
}
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Try to change INSN so that it does pre-increment or pre-decrement
|
|||
|
addressing on register REG in order to add AMOUNT to REG.
|
|||
|
AMOUNT is negative for pre-decrement.
|
|||
|
Returns 1 if the change could be made.
|
|||
|
This checks all about the validity of the result of modifying INSN. */
|
|||
|
|
|||
|
static int
|
|||
|
try_pre_increment (insn, reg, amount)
|
|||
|
rtx insn, reg;
|
|||
|
HOST_WIDE_INT amount;
|
|||
|
{
|
|||
|
register rtx use;
|
|||
|
|
|||
|
/* Nonzero if we can try to make a pre-increment or pre-decrement.
|
|||
|
For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
|
|||
|
int pre_ok = 0;
|
|||
|
/* Nonzero if we can try to make a post-increment or post-decrement.
|
|||
|
For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
|
|||
|
It is possible for both PRE_OK and POST_OK to be nonzero if the machine
|
|||
|
supports both pre-inc and post-inc, or both pre-dec and post-dec. */
|
|||
|
int post_ok = 0;
|
|||
|
|
|||
|
/* Nonzero if the opportunity actually requires post-inc or post-dec. */
|
|||
|
int do_post = 0;
|
|||
|
|
|||
|
/* From the sign of increment, see which possibilities are conceivable
|
|||
|
on this target machine. */
|
|||
|
if (HAVE_PRE_INCREMENT && amount > 0)
|
|||
|
pre_ok = 1;
|
|||
|
if (HAVE_POST_INCREMENT && amount > 0)
|
|||
|
post_ok = 1;
|
|||
|
|
|||
|
if (HAVE_PRE_DECREMENT && amount < 0)
|
|||
|
pre_ok = 1;
|
|||
|
if (HAVE_POST_DECREMENT && amount < 0)
|
|||
|
post_ok = 1;
|
|||
|
|
|||
|
if (! (pre_ok || post_ok))
|
|||
|
return 0;
|
|||
|
|
|||
|
/* It is not safe to add a side effect to a jump insn
|
|||
|
because if the incremented register is spilled and must be reloaded
|
|||
|
there would be no way to store the incremented value back in memory. */
|
|||
|
|
|||
|
if (GET_CODE (insn) == JUMP_INSN)
|
|||
|
return 0;
|
|||
|
|
|||
|
use = 0;
|
|||
|
if (pre_ok)
|
|||
|
use = find_use_as_address (PATTERN (insn), reg, 0);
|
|||
|
if (post_ok && (use == 0 || use == (rtx) 1))
|
|||
|
{
|
|||
|
use = find_use_as_address (PATTERN (insn), reg, -amount);
|
|||
|
do_post = 1;
|
|||
|
}
|
|||
|
|
|||
|
if (use == 0 || use == (rtx) 1)
|
|||
|
return 0;
|
|||
|
|
|||
|
if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
|
|||
|
return 0;
|
|||
|
|
|||
|
/* See if this combination of instruction and addressing mode exists. */
|
|||
|
if (! validate_change (insn, &XEXP (use, 0),
|
|||
|
gen_rtx_fmt_e (amount > 0
|
|||
|
? (do_post ? POST_INC : PRE_INC)
|
|||
|
: (do_post ? POST_DEC : PRE_DEC),
|
|||
|
Pmode, reg), 0))
|
|||
|
return 0;
|
|||
|
|
|||
|
/* Record that this insn now has an implicit side effect on X. */
|
|||
|
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
#endif /* AUTO_INC_DEC */
|
|||
|
|
|||
|
/* Find the place in the rtx X where REG is used as a memory address.
|
|||
|
Return the MEM rtx that so uses it.
|
|||
|
If PLUSCONST is nonzero, search instead for a memory address equivalent to
|
|||
|
(plus REG (const_int PLUSCONST)).
|
|||
|
|
|||
|
If such an address does not appear, return 0.
|
|||
|
If REG appears more than once, or is used other than in such an address,
|
|||
|
return (rtx)1. */
|
|||
|
|
|||
|
rtx
|
|||
|
find_use_as_address (x, reg, plusconst)
|
|||
|
register rtx x;
|
|||
|
rtx reg;
|
|||
|
HOST_WIDE_INT plusconst;
|
|||
|
{
|
|||
|
enum rtx_code code = GET_CODE (x);
|
|||
|
char *fmt = GET_RTX_FORMAT (code);
|
|||
|
register int i;
|
|||
|
register rtx value = 0;
|
|||
|
register rtx tem;
|
|||
|
|
|||
|
if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
|
|||
|
return x;
|
|||
|
|
|||
|
if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
|
|||
|
&& XEXP (XEXP (x, 0), 0) == reg
|
|||
|
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
|||
|
&& INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
|
|||
|
return x;
|
|||
|
|
|||
|
if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
|
|||
|
{
|
|||
|
/* If REG occurs inside a MEM used in a bit-field reference,
|
|||
|
that is unacceptable. */
|
|||
|
if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
|
|||
|
return (rtx) (HOST_WIDE_INT) 1;
|
|||
|
}
|
|||
|
|
|||
|
if (x == reg)
|
|||
|
return (rtx) (HOST_WIDE_INT) 1;
|
|||
|
|
|||
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
{
|
|||
|
tem = find_use_as_address (XEXP (x, i), reg, plusconst);
|
|||
|
if (value == 0)
|
|||
|
value = tem;
|
|||
|
else if (tem != 0)
|
|||
|
return (rtx) (HOST_WIDE_INT) 1;
|
|||
|
}
|
|||
|
if (fmt[i] == 'E')
|
|||
|
{
|
|||
|
register int j;
|
|||
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
|||
|
{
|
|||
|
tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
|
|||
|
if (value == 0)
|
|||
|
value = tem;
|
|||
|
else if (tem != 0)
|
|||
|
return (rtx) (HOST_WIDE_INT) 1;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return value;
|
|||
|
}
|
|||
|
|
|||
|
/* Write information about registers and basic blocks into FILE.
