2919 lines
77 KiB
C
2919 lines
77 KiB
C
|
/* Convert RTL to assembler code and output it, for GNU compiler.
|
|||
|
Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GNU CC.
|
|||
|
|
|||
|
GNU CC is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2, or (at your option)
|
|||
|
any later version.
|
|||
|
|
|||
|
GNU CC is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with GNU CC; see the file COPYING. If not, write to
|
|||
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|||
|
Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
|
|||
|
/* This is the final pass of the compiler.
|
|||
|
It looks at the rtl code for a function and outputs assembler code.
|
|||
|
|
|||
|
Call `final_start_function' to output the assembler code for function entry,
|
|||
|
`final' to output assembler code for some RTL code,
|
|||
|
`final_end_function' to output assembler code for function exit.
|
|||
|
If a function is compiled in several pieces, each piece is
|
|||
|
output separately with `final'.
|
|||
|
|
|||
|
Some optimizations are also done at this level.
|
|||
|
Move instructions that were made unnecessary by good register allocation
|
|||
|
are detected and omitted from the output. (Though most of these
|
|||
|
are removed by the last jump pass.)
|
|||
|
|
|||
|
Instructions to set the condition codes are omitted when it can be
|
|||
|
seen that the condition codes already had the desired values.
|
|||
|
|
|||
|
In some cases it is sufficient if the inherited condition codes
|
|||
|
have related values, but this may require the following insn
|
|||
|
(the one that tests the condition codes) to be modified.
|
|||
|
|
|||
|
The code for the function prologue and epilogue are generated
|
|||
|
directly as assembler code by the macros FUNCTION_PROLOGUE and
|
|||
|
FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
|
|||
|
|
|||
|
#include "config.h"
|
|||
|
#include "system.h"
|
|||
|
|
|||
|
#include "tree.h"
|
|||
|
#include "rtl.h"
|
|||
|
#include "regs.h"
|
|||
|
#include "insn-config.h"
|
|||
|
#include "insn-flags.h"
|
|||
|
#include "insn-attr.h"
|
|||
|
#include "insn-codes.h"
|
|||
|
#include "recog.h"
|
|||
|
#include "conditions.h"
|
|||
|
#include "flags.h"
|
|||
|
#include "real.h"
|
|||
|
#include "hard-reg-set.h"
|
|||
|
#include "output.h"
|
|||
|
#include "except.h"
|
|||
|
#include "toplev.h"
|
|||
|
#include "reload.h"
|
|||
|
/* CYGNUS LOCAL LRS */
|
|||
|
#include "function.h"
|
|||
|
#include "bitmap.h"
|
|||
|
#include "obstack.h"
|
|||
|
|
|||
|
extern struct obstack *rtl_obstack;
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
|
|||
|
#if defined (DWARF2_DEBUGGING_INFO)
|
|||
|
#include "dwarf2out.h"
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef INT_TYPE_SIZE
|
|||
|
#define INT_TYPE_SIZE BITS_PER_WORD
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef LONG_TYPE_SIZE
|
|||
|
#define LONG_TYPE_SIZE BITS_PER_WORD
|
|||
|
#endif
|
|||
|
|
|||
|
/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
|
|||
|
null default for it to save conditionalization later. */
|
|||
|
#ifndef CC_STATUS_INIT
|
|||
|
#define CC_STATUS_INIT
|
|||
|
#endif
|
|||
|
|
|||
|
/* How to start an assembler comment. */
|
|||
|
#ifndef ASM_COMMENT_START
|
|||
|
#define ASM_COMMENT_START ";#"
|
|||
|
#endif
|
|||
|
|
|||
|
/* Is the given character a logical line separator for the assembler? */
|
|||
|
#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
|
|||
|
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef JUMP_TABLES_IN_TEXT_SECTION
|
|||
|
#define JUMP_TABLES_IN_TEXT_SECTION 0
|
|||
|
#endif
|
|||
|
|
|||
|
/* Last insn processed by final_scan_insn. */
|
|||
|
static rtx debug_insn = 0;
|
|||
|
|
|||
|
/* Line number of last NOTE. */
|
|||
|
static int last_linenum;
|
|||
|
|
|||
|
/* Highest line number in current block. */
|
|||
|
static int high_block_linenum;
|
|||
|
|
|||
|
/* Likewise for function. */
|
|||
|
static int high_function_linenum;
|
|||
|
|
|||
|
/* Filename of last NOTE. */
|
|||
|
static char *last_filename;
|
|||
|
|
|||
|
extern int length_unit_log; /* This is defined in insn-attrtab.c. */
|
|||
|
|
|||
|
/* Nonzero while outputting an `asm' with operands.
|
|||
|
This means that inconsistencies are the user's fault, so don't abort.
|
|||
|
The precise value is the insn being output, to pass to error_for_asm. */
|
|||
|
static rtx this_is_asm_operands;
|
|||
|
|
|||
|
/* Number of operands of this insn, for an `asm' with operands. */
|
|||
|
static unsigned int insn_noperands;
|
|||
|
|
|||
|
/* Compare optimization flag. */
|
|||
|
|
|||
|
static rtx last_ignored_compare = 0;
|
|||
|
|
|||
|
/* All the symbol-blocks (levels of scoping) in the compilation
|
|||
|
are assigned sequence numbers in order of appearance of the
|
|||
|
beginnings of the symbol-blocks. Both final and dbxout do this,
|
|||
|
and assume that they will both give the same number to each block.
|
|||
|
Final uses these sequence numbers to generate assembler label names
|
|||
|
LBBnnn and LBEnnn for the beginning and end of the symbol-block.
|
|||
|
Dbxout uses the sequence numbers to generate references to the same labels
|
|||
|
from the dbx debugging information.
|
|||
|
|
|||
|
Sdb records this level at the beginning of each function,
|
|||
|
in order to find the current level when recursing down declarations.
|
|||
|
It outputs the block beginning and endings
|
|||
|
at the point in the asm file where the blocks would begin and end. */
|
|||
|
|
|||
|
int next_block_index;
|
|||
|
|
|||
|
/* CYGNUS LOCAL LRS */
|
|||
|
/* Map block # into block nodes during final */
|
|||
|
tree *block_nodes;
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
|
|||
|
/* Assign a unique number to each insn that is output.
|
|||
|
This can be used to generate unique local labels. */
|
|||
|
|
|||
|
static int insn_counter = 0;
|
|||
|
|
|||
|
#ifdef HAVE_cc0
|
|||
|
/* This variable contains machine-dependent flags (defined in tm.h)
|
|||
|
set and examined by output routines
|
|||
|
that describe how to interpret the condition codes properly. */
|
|||
|
|
|||
|
CC_STATUS cc_status;
|
|||
|
|
|||
|
/* During output of an insn, this contains a copy of cc_status
|
|||
|
from before the insn. */
|
|||
|
|
|||
|
CC_STATUS cc_prev_status;
|
|||
|
#endif
|
|||
|
|
|||
|
/* Indexed by hardware reg number, is 1 if that register is ever
|
|||
|
used in the current function.
|
|||
|
|
|||
|
In life_analysis, or in stupid_life_analysis, this is set
|
|||
|
up to record the hard regs used explicitly. Reload adds
|
|||
|
in the hard regs used for holding pseudo regs. Final uses
|
|||
|
it to generate the code in the function prologue and epilogue
|
|||
|
to save and restore registers as needed. */
|
|||
|
|
|||
|
char regs_ever_live[FIRST_PSEUDO_REGISTER];
|
|||
|
|
|||
|
/* Nonzero means current function must be given a frame pointer.
|
|||
|
Set in stmt.c if anything is allocated on the stack there.
|
|||
|
Set in reload1.c if anything is allocated on the stack there. */
|
|||
|
|
|||
|
int frame_pointer_needed;
|
|||
|
|
|||
|
/* Length so far allocated in PENDING_BLOCKS. */
|
|||
|
|
|||
|
static int max_block_depth;
|
|||
|
|
|||
|
/* CYGNUS LOCAL LRS */
|
|||
|
/* Stack of sequence numbers of symbol-blocks of which we have seen the
|
|||
|
beginning but not yet the end. Sequence numbers are assigned at
|
|||
|
the beginning; this stack allows us to find the sequence number
|
|||
|
of a block that is ending. */
|
|||
|
|
|||
|
struct block_seq {
|
|||
|
int number;
|
|||
|
tree block;
|
|||
|
};
|
|||
|
|
|||
|
static struct block_seq *pending_blocks;
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
|
|||
|
/* Number of elements currently in use in PENDING_BLOCKS. */
|
|||
|
|
|||
|
static int block_depth;
|
|||
|
|
|||
|
/* Nonzero if have enabled APP processing of our assembler output. */
|
|||
|
|
|||
|
static int app_on;
|
|||
|
|
|||
|
/* If we are outputting an insn sequence, this contains the sequence rtx.
|
|||
|
Zero otherwise. */
|
|||
|
|
|||
|
rtx final_sequence;
|
|||
|
|
|||
|
|
|||
|
/* Indexed by line number, nonzero if there is a note for that line. */
|
|||
|
|
|||
|
static char *line_note_exists;
|
|||
|
|
|||
|
/* CYGNUS LOCAL LRS */
|
|||
|
/* Current marker number for live ranges. */
|
|||
|
extern int range_max_number;
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
|
|||
|
extern rtx peephole (rtx);
|
|||
|
|
|||
|
#ifdef HAVE_ATTR_length
|
|||
|
static int asm_insn_count (rtx);
|
|||
|
#endif
|
|||
|
static void output_source_line (FILE *, rtx);
|
|||
|
static rtx walk_alter_subreg (rtx);
|
|||
|
static void output_asm_name (void);
|
|||
|
static void output_operand (rtx, int);
|
|||
|
#ifdef LEAF_REGISTERS
|
|||
|
static void leaf_renumber_regs (rtx);
|
|||
|
#endif
|
|||
|
#ifdef HAVE_cc0
|
|||
|
static int alter_cond (rtx);
|
|||
|
#endif
|
|||
|
|
|||
|
extern char *getpwd ();
|
|||
|
|
|||
|
/* Initialize data in final at the beginning of a compilation. */
|
|||
|
|
|||
|
void
|
|||
|
init_final (filename)
|
|||
|
char *filename;
|
|||
|
{
|
|||
|
next_block_index = 2;
|
|||
|
app_on = 0;
|
|||
|
max_block_depth = 20;
|
|||
|
/* CYGNUS LOCAL LRS */
|
|||
|
pending_blocks
|
|||
|
= (struct block_seq *) xmalloc (20 * sizeof (struct block_seq));
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
final_sequence = 0;
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
/* Called at end of source file,
|
|||
|
to output the block-profiling table for this entire compilation. */
|
|||
|
|
|||
|
void
|
|||
|
end_final (filename)
|
|||
|
char *filename;
|
|||
|
{
|
|||
|
}
|
|||
|
|
|||
|
/* Enable APP processing of subsequent output.
|
|||
|
Used before the output from an `asm' statement. */
|
|||
|
|
|||
|
void
|
|||
|
app_enable ()
|
|||
|
{
|
|||
|
if (! app_on)
|
|||
|
{
|
|||
|
fputs (ASM_APP_ON, asm_out_file);
|
|||
|
app_on = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Disable APP processing of subsequent output.
|
|||
|
Called from varasm.c before most kinds of output. */
|
|||
|
|
|||
|
void
|
|||
|
app_disable ()
|
|||
|
{
|
|||
|
if (app_on)
|
|||
|
{
|
|||
|
fputs (ASM_APP_OFF, asm_out_file);
|
|||
|
app_on = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* The next two pages contain routines used to compute the length of an insn
|
|||
|
and to shorten branches. */
|
|||
|
|
|||
|
/* Arrays for insn lengths, and addresses. The latter is referenced by
|
|||
|
`insn_current_length'. */
|
|||
|
|
|||
|
static short *insn_lengths;
|
|||
|
int *insn_addresses;
|
|||
|
|
|||
|
/* Max uid for which the above arrays are valid. */
|
|||
|
static int insn_lengths_max_uid;
|
|||
|
|
|||
|
/* Address of insn being processed. Used by `insn_current_length'. */
|
|||
|
int insn_current_address;
|
|||
|
|
|||
|
/* Address of insn being processed in previous iteration. */
|
|||
|
int insn_last_address;
|
|||
|
|
|||
|
/* konwn invariant alignment of insn being processed. */
|
|||
|
int insn_current_align;
|
|||
|
|
|||
|
/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
|
|||
|
gives the next following alignment insn that increases the known
|
|||
|
alignment, or NULL_RTX if there is no such insn.
|
|||
|
For any alignment obtained this way, we can again index uid_align with
|
|||
|
its uid to obtain the next following align that in turn increases the
|
|||
|
alignment, till we reach NULL_RTX; the sequence obtained this way
|
|||
|
for each insn we'll call the alignment chain of this insn in the following
|
|||
|
comments. */
|
|||
|
|
|||
|
struct label_alignment {
|
|||
|
short alignment;
|
|||
|
short max_skip;
|
|||
|
};
|
|||
|
|
|||
|
static rtx *uid_align;
|
|||
|
static int *uid_shuid;
|
|||
|
static struct label_alignment *label_align;
|
|||
|
|
|||
|
static void
|
|||
|
print_wint(FILE *file, HOST_WIDE_INT value)
|
|||
|
{
|
|||
|
const char *fmt = HOST_WIDE_INT_PRINT_DEC;
|
|||
|
if (flag_hex_asm)
|
|||
|
{
|
|||
|
fmt = HOST_WIDE_INT_PRINT_HEX;
|
|||
|
if (value < 0)
|
|||
|
{
|
|||
|
fputc('-', file);
|
|||
|
value = -value;
|
|||
|
}
|
|||
|
}
|
|||
|
fprintf(file, fmt, value);
|
|||
|
}
|
|||
|
|
|||
|
/* Indicate that branch shortening hasn't yet been done. */
|
|||
|
|
|||
|
void
|
|||
|
init_insn_lengths ()
|
|||
|
{
|
|||
|
if (label_align)
|
|||
|
{
|
|||
|
free (label_align);
|
|||
|
label_align = 0;
|
|||
|
}
|
|||
|
if (uid_shuid)
|
|||
|
{
|
|||
|
free (uid_shuid);
|
|||
|
uid_shuid = 0;
|
|||
|
}
|
|||
|
if (insn_lengths)
|
|||
|
{
|
|||
|
free (insn_lengths);
|
|||
|
insn_lengths = 0;
|
|||
|
insn_lengths_max_uid = 0;
|
|||
|
}
|
|||
|
if (insn_addresses)
|
|||
|
{
|
|||
|
free (insn_addresses);
|
|||
|
insn_addresses = 0;
|
|||
|
}
|
|||
|
if (uid_align)
|
|||
|
{
|
|||
|
free (uid_align);
|
|||
|
uid_align = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Obtain the current length of an insn. If branch shortening has been done,
|
|||
|
get its actual length. Otherwise, get its maximum length. */
|
|||
|
|
|||
|
int
|
|||
|
get_attr_length (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
#ifdef HAVE_ATTR_length
|
|||
|
rtx body;
|
|||
|
int i;
|
|||
|
int length = 0;
|
|||
|
|
|||
|
if (insn_lengths_max_uid > INSN_UID (insn))
|
|||
|
return insn_lengths[INSN_UID (insn)];
|
|||
|
else
|
|||
|
switch (GET_CODE (insn))
|
|||
|
{
|
|||
|
case NOTE:
|
|||