|
|||
|
This is part of making a debugging dump. */
|
|||
|
|
|||
|
void
|
|||
|
dump_flow_info (file)
|
|||
|
FILE *file;
|
|||
|
{
|
|||
|
register int i;
|
|||
|
static char *reg_class_names[] = REG_CLASS_NAMES;
|
|||
|
|
|||
|
fprintf (file, "%d registers.\n", max_regno);
|
|||
|
|
|||
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
|||
|
if (REG_N_REFS (i))
|
|||
|
{
|
|||
|
enum reg_class class, altclass;
|
|||
|
fprintf (file, "\nRegister %d used %d times across %d insns",
|
|||
|
i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
|
|||
|
if (REG_BASIC_BLOCK (i) >= 0)
|
|||
|
fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
|
|||
|
if (REG_N_SETS (i))
|
|||
|
fprintf (file, "; set %d time%s", REG_N_SETS (i),
|
|||
|
(REG_N_SETS (i) == 1) ? "" : "s");
|
|||
|
if (REG_USERVAR_P (regno_reg_rtx[i]))
|
|||
|
fprintf (file, "; user var");
|
|||
|
if (REG_N_DEATHS (i) != 1)
|
|||
|
fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
|
|||
|
if (REG_N_CALLS_CROSSED (i) == 1)
|
|||
|
fprintf (file, "; crosses 1 call");
|
|||
|
else if (REG_N_CALLS_CROSSED (i))
|
|||
|
fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
|
|||
|
if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
|
|||
|
fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
|
|||
|
class = reg_preferred_class (i);
|
|||
|
altclass = reg_alternate_class (i);
|
|||
|
if (class != GENERAL_REGS || altclass != ALL_REGS)
|
|||
|
{
|
|||
|
if (altclass == ALL_REGS || class == ALL_REGS)
|
|||
|
fprintf (file, "; pref %s", reg_class_names[(int) class]);
|
|||
|
else if (altclass == NO_REGS)
|
|||
|
fprintf (file, "; %s or none", reg_class_names[(int) class]);
|
|||
|
else
|
|||
|
fprintf (file, "; pref %s, else %s",
|
|||
|
reg_class_names[(int) class],
|
|||
|
reg_class_names[(int) altclass]);
|
|||
|
}
|
|||
|
if (REGNO_POINTER_FLAG (i))
|
|||
|
fprintf (file, "; pointer");
|
|||
|
fprintf (file, ".\n");
|
|||
|
}
|
|||
|
fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
|
|||
|
dump_bb_data (file, basic_block_pred, basic_block_succ, 1);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Like print_rtl, but also print out live information for the start of each
|
|||
|
basic block. */
|
|||
|
|
|||
|
void
|
|||
|
print_rtl_with_bb (outf, rtx_first)
|
|||
|
FILE *outf;
|
|||
|
rtx rtx_first;
|
|||
|
{
|
|||
|
register rtx tmp_rtx;
|
|||
|
|
|||
|
if (rtx_first == 0)
|
|||
|
fprintf (outf, "(nil)\n");
|
|||
|
|
|||
|
else
|
|||
|
{
|
|||
|
int i, bb;
|
|||
|
enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
|
|||
|
int max_uid = get_max_uid ();
|
|||
|
int *start = (int *) alloca (max_uid * sizeof (int));
|
|||
|
int *end = (int *) alloca (max_uid * sizeof (int));
|
|||
|
enum bb_state *in_bb_p = (enum bb_state *)
|
|||
|
alloca (max_uid * sizeof (enum bb_state));
|
|||
|
|
|||
|
for (i = 0; i < max_uid; i++)
|
|||
|
{
|
|||
|
start[i] = end[i] = -1;
|
|||
|
in_bb_p[i] = NOT_IN_BB;
|
|||
|
}
|
|||
|
|
|||
|
for (i = n_basic_blocks-1; i >= 0; i--)
|
|||
|
{
|
|||
|
rtx x;
|
|||
|
start[INSN_UID (BLOCK_HEAD (i))] = i;
|
|||
|
end[INSN_UID (BLOCK_END (i))] = i;
|
|||
|
for (x = BLOCK_HEAD (i); x != NULL_RTX; x = NEXT_INSN (x))
|
|||
|
{
|
|||
|
in_bb_p[ INSN_UID(x)]
|
|||
|
= (in_bb_p[ INSN_UID(x)] == NOT_IN_BB)
|
|||
|
? IN_ONE_BB : IN_MULTIPLE_BB;
|
|||
|
if (x == BLOCK_END (i))
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
|
|||
|
{
|
|||
|
int did_output;
|
|||
|
|
|||
|
if ((bb = start[INSN_UID (tmp_rtx)]) >= 0)
|
|||
|
{
|
|||
|
fprintf (outf, ";; Start of basic block %d, registers live:",
|
|||
|
bb);
|
|||
|
|
|||
|
EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[bb], 0, i,
|
|||
|
{
|
|||
|
fprintf (outf, " %d", i);
|
|||
|
if (i < FIRST_PSEUDO_REGISTER)
|
|||
|
fprintf (outf, " [%s]",
|
|||
|
reg_names[i]);
|
|||
|
});
|
|||
|
putc ('\n', outf);
|
|||
|
}
|
|||
|
|
|||
|
if (in_bb_p[ INSN_UID(tmp_rtx)] == NOT_IN_BB
|
|||
|
&& GET_CODE (tmp_rtx) != NOTE
|
|||
|
&& GET_CODE (tmp_rtx) != BARRIER)
|
|||
|
fprintf (outf, ";; Insn is not within a basic block\n");
|
|||
|
else if (in_bb_p[ INSN_UID(tmp_rtx)] == IN_MULTIPLE_BB)
|
|||
|
fprintf (outf, ";; Insn is in multiple basic blocks\n");
|
|||
|
|
|||
|
did_output = print_rtl_single (outf, tmp_rtx);
|
|||
|
|
|||
|
if ((bb = end[INSN_UID (tmp_rtx)]) >= 0)
|
|||
|
fprintf (outf, ";; End of basic block %d\n", bb);
|
|||
|
|
|||
|
if (did_output)
|
|||
|
putc ('\n', outf);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Integer list support. */
|
|||
|
|
|||
|
/* Allocate a node from list *HEAD_PTR. */
|
|||
|
|
|||
|
static int_list_ptr
|
|||
|
alloc_int_list_node (head_ptr)
|
|||
|
int_list_block **head_ptr;
|
|||
|
{
|
|||
|
struct int_list_block *first_blk = *head_ptr;
|
|||
|
|
|||
|
if (first_blk == NULL || first_blk->nodes_left <= 0)
|
|||
|
{
|
|||
|
first_blk = (struct int_list_block *) xmalloc (sizeof (struct int_list_block));
|
|||
|
first_blk->nodes_left = INT_LIST_NODES_IN_BLK;
|
|||
|
first_blk->next = *head_ptr;
|
|||
|
*head_ptr = first_blk;
|
|||
|
}
|
|||
|
|
|||
|
first_blk->nodes_left--;
|
|||
|
return &first_blk->nodes[first_blk->nodes_left];
|
|||
|
}
|
|||
|
|
|||
|
/* Pointer to head of predecessor/successor block list. */
|
|||
|
static int_list_block *pred_int_list_blocks;
|
|||
|
|
|||
|
/* Add a new node to integer list LIST with value VAL.
|
|||
|
LIST is a pointer to a list object to allow for different implementations.
|
|||
|
If *LIST is initially NULL, the list is empty.