|
case BARRIER:
|
|||
|
case CODE_LABEL:
|
|||
|
return 0;
|
|||
|
|
|||
|
case CALL_INSN:
|
|||
|
length = insn_default_length (insn);
|
|||
|
break;
|
|||
|
|
|||
|
case JUMP_INSN:
|
|||
|
body = PATTERN (insn);
|
|||
|
if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
|
|||
|
{
|
|||
|
/* Alignment is machine-dependent and should be handled by
|
|||
|
ADDR_VEC_ALIGN. */
|
|||
|
}
|
|||
|
else
|
|||
|
length = insn_default_length (insn);
|
|||
|
break;
|
|||
|
|
|||
|
case INSN:
|
|||
|
body = PATTERN (insn);
|
|||
|
if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
|
|||
|
return 0;
|
|||
|
|
|||
|
else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
|
|||
|
length = asm_insn_count (body) * insn_default_length (insn);
|
|||
|
else if (GET_CODE (body) == SEQUENCE)
|
|||
|
for (i = 0; i < XVECLEN (body, 0); i++)
|
|||
|
length += get_attr_length (XVECEXP (body, 0, i));
|
|||
|
else
|
|||
|
length = insn_default_length (insn);
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
return length;
|
|||
|
#else /* not HAVE_ATTR_length */
|
|||
|
return 0;
|
|||
|
#endif /* not HAVE_ATTR_length */
|
|||
|
}
|
|||
|
|
|||
|
/* Code to handle alignment inside shorten_branches. */
|
|||
|
|
|||
|
/* Here is an explanation how the algorithm in align_fuzz can give
|
|||
|
proper results:
|
|||
|
|
|||
|
Call a sequence of instructions beginning with alignment point X
|
|||
|
and continuing until the next alignment point `block X'. When `X'
|
|||
|
is used in an expression, it means the alignment value of the
|
|||
|
alignment point.
|
|||
|
|
|||
|
Call the distance between the start of the first insn of block X, and
|
|||
|
the end of the last insn of block X `IX', for the `inner size of X'.
|
|||
|
This is clearly the sum of the instruction lengths.
|
|||
|
|
|||
|
Likewise with the next alignment-delimited block following X, which we
|
|||
|
shall call block Y.
|
|||
|
|
|||
|
Call the distance between the start of the first insn of block X, and
|
|||
|
the start of the first insn of block Y `OX', for the `outer size of X'.
|
|||
|
|
|||
|
The estimated padding is then OX - IX.
|
|||
|
|
|||
|
OX can be safely estimated as
|
|||
|
|
|||
|
if (X >= Y)
|
|||
|
OX = round_up(IX, Y)
|
|||
|
else
|
|||
|
OX = round_up(IX, X) + Y - X
|
|||
|
|
|||
|
Clearly est(IX) >= real(IX), because that only depends on the
|
|||
|
instruction lengths, and those being overestimated is a given.
|
|||
|
|
|||
|
Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
|
|||
|
we needn't worry about that when thinking about OX.
|
|||
|
|
|||
|
When X >= Y, the alignment provided by Y adds no uncertainty factor
|
|||
|
for branch ranges starting before X, so we can just round what we have.
|
|||
|
But when X < Y, we don't know anything about the, so to speak,
|
|||
|
`middle bits', so we have to assume the worst when aligning up from an
|
|||
|
address mod X to one mod Y, which is Y - X. */
|
|||
|
|
|||
|
#ifndef LABEL_ALIGN
|
|||
|
#define LABEL_ALIGN(LABEL) 0
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef LABEL_ALIGN_MAX_SKIP
|
|||
|
#define LABEL_ALIGN_MAX_SKIP 0
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef LOOP_ALIGN
|
|||
|
#define LOOP_ALIGN(LABEL) 0
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef LOOP_ALIGN_MAX_SKIP
|
|||
|
#define LOOP_ALIGN_MAX_SKIP 0
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef LABEL_ALIGN_AFTER_BARRIER
|
|||
|
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
|
|||
|
#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef ADDR_VEC_ALIGN
|
|||
|
int
|
|||
|
final_addr_vec_align (addr_vec)
|
|||
|
rtx addr_vec;
|
|||
|
{
|
|||
|
int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
|
|||
|
|
|||
|
if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
|
|||
|
align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
|
|||
|
return align;
|
|||
|
|
|||
|
}
|
|||
|
#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
|
|||
|
#endif
|
|||
|
|
|||
|
#ifndef INSN_LENGTH_ALIGNMENT
|
|||
|
#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
|
|||
|
#endif
|
|||
|
|
|||
|
#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
|
|||
|
|
|||
|
static int min_labelno, max_labelno;
|
|||
|
|
|||
|
#define LABEL_TO_ALIGNMENT(LABEL) \
|
|||
|
(label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
|
|||
|
|
|||
|
#define LABEL_TO_MAX_SKIP(LABEL) \
|
|||
|
(label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
|
|||
|
|
|||
|
/* For the benefit of port specific code do this also as a function. */
|
|||
|
int
|
|||
|
label_to_alignment (label)
|
|||
|
rtx label;
|
|||
|
{
|
|||
|
return LABEL_TO_ALIGNMENT (label);
|
|||
|
}
|
|||
|
|
|||
|
#ifdef HAVE_ATTR_length
|
|||
|
/* The differences in addresses
|
|||
|
between a branch and its target might grow or shrink depending on
|
|||
|
the alignment the start insn of the range (the branch for a forward
|
|||
|
branch or the label for a backward branch) starts out on; if these
|
|||
|
differences are used naively, they can even oscillate infinitely.
|
|||
|
We therefore want to compute a 'worst case' address difference that
|
|||
|
is independent of the alignment the start insn of the range end
|
|||
|
up on, and that is at least as large as the actual difference.
|
|||
|
The function align_fuzz calculates the amount we have to add to the
|
|||
|
naively computed difference, by traversing the part of the alignment
|
|||
|
chain of the start insn of the range that is in front of the end insn
|
|||
|
of the range, and considering for each alignment the maximum amount
|
|||
|
that it might contribute to a size increase.
|
|||
|
|
|||
|
For casesi tables, we also want to know worst case minimum amounts of
|
|||
|
address difference, in case a machine description wants to introduce
|
|||
|
some common offset that is added to all offsets in a table.
|
|||
|
For this purpose, align_fuzz with a growth argument of 0 comuptes the
|
|||
|
appropriate adjustment. */
|
|||
|
|
|||
|
|
|||
|
/* Compute the maximum delta by which the difference of the addresses of
|
|||
|
START and END might grow / shrink due to a different address for start
|
|||
|
which changes the size of alignment insns between START and END.
|
|||
|
KNOWN_ALIGN_LOG is the alignment known for START.
|
|||
|
GROWTH should be ~0 if the objective is to compute potential code size
|
|||
|
increase, and 0 if the objective is to compute potential shrink.