|
|||
|
The caller must not care whether the element is added to the front or
|
|||
|
to the end of the list (to allow for different implementations). */
|
|||
|
|
|||
|
static int_list_ptr
|
|||
|
add_int_list_node (blk_list, list, val)
|
|||
|
int_list_block **blk_list;
|
|||
|
int_list **list;
|
|||
|
int val;
|
|||
|
{
|
|||
|
int_list_ptr p = alloc_int_list_node (blk_list);
|
|||
|
|
|||
|
p->val = val;
|
|||
|
p->next = *list;
|
|||
|
*list = p;
|
|||
|
return p;
|
|||
|
}
|
|||
|
|
|||
|
/* Free the blocks of lists at BLK_LIST. */
|
|||
|
|
|||
|
void
|
|||
|
free_int_list (blk_list)
|
|||
|
int_list_block **blk_list;
|
|||
|
{
|
|||
|
int_list_block *p, *next;
|
|||
|
|
|||
|
for (p = *blk_list; p != NULL; p = next)
|
|||
|
{
|
|||
|
next = p->next;
|
|||
|
free (p);
|
|||
|
}
|
|||
|
|
|||
|
/* Mark list as empty for the next function we compile. */
|
|||
|
*blk_list = NULL;
|
|||
|
}
|
|||
|
|
|||
|
/* Predecessor/successor computation. */
|
|||
|
|
|||
|
/* Mark PRED_BB a precessor of SUCC_BB,
|
|||
|
and conversely SUCC_BB a successor of PRED_BB. */
|
|||
|
|
|||
|
static void
|
|||
|
add_pred_succ (pred_bb, succ_bb, s_preds, s_succs, num_preds, num_succs)
|
|||
|
int pred_bb;
|
|||
|
int succ_bb;
|
|||
|
int_list_ptr *s_preds;
|
|||
|
int_list_ptr *s_succs;
|
|||
|
int *num_preds;
|
|||
|
int *num_succs;
|
|||
|
{
|
|||
|
if (succ_bb != EXIT_BLOCK)
|
|||
|
{
|
|||
|
add_int_list_node (&pred_int_list_blocks, &s_preds[succ_bb], pred_bb);
|
|||
|
num_preds[succ_bb]++;
|
|||
|
}
|
|||
|
if (pred_bb != ENTRY_BLOCK)
|
|||
|
{
|
|||
|
add_int_list_node (&pred_int_list_blocks, &s_succs[pred_bb], succ_bb);
|
|||
|
num_succs[pred_bb]++;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Compute the predecessors and successors for each block. */
|
|||
|
/* CYGNUS LOCAL edge splitting/law */
|
|||
|
int
|
|||
|
compute_preds_succs (s_preds, s_succs, num_preds, num_succs, split_edges)
|
|||
|
int_list_ptr *s_preds;
|
|||
|
int_list_ptr *s_succs;
|
|||
|
int *num_preds;
|
|||
|
int *num_succs;
|
|||
|
int split_edges;
|
|||
|
{
|
|||
|
int bb;
|
|||
|
int changed = 0;
|
|||
|
|
|||
|
bzero ((char *) s_preds, n_basic_blocks * sizeof (int_list_ptr));
|
|||
|
bzero ((char *) s_succs, n_basic_blocks * sizeof (int_list_ptr));
|
|||
|
bzero ((char *) num_preds, n_basic_blocks * sizeof (int));
|
|||
|
bzero ((char *) num_succs, n_basic_blocks * sizeof (int));
|
|||
|
|
|||
|
/* It's somewhat stupid to simply copy the information. The passes
|
|||
|
which use this function ought to be changed to refer directly to
|
|||
|
basic_block_succ and its relatives. */
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
rtx jump = BLOCK_END (bb);
|
|||
|
enum rtx_code code = GET_CODE (jump);
|
|||
|
int_list_ptr p;
|
|||
|
|
|||
|
for (p = basic_block_succ[bb]; p; p = p->next)
|
|||
|
add_pred_succ (bb, INT_LIST_VAL (p), s_preds, s_succs, num_preds,
|
|||
|
num_succs);
|
|||
|
|
|||
|
/* If this is a RETURN insn or a conditional jump in the last
|
|||
|
basic block, or a non-jump insn in the last basic block, then
|
|||
|
this block reaches the exit block. */
|
|||
|
if ((code == JUMP_INSN && GET_CODE (PATTERN (jump)) == RETURN)
|
|||
|
|| (((code == JUMP_INSN
|
|||
|
&& condjump_p (jump) && !simplejump_p (jump))
|
|||
|
|| code != JUMP_INSN)
|
|||
|
&& bb == n_basic_blocks - 1))
|
|||
|
add_pred_succ (bb, EXIT_BLOCK, s_preds, s_succs, num_preds, num_succs);
|
|||
|
}
|
|||
|
|
|||
|
add_pred_succ (ENTRY_BLOCK, 0, s_preds, s_succs, num_preds, num_succs);
|
|||
|
|
|||
|
#if 0
|
|||
|
/* CYGNUS LOCAL edge-splitting/law */
|
|||
|
/* Now see what edges we should split. */
|
|||
|
if (split_edges)
|
|||
|
{
|
|||
|
/* Array indexed by block number to determine if an in-edge to the
|
|||
|
block has been split. Used to prevent more than one in-edge
|
|||
|
to any given block from being split. */
|
|||
|
char *split_edge_to_block = (char *) alloca (n_basic_blocks);
|
|||
|
|
|||
|
bzero (split_edge_to_block, n_basic_blocks);
|
|||
|
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
/* Find a block that has more than one successor. */
|
|||
|
if (num_succs[bb] > 1)
|
|||
|
{
|
|||
|
int_list_ptr p;
|
|||
|
|
|||
|
/* Now look at each successor block to see which have more than
|
|||
|
one predecessor block. */
|
|||
|
for (p = s_succs[bb]; p != NULL; p = p->next)
|
|||
|
{
|
|||
|
int pred_bb = INT_LIST_VAL (p);
|
|||
|
|
|||
|
/* If our block falls into this successor (ie no jump), then
|
|||
|
we can split this edge since the existance of this block
|
|||
|
will not introduce any new jumps. */
|
|||
|
if (split_edge_to_block[pred_bb] == 0
|
|||
|
&& basic_block_drops_in[pred_bb]
|
|||
|
&& num_preds[pred_bb] > 1 && bb + 1 == pred_bb)
|
|||
|
{
|
|||
|
rtx insn, jump, label, olabel;
|
|||
|
|
|||
|
jump = BLOCK_END (bb);
|
|||
|
|
|||
|
/* Try to find the conditional jump at the end of the
|
|||
|
current block. If it's not a conditional jump, then
|
|||
|
do not try and split the edge. */
|
|||
|
if (GET_CODE (jump) != JUMP_INSN || !condjump_p (jump))
|
|||
|
continue;
|
|||
|
|
|||
|
label = gen_label_rtx ();
|
|||
|
|
|||
|
/* This code knows that find_basic_blocks always creates
|
|||
|
a new basic block when it encounters a label. The
|
|||
|
label will be deleted by a later pass if it is never
|
|||
|
used as a jump target. */