|
|||
|
The return value is undefined for any other value of GROWTH. */
|
|||
|
int
|
|||
|
align_fuzz (start, end, known_align_log, growth)
|
|||
|
rtx start, end;
|
|||
|
int known_align_log;
|
|||
|
unsigned growth;
|
|||
|
{
|
|||
|
int uid = INSN_UID (start);
|
|||
|
rtx align_label;
|
|||
|
int known_align = 1 << known_align_log;
|
|||
|
int end_shuid = INSN_SHUID (end);
|
|||
|
int fuzz = 0;
|
|||
|
|
|||
|
for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
|
|||
|
{
|
|||
|
int align_addr, new_align;
|
|||
|
|
|||
|
uid = INSN_UID (align_label);
|
|||
|
align_addr = insn_addresses[uid] - insn_lengths[uid];
|
|||
|
if (uid_shuid[uid] > end_shuid)
|
|||
|
break;
|
|||
|
known_align_log = LABEL_TO_ALIGNMENT (align_label);
|
|||
|
new_align = 1 << known_align_log;
|
|||
|
if (new_align < known_align)
|
|||
|
continue;
|
|||
|
fuzz += (-align_addr ^ growth) & (new_align - known_align);
|
|||
|
known_align = new_align;
|
|||
|
}
|
|||
|
return fuzz;
|
|||
|
}
|
|||
|
|
|||
|
/* Compute a worst-case reference address of a branch so that it
|
|||
|
can be safely used in the presence of aligned labels. Since the
|
|||
|
size of the branch itself is unknown, the size of the branch is
|
|||
|
not included in the range. I.e. for a forward branch, the reference
|
|||
|
address is the end address of the branch as known from the previous
|
|||
|
branch shortening pass, minus a value to account for possible size
|
|||
|
increase due to alignment. For a backward branch, it is the start
|
|||
|
address of the branch as known from the current pass, plus a value
|
|||
|
to account for possible size increase due to alignment.
|
|||
|
NB.: Therefore, the maximum offset allowed for backward branches needs
|
|||
|
to exclude the branch size. */
|
|||
|
int
|
|||
|
insn_current_reference_address (branch)
|
|||
|
rtx branch;
|
|||
|
{
|
|||
|
rtx dest;
|
|||
|
rtx seq = NEXT_INSN (PREV_INSN (branch));
|
|||
|
int seq_uid = INSN_UID (seq);
|
|||
|
if (GET_CODE (branch) != JUMP_INSN)
|
|||
|
/* This can happen for example on the PA; the objective is to know the
|
|||
|
offset to address something in front of the start of the function.
|
|||
|
Thus, we can treat it like a backward branch.
|
|||
|
We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
|
|||
|
any alignment we'd encounter, so we skip the call to align_fuzz. */
|
|||
|
return insn_current_address;
|
|||
|
dest = JUMP_LABEL (branch);
|
|||
|
/* BRANCH has no proper alignment chain set, so use SEQ. */
|
|||
|
if (INSN_SHUID (branch) < INSN_SHUID (dest))
|
|||
|
{
|
|||
|
/* Forward branch. */
|
|||
|
return (insn_last_address + insn_lengths[seq_uid]
|
|||
|
- align_fuzz (seq, dest, length_unit_log, ~0));
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Backward branch. */
|
|||
|
return (insn_current_address
|
|||
|
+ align_fuzz (dest, seq, length_unit_log, ~0));
|
|||
|
}
|
|||
|
}
|
|||
|
#endif /* HAVE_ATTR_length */
|
|||
|
|
|||
|
/* Make a pass over all insns and compute their actual lengths by shortening
|
|||
|
any branches of variable length if possible. */
|
|||
|
|
|||
|
/* Give a default value for the lowest address in a function. */
|
|||
|
|
|||
|
#ifndef FIRST_INSN_ADDRESS
|
|||
|
#define FIRST_INSN_ADDRESS 0
|
|||
|
#endif
|
|||
|
|
|||
|
/* shorten_branches might be called multiple times: for example, the SH
|
|||
|
port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
|
|||
|
In order to do this, it needs proper length information, which it obtains
|
|||
|
by calling shorten_branches. This cannot be collapsed with
|
|||
|
shorten_branches itself into a single pass unless we also want to intergate
|
|||
|
reorg.c, since the branch splitting exposes new instructions with delay
|
|||
|
slots. */
|
|||
|
|
|||
|
void
|
|||
|
shorten_branches (first)
|
|||
|
rtx first;
|
|||
|
{
|
|||
|
rtx insn;
|
|||
|
int max_uid;
|
|||
|
int i;
|
|||
|
int max_log;
|
|||
|
int max_skip;
|
|||
|
#ifdef HAVE_ATTR_length
|
|||
|
#define MAX_CODE_ALIGN 16
|
|||
|
rtx seq;
|
|||
|
int something_changed = 1;
|
|||
|
char *varying_length;
|
|||
|
rtx body;
|
|||
|
int uid;
|
|||
|
rtx align_tab[MAX_CODE_ALIGN];
|
|||
|
|
|||
|
/* In order to make sure that all instructions have valid length info,
|
|||
|
we must split them before we compute the address/length info. */
|
|||
|
|
|||
|
for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
|
|||
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
{
|
|||
|
rtx old = insn;
|
|||
|
insn = try_split (PATTERN (old), old, 1);
|
|||
|
/* When not optimizing, the old insn will be still left around
|
|||
|
with only the 'deleted' bit set. Transform it into a note
|
|||
|
to avoid confusion of subsequent processing. */
|
|||
|
if (INSN_DELETED_P (old))
|
|||
|
{
|
|||
|
PUT_CODE (old , NOTE);
|
|||
|
NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
|
|||
|
NOTE_SOURCE_FILE (old) = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
/* We must do some computations even when not actually shortening, in
|
|||
|
order to get the alignment information for the labels. */
|
|||
|
|
|||
|
init_insn_lengths ();
|
|||
|
|
|||
|
/* Compute maximum UID and allocate label_align / uid_shuid. */
|
|||
|
max_uid = get_max_uid ();
|
|||
|
|
|||
|
max_labelno = max_label_num ();
|
|||
|
min_labelno = get_first_label_num ();
|
|||
|
label_align = (struct label_alignment *) xmalloc (
|
|||
|
(max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
|
|||
|
zero_memory ((char *) label_align,
|
|||
|
(max_labelno - min_labelno + 1) * sizeof (struct label_alignment));
|
|||
|
|
|||
|
uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
|
|||
|
|
|||
|
/* Initialize label_align and set up uid_shuid to be strictly
|
|||
|
monotonically rising with insn order. */
|
|||
|
/* We use max_log here to keep track of the maximum alignment we want to
|
|||
|
impose on the next CODE_LABEL (or the current one if we are processing
|
|||
|
the CODE_LABEL itself). */
|
|||
|
|
|||
|
max_log = 0;
|
|||
|
max_skip = 0;
|
|||
|
|
|||
|
for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
int log;
|
|||
|
|
|||
|
INSN_SHUID (insn) = i++;
|
|||
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
{
|
|||
|
/* reorg might make the first insn of a loop being run once only,
|
|||
|
and delete the label in front of it. Then we want to apply
|
|||
|
the loop alignment to the new label created by reorg, which
|
|||
|
is separated by the former loop start insn from the
|
|||
|
NOTE_INSN_LOOP_BEG. */
|
|||
|
}
|
|||
|
else if (GET_CODE (insn) == CODE_LABEL)
|
|||
|
{
|
|||
|
rtx next;
|
|||
|
|
|||
|
log = LABEL_ALIGN (insn);
|
|||
|
if (max_log < log)
|
|||
|
{
|
|||
|
max_log = log;
|
|||
|
max_skip = LABEL_ALIGN_MAX_SKIP;
|
|||
|
}
|
|||
|
next = NEXT_INSN (insn);
|
|||
|
/* ADDR_VECs only take room if read-only data goes into the text
|
|||
|
section. */
|
|||
|
if (JUMP_TABLES_IN_TEXT_SECTION
|
|||
|
#if !defined(READONLY_DATA_SECTION)
|
|||
|
|| 1
|
|||
|
#endif
|
|||
|
)
|
|||
|
if (next && GET_CODE (next) == JUMP_INSN)
|
|||
|
{
|
|||
|
rtx nextbody = PATTERN (next);
|
|||
|
if (GET_CODE (nextbody) == ADDR_VEC
|
|||
|
|| GET_CODE (nextbody) == ADDR_DIFF_VEC)
|
|||
|
{
|
|||
|
log = ADDR_VEC_ALIGN (next);
|
|||
|
if (max_log < log)
|
|||
|
{
|
|||
|
max_log = log;
|
|||
|
max_skip = LABEL_ALIGN_MAX_SKIP;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
LABEL_TO_ALIGNMENT (insn) = max_log;
|
|||
|
LABEL_TO_MAX_SKIP (insn) = max_skip;
|
|||
|
max_log = 0;
|
|||
|
max_skip = 0;
|
|||
|
}
|
|||
|
else if (GET_CODE (insn) == BARRIER)
|
|||
|
{
|
|||
|
rtx label;
|
|||
|
|
|||
|
for (label = insn; label && GET_RTX_CLASS (GET_CODE (label)) != 'i';
|
|||
|
label = NEXT_INSN (label))
|
|||
|
if (GET_CODE (label) == CODE_LABEL)
|
|||
|
{
|
|||
|
log = LABEL_ALIGN_AFTER_BARRIER (insn);
|
|||
|
if (max_log < log)
|
|||
|
{
|
|||
|
max_log = log;
|
|||
|
max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
|
|||
|
}
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
/* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
|
|||
|
sequences in order to handle reorg output efficiently. */
|
|||
|
else if (GET_CODE (insn) == NOTE
|
|||
|
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
|
|||
|
{
|
|||
|
rtx label;
|
|||
|
int nest = 0;
|
|||
|
|
|||
|
/* Search for the label that starts the loop.
|
|||
|
Don't skip past the end of the loop, since that could
|
|||
|
lead to putting an alignment where it does not belong.
|
|||
|
However, a label after a nested (non-)loop would be OK. */
|
|||
|
for (label = insn; label; label = NEXT_INSN (label))
|
|||
|
{
|
|||
|
if (GET_CODE (label) == NOTE
|
|||
|
&& NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_BEG)
|
|||
|
nest++;
|
|||
|
else if (GET_CODE (label) == NOTE
|
|||
|
&& NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_END
|
|||
|
&& --nest == 0)
|
|||
|
break;
|
|||
|
else if (GET_CODE (label) == CODE_LABEL)
|
|||
|
{
|
|||
|
log = LOOP_ALIGN (label);
|
|||
|
if (max_log < log)
|
|||
|
{
|
|||
|
max_log = log;
|
|||
|
max_skip = LOOP_ALIGN_MAX_SKIP;
|
|||
|
}
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
continue;
|
|||
|
}
|
|||
|
#ifdef HAVE_ATTR_length
|
|||
|
|
|||
|
/* Allocate the rest of the arrays. */
|
|||
|
insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
|
|||
|
insn_addresses = (int *) xmalloc (max_uid * sizeof (int));
|
|||
|
insn_lengths_max_uid = max_uid;
|
|||
|
/* Syntax errors can lead to labels being outside of the main insn stream.
|
|||
|
Initialize insn_addresses, so that we get reproducible results. */
|
|||
|
zero_memory ((char *)insn_addresses, max_uid * sizeof *insn_addresses);
|
|||
|
uid_align = (rtx *) xmalloc (max_uid * sizeof *uid_align);
|
|||
|
|
|||
|
varying_length = (char *) xmalloc (max_uid * sizeof (char));
|
|||
|
|
|||
|
zero_memory (varying_length, max_uid);
|
|||
|
|
|||
|
/* Initialize uid_align. We scan instructions
|
|||
|
from end to start, and keep in align_tab[n] the last seen insn
|
|||
|
that does an alignment of at least n+1, i.e. the successor
|
|||
|
in the alignment chain for an insn that does / has a known
|
|||
|
alignment of n. */
|
|||
|
|
|||
|
zero_memory ((char *) uid_align, max_uid * sizeof *uid_align);
|
|||
|
|
|||
|
for (i = MAX_CODE_ALIGN; --i >= 0; )
|
|||
|
align_tab[i] = NULL_RTX;
|
|||
|
seq = get_last_insn ();
|
|||
|
for (; seq; seq = PREV_INSN (seq))
|
|||
|
{
|
|||
|
int uid = INSN_UID (seq);
|
|||
|
int log;
|
|||
|
log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
|
|||
|
uid_align[uid] = align_tab[0];
|
|||
|
if (log)
|
|||
|
{
|
|||
|
/* Found an alignment label. */
|
|||
|
uid_align[uid] = align_tab[log];
|
|||
|
for (i = log - 1; i >= 0; i--)
|
|||
|
align_tab[i] = seq;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Compute initial lengths, addresses, and varying flags for each insn. */
|
|||
|
for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
|
|||
|
insn != 0;
|
|||
|
insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
uid = INSN_UID (insn);
|
|||
|
|
|||
|
insn_lengths[uid] = 0;
|
|||
|
|
|||
|
if (GET_CODE (insn) == CODE_LABEL)
|
|||
|
{
|
|||
|
int log = LABEL_TO_ALIGNMENT (insn);
|
|||
|
if (log)
|
|||
|
{
|
|||
|
int align = 1 << log;
|
|||
|
int new_address = (insn_current_address + align - 1) & -align;
|
|||
|
insn_lengths[uid] = new_address - insn_current_address;
|
|||
|
insn_current_address = new_address;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
insn_addresses[uid] = insn_current_address;
|
|||
|
|
|||
|
if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
|
|||
|
|| GET_CODE (insn) == CODE_LABEL)
|
|||
|
continue;
|
|||
|
if (INSN_DELETED_P (insn))
|
|||
|
continue;
|
|||
|
|
|||
|
body = PATTERN (insn);
|
|||
|
if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
|
|||
|
{
|
|||
|
/* This only takes room if read-only data goes into the text
|
|||
|
section. */
|
|||
|
if (JUMP_TABLES_IN_TEXT_SECTION
|
|||
|
#if !defined(READONLY_DATA_SECTION)
|
|||
|
|| 1
|
|||
|
#endif
|
|||
|
)
|
|||
|
insn_lengths[uid] = (XVECLEN (body,
|
|||
|
GET_CODE (body) == ADDR_DIFF_VEC)
|
|||
|
* GET_MODE_SIZE (GET_MODE (body)));
|
|||
|
/* Alignment is handled by ADDR_VEC_ALIGN. */
|
|||
|
}
|
|||
|
else if (asm_noperands (body) >= 0)
|
|||
|
insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
|
|||
|
else if (GET_CODE (body) == SEQUENCE)
|
|||
|
{
|
|||
|
int i;
|
|||
|
/* Inside a delay slot sequence, we do not do any branch shortening
|
|||
|
if the shortening could change the number of delay slots
|
|||
|
of the branch. */
|
|||
|
for (i = 0; i < XVECLEN (body, 0); i++)
|
|||
|
{
|
|||
|
rtx inner_insn = XVECEXP (body, 0, i);
|
|||
|
int inner_uid = INSN_UID (inner_insn);
|
|||
|
int inner_length;
|
|||
|
|
|||
|
if (asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
|
|||
|
inner_length = (asm_insn_count (PATTERN (inner_insn))
|
|||
|
* insn_default_length (inner_insn));
|
|||
|
else
|
|||
|
inner_length = insn_default_length (inner_insn);
|
|||
|
|
|||
|
insn_lengths[inner_uid] = inner_length;
|
|||
|
varying_length[inner_uid] = 0;
|
|||
|
insn_lengths[uid] += inner_length;
|
|||
|
}
|
|||
|
}
|
|||
|
else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
|
|||
|
{
|
|||
|
insn_lengths[uid] = insn_default_length (insn);
|
|||
|
varying_length[uid] = insn_variable_length_p (insn);
|
|||
|
}
|
|||
|
|
|||
|
/* If needed, do any adjustment. */
|
|||
|
}
|
|||
|
|
|||
|
/* Now loop over all the insns finding varying length insns. For each,
|
|||
|
get the current insn length. If it has changed, reflect the change.