|
|||
|
label = emit_label_after (label, BLOCK_END (bb));
|
|||
|
LABEL_NUSES (label) = 0;
|
|||
|
split_edge_to_block[pred_bb] = 1;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
/* If our block jumps to this successor, and the successor
|
|||
|
can only be reached via jumps, then we can split this
|
|||
|
edge too since the jump from this block to the successor
|
|||
|
can be redirected to a dummy block before the successor
|
|||
|
(which then makes the successor a fall through). */
|
|||
|
else if (split_edge_to_block[pred_bb] == 0
|
|||
|
&& num_preds[pred_bb] > 1
|
|||
|
&& !basic_block_drops_in[pred_bb])
|
|||
|
{
|
|||
|
rtx insn, jump, label, olabel;
|
|||
|
|
|||
|
jump = BLOCK_END (bb);
|
|||
|
|
|||
|
/* Try to find the conditional jump at the end of the
|
|||
|
current block. If it's not a conditional jump, then
|
|||
|
do not try and split the edge. */
|
|||
|
if (GET_CODE (jump) != JUMP_INSN || !condjump_p (jump))
|
|||
|
continue;
|
|||
|
|
|||
|
/* Make sure we've found the right edge to split. */
|
|||
|
if (JUMP_LABEL (jump) != BLOCK_HEAD (pred_bb))
|
|||
|
continue;
|
|||
|
|
|||
|
/* Redirect the jump from this block to its sucessor to
|
|||
|
use a new label. */
|
|||
|
label = gen_label_rtx ();
|
|||
|
insn = emit_label_after (label,
|
|||
|
PREV_INSN (BLOCK_HEAD (pred_bb)));
|
|||
|
LABEL_NUSES (insn) = 0;
|
|||
|
|
|||
|
/* Make sure redirect_jump does not delete this label. */
|
|||
|
olabel = JUMP_LABEL (jump);
|
|||
|
LABEL_NUSES (olabel)++;
|
|||
|
|
|||
|
redirect_jump (jump, label);
|
|||
|
JUMP_LABEL (jump) = label;
|
|||
|
|
|||
|
/* Fix the reference count. */
|
|||
|
LABEL_NUSES (olabel)--;
|
|||
|
|
|||
|
split_edge_to_block[pred_bb] = 1;
|
|||
|
changed = 1;
|
|||
|
}
|
|||
|
|
|||
|
/* One might consider splitting other edges, but doing so
|
|||
|
introduces new jumps in the code, and thus the cost of
|
|||
|
the jump has to be weighed against the additional
|
|||
|
redundancies we're likely to find. */
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
return changed;
|
|||
|
}
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
|
|||
|
void
|
|||
|
dump_bb_data (file, preds, succs, live_info)
|
|||
|
FILE *file;
|
|||
|
int_list_ptr *preds;
|
|||
|
int_list_ptr *succs;
|
|||
|
int live_info;
|
|||
|
{
|
|||
|
int bb;
|
|||
|
int_list_ptr p;
|
|||
|
|
|||
|
fprintf (file, "BB data\n\n");
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
fprintf (file, "BB %d, start %d, end %d\n", bb,
|
|||
|
INSN_UID (BLOCK_HEAD (bb)), INSN_UID (BLOCK_END (bb)));
|
|||
|
fprintf (file, " preds:");
|
|||
|
for (p = preds[bb]; p != NULL; p = p->next)
|
|||
|
{
|
|||
|
int pred_bb = INT_LIST_VAL (p);
|
|||
|
if (pred_bb == ENTRY_BLOCK)
|
|||
|
fprintf (file, " entry");
|
|||
|
else
|
|||
|
fprintf (file, " %d", pred_bb);
|
|||
|
}
|
|||
|
fprintf (file, "\n");
|
|||
|
fprintf (file, " succs:");
|
|||
|
for (p = succs[bb]; p != NULL; p = p->next)
|
|||
|
{
|
|||
|
int succ_bb = INT_LIST_VAL (p);
|
|||
|
if (succ_bb == EXIT_BLOCK)
|
|||
|
fprintf (file, " exit");
|
|||
|
else
|
|||
|
fprintf (file, " %d", succ_bb);
|
|||
|
}
|
|||
|
if (live_info)
|
|||
|
{
|
|||
|
int regno;
|
|||
|
fprintf (file, "\nRegisters live at start:");
|
|||
|
for (regno = 0; regno < max_regno; regno++)
|
|||
|
if (REGNO_REG_SET_P (basic_block_live_at_start[bb], regno))
|
|||
|
fprintf (file, " %d", regno);
|
|||
|
fprintf (file, "\n");
|
|||
|
}
|
|||
|
fprintf (file, "\n");
|
|||
|
}
|
|||
|
fprintf (file, "\n");
|
|||
|
}
|
|||
|
|
|||
|
/* Free basic block data storage. */
|
|||
|
|
|||
|
void
|
|||
|
free_bb_mem ()
|
|||
|
{
|
|||
|
free_int_list (&pred_int_list_blocks);
|
|||
|
}
|
|||
|
|
|||
|
/* Compute dominator relationships. */
|
|||
|
void
|
|||
|
compute_dominators (dominators, post_dominators, s_preds, s_succs)
|
|||
|
sbitmap *dominators;
|
|||
|
sbitmap *post_dominators;
|
|||
|
int_list_ptr *s_preds;
|
|||
|
int_list_ptr *s_succs;
|
|||
|
{
|
|||
|
int bb, changed, passes;
|
|||
|
sbitmap *temp_bitmap;
|
|||
|
|
|||
|
temp_bitmap = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
|
|||
|
sbitmap_vector_ones (dominators, n_basic_blocks);
|
|||
|
sbitmap_vector_ones (post_dominators, n_basic_blocks);
|
|||
|
sbitmap_vector_zero (temp_bitmap, n_basic_blocks);
|
|||
|
|
|||
|
sbitmap_zero (dominators[0]);
|
|||
|
SET_BIT (dominators[0], 0);
|
|||
|
|
|||
|
sbitmap_zero (post_dominators[n_basic_blocks-1]);
|
|||
|
SET_BIT (post_dominators[n_basic_blocks-1], 0);
|
|||
|
|
|||
|
passes = 0;
|
|||
|
changed = 1;
|
|||
|
while (changed)
|
|||
|
{
|
|||
|
changed = 0;
|
|||
|
for (bb = 1; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
sbitmap_intersect_of_predecessors (temp_bitmap[bb], dominators,
|
|||
|
bb, s_preds);
|
|||
|
SET_BIT (temp_bitmap[bb], bb);
|
|||
|
changed |= sbitmap_a_and_b (dominators[bb],
|
|||
|
dominators[bb],
|
|||
|
temp_bitmap[bb]);
|
|||
|
sbitmap_intersect_of_successors (temp_bitmap[bb], post_dominators,
|
|||
|
bb, s_succs);
|
|||
|
SET_BIT (temp_bitmap[bb], bb);
|
|||
|
changed |= sbitmap_a_and_b (post_dominators[bb],
|
|||
|
post_dominators[bb],
|
|||
|
temp_bitmap[bb]);
|
|||
|
}
|
|||
|
passes++;
|
|||
|
}
|
|||
|
|
|||
|
free (temp_bitmap);
|
|||
|
}
|
|||
|
|
|||
|
/* CYGNUS LOCAL law */
|
|||
|
/* This is a fairly simple block merge optimization pass.