|
|||
|
When nothing changes for a full pass, we are done. */
|
|||
|
|
|||
|
while (something_changed)
|
|||
|
{
|
|||
|
something_changed = 0;
|
|||
|
insn_current_align = MAX_CODE_ALIGN - 1;
|
|||
|
for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
|
|||
|
insn != 0;
|
|||
|
insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
int new_length;
|
|||
|
int length_align;
|
|||
|
|
|||
|
uid = INSN_UID (insn);
|
|||
|
|
|||
|
if (GET_CODE (insn) == CODE_LABEL)
|
|||
|
{
|
|||
|
int log = LABEL_TO_ALIGNMENT (insn);
|
|||
|
if (log > insn_current_align)
|
|||
|
{
|
|||
|
int align = 1 << log;
|
|||
|
int new_address= (insn_current_address + align - 1) & -align;
|
|||
|
insn_lengths[uid] = new_address - insn_current_address;
|
|||
|
insn_current_align = log;
|
|||
|
insn_current_address = new_address;
|
|||
|
}
|
|||
|
else
|
|||
|
insn_lengths[uid] = 0;
|
|||
|
insn_addresses[uid] = insn_current_address;
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
length_align = INSN_LENGTH_ALIGNMENT (insn);
|
|||
|
if (length_align < insn_current_align)
|
|||
|
insn_current_align = length_align;
|
|||
|
|
|||
|
insn_last_address = insn_addresses[uid];
|
|||
|
insn_addresses[uid] = insn_current_address;
|
|||
|
|
|||
|
|
|||
|
if (! (varying_length[uid]))
|
|||
|
{
|
|||
|
insn_current_address += insn_lengths[uid];
|
|||
|
continue;
|
|||
|
}
|
|||
|
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
body = PATTERN (insn);
|
|||
|
new_length = 0;
|
|||
|
for (i = 0; i < XVECLEN (body, 0); i++)
|
|||
|
{
|
|||
|
rtx inner_insn = XVECEXP (body, 0, i);
|
|||
|
int inner_uid = INSN_UID (inner_insn);
|
|||
|
int inner_length;
|
|||
|
|
|||
|
insn_addresses[inner_uid] = insn_current_address;
|
|||
|
|
|||
|
/* insn_current_length returns 0 for insns with a
|
|||
|
non-varying length. */
|
|||
|
if (! varying_length[inner_uid])
|
|||
|
inner_length = insn_lengths[inner_uid];
|
|||
|
else
|
|||
|
inner_length = insn_current_length (inner_insn);
|
|||
|
|
|||
|
if (inner_length != insn_lengths[inner_uid])
|
|||
|
{
|
|||
|
insn_lengths[inner_uid] = inner_length;
|
|||
|
something_changed = 1;
|
|||
|
}
|
|||
|
insn_current_address += insn_lengths[inner_uid];
|
|||
|
new_length += inner_length;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
new_length = insn_current_length (insn);
|
|||
|
insn_current_address += new_length;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
if (new_length != insn_lengths[uid])
|
|||
|
{
|
|||
|
insn_lengths[uid] = new_length;
|
|||
|
something_changed = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
/* For a non-optimizing compile, do only a single pass. */
|
|||
|
if (!optimize)
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
free (varying_length);
|
|||
|
|
|||
|
#endif /* HAVE_ATTR_length */
|
|||
|
}
|
|||
|
|
|||
|
#ifdef HAVE_ATTR_length
|
|||
|
/* Given the body of an INSN known to be generated by an ASM statement, return
|
|||
|
the number of machine instructions likely to be generated for this insn.
|
|||
|
This is used to compute its length. */
|
|||
|
|
|||
|
static int
|
|||
|
asm_insn_count (body)
|
|||
|
rtx body;
|
|||
|
{
|
|||
|
char *template;
|
|||
|
int count = 1;
|
|||
|
|
|||
|
if (GET_CODE (body) == ASM_INPUT)
|
|||
|
template = XSTR (body, 0);
|
|||
|
else
|
|||
|
template = decode_asm_operands (body, NULL, NULL,
|
|||
|
NULL, NULL);
|
|||
|
|
|||
|
for ( ; *template; template++)
|
|||
|
if (IS_ASM_LOGICAL_LINE_SEPARATOR(*template) || *template == '\n')
|
|||
|
count++;
|
|||
|
|
|||
|
return count;
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
/* Output assembler code for the start of a function,
|
|||
|
and initialize some of the variables in this file
|
|||
|
for the new function. The label for the function and associated
|
|||
|
assembler pseudo-ops have already been output in `assemble_start_function'.
|
|||
|
|
|||
|
FIRST is the first insn of the rtl for the function being compiled.
|
|||
|
FILE is the file to write assembler code to.
|
|||
|
OPTIMIZE is nonzero if we should eliminate redundant
|
|||
|
test and compare insns. */
|
|||
|
|
|||
|
void
|
|||
|
final_start_function (first, file, optimize)
|
|||
|
rtx first;
|
|||
|
FILE *file;
|
|||
|
int optimize;
|
|||
|
{
|
|||
|
block_depth = 0;
|
|||
|
this_is_asm_operands = 0;
|
|||
|
|
|||
|
/* Initial line number is supposed to be output
|
|||
|
before the function's prologue and label
|
|||
|
so that the function's address will not appear to be
|
|||
|
in the last statement of the preceding function. */
|
|||
|
if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
|
|||
|
last_linenum = high_block_linenum = high_function_linenum
|
|||
|
= NOTE_LINE_NUMBER (first);
|
|||
|
|
|||
|
#if defined (DWARF2_DEBUGGING_INFO)
|
|||
|
/* Output DWARF definition of the function. */
|
|||
|
if (dwarf2out_do_frame ())
|
|||
|
dwarf2out_begin_prologue ();
|
|||
|
#endif
|
|||
|
|
|||
|
if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
|
|||
|
output_source_line (file, first);
|
|||
|
|
|||
|
#ifdef FUNCTION_PROLOGUE
|
|||
|
/* First output the function prologue: code to set up the stack frame. */
|
|||
|
FUNCTION_PROLOGUE (file, get_frame_size ());
|
|||
|
#endif
|
|||
|
}
|
|||
|
|
|||
|
/* Output assembler code for the end of a function.