|
|||
|
|
|||
|
We search for block pairs where the first block is succeeded by only
|
|||
|
the second block and the second block is preceeded only by the first
|
|||
|
block.
|
|||
|
|
|||
|
If the blocks are not adjacent, then it must be the case that the
|
|||
|
first block jumps to the second. With a little work the two blocks
|
|||
|
can be merged into a single larger block.
|
|||
|
|
|||
|
The primary benefit of performing this optimization is better local
|
|||
|
optimization within the merged block.
|
|||
|
|
|||
|
This optimization will also save a jump if the second block ended with
|
|||
|
an unconditional branch.
|
|||
|
|
|||
|
|
|||
|
Many improvements could be made to this pass to turn it into a real
|
|||
|
block scheduler. Probably the most important components would
|
|||
|
be a branch predictor and code to convert from a block list to
|
|||
|
an insn chain by modfiying/adding/removing jumps as needed.
|
|||
|
|
|||
|
Given a reducible flow graph (or sub-graph if the whole graph is not
|
|||
|
reducible) we would perform a DFS traversal of the nodes using the
|
|||
|
predictor to select a path at each conditional jump.
|
|||
|
|
|||
|
First perform the DFS traversal starting at the header for inner
|
|||
|
natural loops. As each loop is traversed, reduce it to a single
|
|||
|
node and work outward. Process all natural loops in this manner.
|
|||
|
|
|||
|
Once all loops are reduced perform the DFS traversal on the remaining
|
|||
|
flow graph.
|
|||
|
|
|||
|
The net result would be a block ordering which should minimize branch
|
|||
|
penalties for the predicted path through a function. As a side effect
|
|||
|
blocks which are not part of a loop would be removed from the loop. */
|
|||
|
|
|||
|
void
|
|||
|
merge_blocks (f)
|
|||
|
rtx f;
|
|||
|
{
|
|||
|
int_list_ptr *s_preds, *s_succs;
|
|||
|
int *num_preds, *num_succs;
|
|||
|
int n_blocks_merged, bb, i;
|
|||
|
sbitmap headers, trailers;
|
|||
|
|
|||
|
/* Don't try to perform this after the last CSE pass. It's not worth
|
|||
|
the effort to try and maintain all the data structures that have
|
|||
|
to be preserved after that point. Most of the benefits come from
|
|||
|
the first couple passes anyway. */
|
|||
|
if (reload_completed)
|
|||
|
return;
|
|||
|
|
|||
|
/* ??? This does not work when EH is enabled. The g++.eh/spec2.C test
|
|||
|
fails on a solaris2 host if this optimization is performed.
|
|||
|
1) The tests for moving a block decide it is safe if it contains no EH
|
|||
|
region. This isn't sufficient, and may be unnecessary. We can't merge
|
|||
|
two blocks if the pred and succ are in different EH regions. Otherwise,
|
|||
|
a throw may end up in the wrong catch clause.
|
|||
|
2) Calls that throw end a block, and if the call returns a value, the
|
|||
|
call may end up in a different block than the insn which stores the
|
|||
|
return value into a pseudo. This may not be safe for machines using
|
|||
|
SMALL_REGISTER_CLASSES.
|
|||
|
3) throw/catch edges should be distinguished from branch/fallthrough
|
|||
|
edges, and different heuristics should be applied to them. */
|
|||
|
|
|||
|
if (flag_exceptions)
|
|||
|
return;
|
|||
|
|
|||
|
/* First break the program into basic blocks. */
|
|||
|
find_basic_blocks (f, max_reg_num (), NULL);
|
|||
|
|
|||
|
/* If we have only a single block, then there's nothing to do. */
|
|||
|
if (n_basic_blocks <= 1)
|
|||
|
{
|
|||
|
/* Free storage allocated by find_basic_blocks. */
|
|||
|
free_basic_block_vars (0);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* We need predecessor/successor lists as well as pred/succ counts for
|
|||
|
each basic block. */
|
|||
|
s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
|
|||
|
s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
|
|||
|
num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
|
|||
|
num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
|
|||
|
compute_preds_succs (s_preds, s_succs, num_preds, num_succs, 0);
|
|||
|
|
|||
|
/* We only need to note which blocks are headers and which blocks are
|
|||
|
trailers. The pred/succ lists encode the actual chain from one block
|
|||
|
to the next. */
|
|||
|
headers = sbitmap_alloc (n_basic_blocks);
|
|||
|
trailers = sbitmap_alloc (n_basic_blocks);
|
|||
|
sbitmap_zero (headers);
|
|||
|
sbitmap_zero (trailers);
|
|||
|
|
|||
|
n_blocks_merged = 0;
|
|||
|
|
|||
|
/* Walk over each block looking for mergeable blocks. */
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
int succ_bb;
|
|||
|
rtx temp;
|
|||
|
|
|||
|
/* If this block has more than one successor, then there's nothing
|
|||
|
more to do. */
|
|||
|
if (num_succs[bb] != 1)
|
|||
|
continue;
|
|||
|
|
|||
|
succ_bb = INT_LIST_VAL (s_succs[bb]);
|
|||
|
|
|||
|
/* If the successor block is the exit block, then there's nothing
|
|||
|
more to do, similarly if the successor block is the last block. */
|
|||
|
if (succ_bb == EXIT_BLOCK || succ_bb == n_basic_blocks - 1)
|
|||
|
continue;
|
|||
|
|
|||
|
/* If the successor has more than one precedessor, then there's
|
|||
|
nothing more to do. */
|
|||
|
if (num_preds[succ_bb] > 1)
|
|||
|
continue;
|
|||
|
|
|||
|
/* If the successor block is the next block, then there's nothing
|
|||
|
to do. */
|
|||
|
if (bb + 1 == succ_bb)
|
|||
|
continue;
|
|||
|
|
|||
|
/* If the successor block has an EH region begin/end note, then
|
|||
|
we can not perform this optimization. */
|
|||
|
temp = BLOCK_HEAD (succ_bb);
|
|||
|
while (temp)
|
|||
|
{
|
|||
|
if (GET_CODE (temp) == NOTE
|
|||
|
&& (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG
|
|||
|
|| NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END))
|
|||
|
break;
|
|||
|
|
|||
|
if (temp == BLOCK_END (succ_bb))
|
|||
|
break;
|
|||
|
temp = NEXT_INSN (temp);
|
|||
|
}
|
|||
|
|
|||
|
/* If we stopped on an EH note, then there's nothing we can do. */
|
|||
|
if (temp
|
|||
|
&& GET_CODE (temp) == NOTE
|
|||
|
&& (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG
|
|||
|
|| NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END))
|
|||
|
continue;
|
|||
|
|
|||
|
/* We must keep a tablejump/switch insn immediately in front of its
|
|||
|
associated jump table. They should actually be a single block
|
|||
|
which would avoid this hair. But I'm not going to try and tackle
|
|||
|
that problem right now.
|
|||
|
|
|||
|
For now we just special case handling of this situation and
|
|||
|
avoid doing anything with such blocks.
|
|||
|
|
|||
|
Luckily the tablejump and jump table itself must be adjacent. This
|
|||
|
property makes it relatively easy to detect this case. */
|
|||
|
temp = BLOCK_END (succ_bb);
|
|||
|
/* A tablejump will "jump" to the next instruction, which is the jump
|
|||
|
table itself. */
|
|||
|
if (temp
|
|||
|
&& GET_CODE (temp) == JUMP_INSN
|
|||
|
&& JUMP_LABEL (temp)
|
|||
|
&& JUMP_LABEL (temp) == next_nonnote_insn (temp))
|
|||
|
{
|
|||
|
rtx next = next_nonnote_insn (JUMP_LABEL (temp));
|
|||
|
|
|||
|
/* Now see if the next insn is a jump table, if it is, then we do
|
|||
|
not want to merge this block. */
|
|||
|
if (next
|
|||
|
&& GET_CODE (next) == JUMP_INSN
|
|||
|
&& (GET_CODE (PATTERN (next)) == ADDR_VEC
|
|||
|
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
/* If BB is not already in a chain, then it becomes a chain
|
|||
|
header. */
|
|||
|
if (!TEST_BIT (trailers, bb))
|
|||
|
SET_BIT (headers, bb);
|
|||
|
|
|||
|
/* SUCC_BB could have been marked as a header already. It is no longer
|
|||
|
a header, so clear the bit. */
|
|||
|
RESET_BIT (headers, succ_bb);
|
|||
|
|
|||
|
/* SUCC_BB is in a chain now. */
|
|||
|
SET_BIT (trailers, succ_bb);
|
|||
|
|
|||
|
n_blocks_merged++;
|
|||
|
}
|
|||
|
|
|||
|
/* Now rearrange insn chain to reflect the desired block ordering.
|
|||
|
|
|||
|
When the merged block does not end with an unconditional branch,
|
|||
|
we must insert an unconditional branch to the fallthrough path
|
|||
|
of successor block to preserve program correctness.
|
|||
|
|
|||
|
We only perform a very limited number of transformations on the
|
|||
|
block ordering, so this code is relatively simple right now. */
|
|||
|
if (n_blocks_merged != 0)
|
|||
|
{
|
|||
|
|
|||
|
for (i = 0; i < n_basic_blocks; i++)
|
|||
|
{
|
|||
|
int_list_ptr ps;
|
|||
|
int current_block, trailer_block;
|
|||
|
|
|||
|
/* There's nothing to do if this is not a chain header. */
|
|||
|
if (! TEST_BIT (headers, i))
|
|||
|
continue;
|
|||
|
|
|||
|
/* Splice the insn chain so that the trailer block(s)
|
|||
|
immediately follow the header block. */
|
|||
|
ps = s_succs[i];
|
|||
|
current_block = i;
|
|||
|
while (ps && TEST_BIT (trailers, INT_LIST_VAL (ps)))
|
|||
|
{
|
|||
|
rtx start, end, next, oldlabel, insertpoint;
|
|||
|
|
|||
|
trailer_block = INT_LIST_VAL (ps);
|
|||
|
|
|||
|
/* Find the start/end points for the insns to move. */
|
|||
|
start = BLOCK_HEAD (trailer_block);
|
|||
|
|
|||
|
end = BLOCK_END (trailer_block);
|
|||
|
|
|||
|
/* If the next nonnote insn after the end of the trailer
|
|||
|
block is a BARRIER, then we copy it too. */
|
|||
|
next = next_nonnote_insn (end);
|
|||
|
if (next && GET_CODE (next) == BARRIER)
|
|||
|
end = next;
|
|||
|
|
|||
|
/* We insert insns from the trailer block after the BARRIER
|
|||
|
which follows thisn block. */
|
|||
|
insertpoint = BLOCK_END (current_block);
|
|||
|
next = next_nonnote_insn (insertpoint);
|
|||
|
if (next && GET_CODE (next) == BARRIER)
|
|||
|
insertpoint = next;
|
|||
|
|
|||
|
/* Move block and loop notes out of the chain so that we do not
|
|||
|
disturb their order. */
|
|||
|
/* ??? A slightly better solution would be to squeeze out all
|
|||
|
non-nested notes, and adjust the block trees appropriately.
|
|||
|
Even better would be to have a tighter connection between
|
|||
|
block trees and rtl so that this is not necessary. */
|
|||
|
start = squeeze_notes (start, end);
|
|||
|
|
|||
|
/* Scramble the insn chain. */
|
|||
|
reorder_insns (start, end, insertpoint);
|
|||
|
|
|||
|
/* If the last copied insn was not a BARRIER, then we must insert
|
|||
|
a jump from the end of TRAILER_BLOCK to the start of
|
|||
|
TRAILER_BLOCK + 1 to preserve the meaning of the code. */
|
|||
|
if (GET_CODE (end) != BARRIER)
|
|||
|
{
|
|||
|
rtx jump, insn, label;
|
|||
|
|
|||
|
start = BLOCK_HEAD (trailer_block + 1);
|
|||
|
/* Make sure the start of the block which used to follow the
|
|||
|
trailer block starts with a CODE_LABEL. */
|
|||
|
if (GET_CODE (start) != CODE_LABEL)
|
|||
|
{
|
|||
|
label = gen_label_rtx ();
|
|||
|
LABEL_NUSES (label) = 1;
|
|||
|
BLOCK_HEAD (trailer_block + 1)
|
|||
|
= emit_label_after (label, PREV_INSN (start));
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
label = start;
|
|||
|
LABEL_NUSES (label)++;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
jump = emit_jump_insn_after (gen_jump (label),
|
|||
|
BLOCK_END (trailer_block));
|
|||
|
BLOCK_END (trailer_block) = jump;
|
|||
|
JUMP_LABEL (jump) = label;
|
|||
|
emit_barrier_after (jump);
|
|||
|
}
|
|||
|
|
|||
|
/* Now remove the redundant JUMP at the end of the previous
|
|||
|
basic block. */
|
|||
|
delete_jump (BLOCK_END (current_block));
|
|||
|
|
|||
|
/* Continue the loop in case we merged more than two blocks into
|
|||
|
a single chain. */
|
|||
|
current_block = trailer_block;
|
|||
|
ps = s_succs[current_block];
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* There is one important case the above code does not handle. If the
|
|||
|
last block is only reachable by one predecessor, then the predecessor
|
|||
|
should be tacked onto the head of the last block. If the predecessor
|
|||
|
block was a trailer, then we should walk up to the head of its block
|
|||
|
list. Not yet implemented. */
|
|||
|
if (num_preds[n_basic_blocks - 1] == 1
|
|||
|
&& num_succs[INT_LIST_VAL (s_preds[n_basic_blocks - 1])] == 1)
|
|||
|
{
|
|||
|
rtx start, end, insertpoint;
|
|||
|
int pred = INT_LIST_VAL (s_preds[n_basic_blocks - 1]);
|
|||
|
|
|||
|
/* If the predecessor is a trailer block, or it alrady is the immediate
|
|||
|
predecessor of the last block, then there is nothing to do. */
|
|||
|
if (!TEST_BIT (trailers, pred) && pred != n_basic_blocks - 2)
|
|||
|
{
|
|||
|
rtx temp;
|
|||
|
/* Find the start/end points for the insns to move. We leave the
|
|||
|