|
|||
|
For clarity, args are same as those of `final_start_function'
|
|||
|
even though not all of them are needed. */
|
|||
|
|
|||
|
void
|
|||
|
final_end_function (first, file, optimize)
|
|||
|
rtx first;
|
|||
|
FILE *file;
|
|||
|
int optimize;
|
|||
|
{
|
|||
|
if (app_on)
|
|||
|
{
|
|||
|
fputs (ASM_APP_OFF, file);
|
|||
|
app_on = 0;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
#ifdef FUNCTION_EPILOGUE
|
|||
|
/* Finally, output the function epilogue:
|
|||
|
code to restore the stack frame and return to the caller. */
|
|||
|
FUNCTION_EPILOGUE (file, get_frame_size ());
|
|||
|
#endif
|
|||
|
|
|||
|
|
|||
|
#if defined (DWARF2_DEBUGGING_INFO)
|
|||
|
if (dwarf2out_do_frame ())
|
|||
|
dwarf2out_end_epilogue ();
|
|||
|
#endif
|
|||
|
|
|||
|
/* If FUNCTION_EPILOGUE is not defined, then the function body
|
|||
|
itself contains return instructions wherever needed. */
|
|||
|
}
|
|||
|
|
|||
|
/* Output assembler code for some insns: all or part of a function.
|
|||
|
For description of args, see `final_start_function', above.
|
|||
|
|
|||
|
PRESCAN is 1 if we are not really outputting,
|
|||
|
just scanning as if we were outputting.
|
|||
|
Prescanning deletes and rearranges insns just like ordinary output.
|
|||
|
PRESCAN is -2 if we are outputting after having prescanned.
|
|||
|
In this case, don't try to delete or rearrange insns
|
|||
|
because that has already been done.
|
|||
|
Prescanning is done only on certain machines. */
|
|||
|
|
|||
|
void
|
|||
|
final (first, file, optimize, prescan)
|
|||
|
rtx first;
|
|||
|
FILE *file;
|
|||
|
int optimize;
|
|||
|
int prescan;
|
|||
|
{
|
|||
|
register rtx insn;
|
|||
|
int max_line = 0;
|
|||
|
int max_uid = 0;
|
|||
|
|
|||
|
last_ignored_compare = 0;
|
|||
|
|
|||
|
check_exception_handler_labels ();
|
|||
|
|
|||
|
/* CYGNUS LOCAL LRS */
|
|||
|
if (write_symbols != NO_DEBUG)
|
|||
|
block_nodes = identify_blocks (DECL_INITIAL (current_function_decl), first);
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
|
|||
|
/* Make a map indicating which line numbers appear in this function. */
|
|||
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
|||
|
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
|
|||
|
max_line = NOTE_LINE_NUMBER (insn);
|
|||
|
|
|||
|
line_note_exists = (char *) oballoc (max_line + 1);
|
|||
|
zero_memory (line_note_exists, max_line + 1);
|
|||
|
|
|||
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
if (INSN_UID (insn) > max_uid) /* find largest UID */
|
|||
|
max_uid = INSN_UID (insn);
|
|||
|
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
|
|||
|
line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
|
|||
|
#ifdef HAVE_cc0
|
|||
|
/* If CC tracking across branches is enabled, record the insn which
|
|||
|
jumps to each branch only reached from one place. */
|
|||
|
if (optimize && GET_CODE (insn) == JUMP_INSN)
|
|||
|
{
|
|||
|
rtx lab = JUMP_LABEL (insn);
|
|||
|
if (lab && LABEL_NUSES (lab) == 1)
|
|||
|
{
|
|||
|
LABEL_REFS (lab) = insn;
|
|||
|
}
|
|||
|
}
|
|||
|
#endif
|
|||
|
}
|
|||
|
|
|||
|
/* Initialize insn_eh_region table if eh is being used. */
|
|||
|
|
|||
|
init_insn_eh_region (first, max_uid);
|
|||
|
|
|||
|
init_recog ();
|
|||
|
|
|||
|
CC_STATUS_INIT;
|
|||
|
|
|||
|
/* Output the insns. */
|
|||
|
for (insn = NEXT_INSN (first); insn;)
|
|||
|
{
|
|||
|
#ifdef HAVE_ATTR_length
|
|||
|
insn_current_address = insn_addresses[INSN_UID (insn)];
|
|||
|
#endif
|
|||
|
insn = final_scan_insn (insn, file, optimize, prescan, 0);
|
|||
|
}
|
|||
|
|
|||
|
/* CYGNUS LOCAL LRS */
|
|||
|
if (write_symbols != NO_DEBUG)
|
|||
|
free ((char *)block_nodes);
|
|||
|
block_nodes = (tree *)0;
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
|
|||
|
free_insn_eh_region ();
|
|||
|
}
|
|||
|
|
|||
|
/* The final scan for one insn, INSN.
|
|||
|
Args are same as in `final', except that INSN
|
|||
|
is the insn being scanned.
|
|||
|
Value returned is the next insn to be scanned.
|
|||
|
|
|||
|
NOPEEPHOLES is the flag to disallow peephole processing (currently
|
|||
|
used for within delayed branch sequence output). */
|
|||
|
|
|||
|
rtx
|
|||
|
final_scan_insn (insn, file, optimize, prescan, nopeepholes)
|
|||
|
rtx insn;
|
|||
|
FILE *file;
|
|||
|
int optimize;
|
|||
|
int prescan;
|
|||
|
int nopeepholes;
|
|||
|
{
|
|||
|
#ifdef HAVE_cc0
|
|||
|
rtx set;
|
|||
|
#endif
|
|||
|
|
|||
|
insn_counter++;
|
|||
|
|
|||
|
/* Ignore deleted insns. These can occur when we split insns (due to a
|
|||
|
template of "#") while not optimizing. */
|
|||
|
if (INSN_DELETED_P (insn))
|
|||
|
return NEXT_INSN (insn);
|
|||
|
|
|||
|
switch (GET_CODE (insn))
|
|||
|
{
|
|||
|
case NOTE:
|
|||
|
if (prescan > 0)
|
|||
|
break;
|
|||
|
|
|||
|
/* Align the beginning of a loop, for higher speed
|
|||
|
on certain machines. */
|
|||
|
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
|
|||
|
break; /* This used to depend on optimize, but that was bogus. */
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
|
|||
|
break;
|
|||
|
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
|
|||
|
&& ! exceptions_via_longjmp)
|
|||
|
{
|
|||
|
ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_BLOCK_NUMBER (insn));
|
|||
|
if (! flag_new_exceptions)
|
|||
|
add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
|
|||
|
#ifdef ASM_OUTPUT_EH_REGION_BEG
|
|||
|
ASM_OUTPUT_EH_REGION_BEG (file, NOTE_BLOCK_NUMBER (insn));
|
|||
|
#endif
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
|
|||
|
&& ! exceptions_via_longjmp)
|
|||
|
{
|
|||
|
ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_BLOCK_NUMBER (insn));
|
|||
|
if (flag_new_exceptions)
|
|||
|
add_eh_table_entry (NOTE_BLOCK_NUMBER (insn));
|
|||
|
#ifdef ASM_OUTPUT_EH_REGION_END
|
|||
|
ASM_OUTPUT_EH_REGION_END (file, NOTE_BLOCK_NUMBER (insn));
|
|||
|
#endif
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
|
|||
|
{
|
|||
|
#ifdef FUNCTION_END_PROLOGUE
|
|||
|
FUNCTION_END_PROLOGUE (file);
|
|||
|
#endif
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
#ifdef FUNCTION_BEGIN_EPILOGUE
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
|
|||
|
{
|