jump to the last block in its original position. */
|
|||
|
start = BLOCK_HEAD (pred);
|
|||
|
end = BLOCK_END (pred);
|
|||
|
|
|||
|
/* If the predecessor block has an EH region begin/end note, then
|
|||
|
we can not perform this optimization. */
|
|||
|
temp = start;
|
|||
|
while (temp)
|
|||
|
{
|
|||
|
if (GET_CODE (temp) == NOTE
|
|||
|
&& (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG
|
|||
|
|| NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END))
|
|||
|
break;
|
|||
|
if (temp == BLOCK_END (pred))
|
|||
|
break;
|
|||
|
temp = NEXT_INSN (temp);
|
|||
|
}
|
|||
|
|
|||
|
/* If we stopped on an EH note, then there's nothing we can do. */
|
|||
|
if (start != end
|
|||
|
&& ! (temp
|
|||
|
&& GET_CODE (temp) == NOTE
|
|||
|
&& (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG
|
|||
|
|| NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END)))
|
|||
|
{
|
|||
|
/* For simplicity we'll leave any CODE_LABEL and JUMP in their
|
|||
|
original location. If they are dead, then they'll be deleted
|
|||
|
by the jump optimizer. If not branches which reach the
|
|||
|
label will be threaded to the epilogue, which makes the label
|
|||
|
and jump dead anyway. */
|
|||
|
if (GET_CODE (start) == CODE_LABEL)
|
|||
|
start = NEXT_INSN (start);
|
|||
|
|
|||
|
/* The first check is necessary in case the block contains
|
|||
|
only the CODE_LABEL skipped above and only one other
|
|||
|
instruction. */
|
|||
|
if (start != end && next_nonnote_insn (start) != end)
|
|||
|
{
|
|||
|
end = PREV_INSN (end);
|
|||
|
/* We insert insns from the predecessor block after the
|
|||
|
CODE_LABEL which starts the final block. */
|
|||
|
insertpoint = BLOCK_HEAD (n_basic_blocks - 1);
|
|||
|
|
|||
|
start = squeeze_notes (start, end);
|
|||
|
|
|||
|
/* Scramble the insn chain. */
|
|||
|
reorder_insns (start, end, insertpoint);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Now that we have maximal blocks, it would be a good time to run natural
|
|||
|
loop analysis and rip out blocks that are physically inside loops, but
|
|||
|
not part of the loop itself. */
|
|||
|
|
|||
|
/* Free storage allocated by find_basic_blocks. */
|
|||
|
free_basic_block_vars (0);
|
|||
|
free_bb_mem ();
|
|||
|
}
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
/* Count for a single SET rtx, X. */
|
|||
|
|
|||
|
static void
|
|||
|
count_reg_sets_1 (x)
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
register int regno;
|
|||
|
register rtx reg = SET_DEST (x);
|
|||
|
|
|||
|
/* Find the register that's set/clobbered. */
|
|||
|
while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
|
|||
|
|| GET_CODE (reg) == SIGN_EXTRACT
|
|||
|
|| GET_CODE (reg) == STRICT_LOW_PART)
|
|||
|
reg = XEXP (reg, 0);
|
|||
|
|
|||
|
if (GET_CODE (reg) == PARALLEL
|
|||
|
&& GET_MODE (reg) == BLKmode)
|
|||
|
{
|
|||
|
register int i;
|
|||
|
for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
|
|||
|
count_reg_sets_1 (XVECEXP (reg, 0, i));
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
if (GET_CODE (reg) == REG)
|
|||
|
{
|
|||
|
regno = REGNO (reg);
|
|||
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
/* Count (weighted) references, stores, etc. This counts a
|
|||
|
register twice if it is modified, but that is correct. */
|
|||
|
REG_N_SETS (regno)++;
|
|||
|
|
|||
|
REG_N_REFS (regno) += loop_depth;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Increment REG_N_SETS for each SET or CLOBBER found in X; also increment
|
|||
|
REG_N_REFS by the current loop depth for each SET or CLOBBER found. */
|
|||
|
|
|||
|
static void
|
|||
|
count_reg_sets (x)
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
register RTX_CODE code = GET_CODE (x);
|
|||
|
|
|||
|
if (code == SET || code == CLOBBER)
|
|||
|
count_reg_sets_1 (x);
|
|||
|
else if (code == PARALLEL)
|
|||
|
{
|
|||
|
register int i;
|
|||
|
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
code = GET_CODE (XVECEXP (x, 0, i));
|
|||
|
if (code == SET || code == CLOBBER)
|
|||
|
count_reg_sets_1 (XVECEXP (x, 0, i));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Increment REG_N_REFS by the current loop depth each register reference
|
|||
|
found in X. */
|
|||
|
|
|||
|
static void
|
|||
|
count_reg_references (x)
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
register RTX_CODE code;
|
|||
|
|
|||
|
retry:
|
|||
|
code = GET_CODE (x);
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case LABEL_REF:
|
|||
|
case SYMBOL_REF:
|
|||
|
case CONST_INT:
|
|||
|
case CONST:
|
|||
|
case CONST_DOUBLE:
|
|||
|
case PC:
|
|||
|
case ADDR_VEC:
|
|||
|
case ADDR_DIFF_VEC:
|
|||
|
case ASM_INPUT:
|
|||
|
return;
|
|||
|
|
|||
|
#ifdef HAVE_cc0
|
|||
|
case CC0:
|
|||
|
return;
|
|||
|
#endif
|
|||
|
|
|||
|
case CLOBBER:
|
|||
|
/* If we are clobbering a MEM, mark any registers inside the address
|
|||
|
as being used. */
|
|||
|
if (GET_CODE (XEXP (x, 0)) == MEM)
|
|||
|
count_reg_references (XEXP (XEXP (x, 0), 0));
|
|||
|
return;
|
|||
|
|
|||
|
case SUBREG:
|
|||
|
/* While we're here, optimize this case. */
|
|||
|
x = SUBREG_REG (x);
|
|||
|
|
|||
|
/* In case the SUBREG is not of a register, don't optimize */
|
|||
|
if (GET_CODE (x) != REG)
|
|||
|
{
|
|||
|
count_reg_references (x);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* ... fall through ... */
|
|||
|
|
|||
|
case REG:
|
|||
|
if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
|
|||
|
REG_N_REFS (REGNO (x)) += loop_depth;
|
|||
|
return;
|
|||
|
|
|||
|
case SET:
|
|||
|
{
|
|||
|
register rtx testreg = SET_DEST (x);
|
|||
|
int mark_dest = 0;
|
|||
|
|
|||
|
/* If storing into MEM, don't show it as being used. But do
|
|||
|
show the address as being used. */
|
|||
|
if (GET_CODE (testreg) == MEM)
|
|||
|
{
|
|||
|
count_reg_references (XEXP (testreg, 0));
|
|||
|
count_reg_references (SET_SRC (x));
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* Storing in STRICT_LOW_PART is like storing in a reg
|
|||
|
in that this SET might be dead, so ignore it in TESTREG.
|
|||
|
but in some other ways it is like using the reg.
|
|||
|
|
|||
|
Storing in a SUBREG or a bit field is like storing the entire
|
|||
|
register in that if the register's value is not used
|
|||
|
then this SET is not needed. */
|
|||
|
while (GET_CODE (testreg) == STRICT_LOW_PART
|
|||
|
|| GET_CODE (testreg) == ZERO_EXTRACT
|
|||
|
|| GET_CODE (testreg) == SIGN_EXTRACT
|
|||
|
|| GET_CODE (testreg) == SUBREG)
|
|||
|
{
|
|||
|
/* Modifying a single register in an alternate mode
|
|||
|
does not use any of the old value. But these other
|
|||
|
ways of storing in a register do use the old value. */
|
|||
|
if (GET_CODE (testreg) == SUBREG
|
|||
|
&& !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
|
|||
|
;
|
|||
|
else
|
|||
|
mark_dest = 1;
|
|||
|
|
|||
|
testreg = XEXP (testreg, 0);
|
|||
|
}
|
|||
|
|
|||
|
/* If this is a store into a register,
|
|||
|
recursively scan the value being stored. */
|
|||
|
|
|||
|
if ((GET_CODE (testreg) == PARALLEL
|
|||
|
&& GET_MODE (testreg) == BLKmode)
|
|||
|
|| GET_CODE (testreg) == REG)
|
|||
|
{
|
|||
|
count_reg_references (SET_SRC (x));
|
|||
|
if (mark_dest)
|
|||
|
count_reg_references (SET_DEST (x));
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* Recursively scan the operands of this expression. */
|
|||
|
|
|||
|
{
|
|||
|
register char *fmt = GET_RTX_FORMAT (code);
|
|||
|
register int i;
|
|||
|
|
|||
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
{
|
|||
|
/* Tail recursive case: save a function call level. */
|
|||
|
if (i == 0)
|
|||
|
{
|
|||
|
x = XEXP (x, 0);
|
|||
|
goto retry;
|
|||
|
}
|
|||
|
count_reg_references (XEXP (x, i));
|
|||
|
}
|
|||
|
else if (fmt[i] == 'E')
|
|||
|
{
|
|||
|
register int j;
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
count_reg_references (XVECEXP (x, i, j));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Recompute register set/reference counts immediately prior to register
|
|||
|
allocation.
|
|||
|
|
|||
|
This avoids problems with set/reference counts changing to/from values
|
|||
|
which have special meanings to the register allocators.
|
|||
|
|
|||
|
Additionally, the reference counts are the primary component used by the
|
|||
|
register allocators to prioritize pseudos for allocation to hard regs.
|
|||
|
More accurate reference counts generally lead to better register allocation.
|
|||
|
|
|||
|
F is the first insn to be scanned.
|
|||
|
LOOP_STEP denotes how much loop_depth should be incremented per
|
|||
|
loop nesting level in order to increase the ref count more for references
|
|||
|
in a loop.
|
|||
|
|
|||
|
It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
|
|||
|
possibly other information which is used by the register allocators. */
|
|||
|
|
|||
|
void
|
|||
|
recompute_reg_usage (f, loop_step)
|
|||
|
rtx f;
|
|||
|
int loop_step;
|
|||
|
{
|
|||
|
rtx insn;
|
|||
|
int i, max_reg;
|
|||
|
|
|||
|
/* Clear out the old data. */
|
|||
|
max_reg = max_reg_num ();
|
|||
|
for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
|
|||
|
{
|
|||
|
REG_N_SETS (i) = 0;
|
|||
|
REG_N_REFS (i) = 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Scan each insn in the chain and count how many times each register is
|
|||
|
set/used. */
|
|||
|
loop_depth = 1;
|
|||
|
for (insn = f; insn; insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
/* Keep track of loop depth. */
|
|||
|
if (GET_CODE (insn) == NOTE)
|
|||
|
{
|
|||
|
/* Look for loop boundaries. */
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
|
|||
|
loop_depth -= loop_step;
|
|||
|
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
|
|||
|
loop_depth += loop_step;
|
|||
|
|
|||
|
/* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
|
|||
|
Abort now rather than setting register status incorrectly. */
|
|||
|
if (loop_depth == 0)
|
|||
|
abort ();
|
|||
|
}
|
|||
|
else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
{
|
|||
|
rtx links;
|
|||
|
|
|||
|
/* This call will increment REG_N_SETS for each SET or CLOBBER
|
|||
|
of a register in INSN. It will also increment REG_N_REFS
|
|||
|
by the loop depth for each set of a register in INSN. */
|
|||
|
count_reg_sets (PATTERN (insn));
|
|||
|
|
|||
|
/* count_reg_sets does not detect autoincrement address modes, so
|
|||
|
detect them here by looking at the notes attached to INSN. */
|
|||
|
for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
|
|||
|
{
|
|||
|
if (REG_NOTE_KIND (links) == REG_INC)
|
|||
|
/* Count (weighted) references, stores, etc. This counts a
|
|||
|
register twice if it is modified, but that is correct. */
|
|||
|
REG_N_SETS (REGNO (XEXP (links, 0)))++;
|
|||
|
}
|
|||
|
|
|||
|
/* This call will increment REG_N_REFS by the current loop depth for
|
|||
|
each reference to a register in INSN. */
|
|||
|
count_reg_references (PATTERN (insn));
|
|||
|
|
|||
|
/* count_reg_references will not include counts for arguments to
|
|||
|
function calls, so detect them here by examining the
|
|||
|
CALL_INSN_FUNCTION_USAGE data. */
|
|||
|
if (GET_CODE (insn) == CALL_INSN)
|
|||
|
{
|
|||
|
rtx note;
|
|||
|
|
|||
|
for (note = CALL_INSN_FUNCTION_USAGE (insn);
|
|||
|
note;
|
|||
|
note = XEXP (note, 1))
|
|||
|
if (GET_CODE (XEXP (note, 0)) == USE)
|
|||
|
count_reg_references (SET_DEST (XEXP (note, 0)));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|