|||
|
FUNCTION_BEGIN_EPILOGUE (file);
|
|||
|
break;
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
if (write_symbols == NO_DEBUG)
|
|||
|
break;
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
|
|||
|
{
|
|||
|
break;
|
|||
|
}
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
|
|||
|
break; /* An insn that was "deleted" */
|
|||
|
if (app_on)
|
|||
|
{
|
|||
|
fputs (ASM_APP_OFF, file);
|
|||
|
app_on = 0;
|
|||
|
}
|
|||
|
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
|
|||
|
&& (debug_info_level == DINFO_LEVEL_NORMAL
|
|||
|
|| debug_info_level == DINFO_LEVEL_VERBOSE
|
|||
|
|| write_symbols == DWARF_DEBUG
|
|||
|
|| write_symbols == DWARF2_DEBUG))
|
|||
|
{
|
|||
|
/* CYGNUS LOCAL LRS */
|
|||
|
tree block = block_nodes[ NOTE_BLOCK_NUMBER (insn)];
|
|||
|
|
|||
|
/* Beginning of a symbol-block. Assign it a sequence number
|
|||
|
and push the number onto the stack PENDING_BLOCKS. */
|
|||
|
|
|||
|
if (block_depth == max_block_depth)
|
|||
|
{
|
|||
|
/* PENDING_BLOCKS is full; make it longer. */
|
|||
|
max_block_depth *= 2;
|
|||
|
pending_blocks
|
|||
|
= (struct block_seq *) xrealloc (pending_blocks,
|
|||
|
(max_block_depth
|
|||
|
* sizeof (struct block_seq)));
|
|||
|
}
|
|||
|
pending_blocks[block_depth].block = block;
|
|||
|
pending_blocks[block_depth++].number = next_block_index;
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
|
|||
|
high_block_linenum = last_linenum;
|
|||
|
|
|||
|
/* Output debugging info about the symbol-block beginning. */
|
|||
|
|
|||
|
#ifdef DWARF2_DEBUGGING_INFO
|
|||
|
if (write_symbols == DWARF2_DEBUG)
|
|||
|
dwarf2out_begin_block (next_block_index);
|
|||
|
#endif
|
|||
|
|
|||
|
next_block_index++;
|
|||
|
}
|
|||
|
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
|
|||
|
&& (debug_info_level == DINFO_LEVEL_NORMAL
|
|||
|
|| debug_info_level == DINFO_LEVEL_VERBOSE
|
|||
|
|| write_symbols == DWARF_DEBUG
|
|||
|
|| write_symbols == DWARF2_DEBUG))
|
|||
|
{
|
|||
|
/* End of a symbol-block. Pop its sequence number off
|
|||
|
PENDING_BLOCKS and output debugging info based on that. */
|
|||
|
|
|||
|
--block_depth;
|
|||
|
if (block_depth < 0)
|
|||
|
abort ();
|
|||
|
|
|||
|
/* CYGNUS LOCAL LRS */
|
|||
|
#ifdef DWARF2_DEBUGGING_INFO
|
|||
|
if (write_symbols == DWARF2_DEBUG)
|
|||
|
dwarf2out_end_block (pending_blocks[block_depth].number);
|
|||
|
#endif
|
|||
|
}
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL
|
|||
|
&& (debug_info_level == DINFO_LEVEL_NORMAL
|
|||
|
|| debug_info_level == DINFO_LEVEL_VERBOSE))
|
|||
|
{
|
|||
|
#ifdef DWARF2_DEBUGGING_INFO
|
|||
|
if (write_symbols == DWARF2_DEBUG)
|
|||
|
dwarf2out_label (insn);
|
|||
|
#endif
|
|||
|
}
|
|||
|
else if (NOTE_LINE_NUMBER (insn) > 0)
|
|||
|
/* This note is a line-number. */
|
|||
|
{
|
|||
|
register rtx note;
|
|||
|
|
|||
|
#if 0 /* This is what we used to do. */
|
|||
|
output_source_line (file, insn);
|
|||
|
#endif
|
|||
|
int note_after = 0;
|
|||
|
|
|||
|
/* If there is anything real after this note,
|
|||
|
output it. If another line note follows, omit this one. */
|
|||
|
for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
|
|||
|
{
|
|||
|
if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
|
|||
|
break;
|
|||
|
/* These types of notes can be significant
|
|||
|
so make sure the preceding line number stays. */
|
|||
|
else if (GET_CODE (note) == NOTE
|
|||
|
&& (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
|
|||
|
|| NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
|
|||
|
|| NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
|
|||
|
break;
|
|||
|
else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
|
|||
|
{
|
|||
|
/* Another line note follows; we can delete this note
|
|||
|
if no intervening line numbers have notes elsewhere. */
|
|||
|
int num;
|
|||
|
for (num = NOTE_LINE_NUMBER (insn) + 1;
|
|||
|
num < NOTE_LINE_NUMBER (note);
|
|||
|
num++)
|
|||
|
if (line_note_exists[num])
|
|||
|
break;
|
|||
|
|
|||
|
if (num >= NOTE_LINE_NUMBER (note))
|
|||
|
note_after = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Output this line note
|
|||
|
if it is the first or the last line note in a row. */
|
|||
|
if (!note_after)
|
|||
|
output_source_line (file, insn);
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case BARRIER:
|
|||
|
break;
|
|||
|
|
|||
|
case CODE_LABEL:
|
|||
|
/* The target port might emit labels in the output function for
|
|||
|
some insn, e.g. sh.c output_branchy_insn. */
|
|||
|
if (CODE_LABEL_NUMBER (insn) <= max_labelno)
|
|||
|
{
|
|||
|
int align = LABEL_TO_ALIGNMENT (insn);
|
|||
|
|
|||
|
if (align && NEXT_INSN (insn))
|
|||
|
ASM_OUTPUT_ALIGN (file, align);
|
|||
|
}
|
|||
|
#ifdef HAVE_cc0
|
|||
|
CC_STATUS_INIT;
|
|||
|
/* If this label is reached from only one place, set the condition
|
|||
|
codes from the instruction just before the branch. */
|
|||
|
|
|||
|
/* Disabled because some insns set cc_status in the C output code
|
|||
|
and NOTICE_UPDATE_CC alone can set incorrect status. */
|
|||
|
if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
|
|||
|
{
|
|||
|
rtx jump = LABEL_REFS (insn);
|
|||
|
rtx barrier = prev_nonnote_insn (insn);
|
|||
|
rtx prev;
|
|||
|
/* If the LABEL_REFS field of this label has been set to point
|
|||
|
at a branch, the predecessor of the branch is a regular
|
|||
|
insn, and that branch is the only way to reach this label,
|
|||
|
set the condition codes based on the branch and its
|
|||
|
predecessor. */
|
|||
|
if (barrier && GET_CODE (barrier) == BARRIER
|
|||
|
&& jump && GET_CODE (jump) == JUMP_INSN
|
|||
|
&& (prev = prev_nonnote_insn (jump))
|
|||
|
&& GET_CODE (prev) == INSN)
|
|||
|
{
|
|||
|
NOTICE_UPDATE_CC (PATTERN (prev), prev);
|
|||
|
NOTICE_UPDATE_CC (PATTERN (jump), jump);
|
|||
|
}
|
|||
|
}
|
|||
|
#endif
|
|||
|
if (prescan > 0)
|
|||
|
break;
|
|||
|
|
|||
|
#ifdef FINAL_PRESCAN_LABEL
|
|||
|
FINAL_PRESCAN_INSN (insn, NULL, 0);
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef DWARF2_DEBUGGING_INFO
|
|||
|
if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
|
|||
|
dwarf2out_label (insn);
|
|||
|
#endif
|
|||
|
if (app_on)
|
|||
|
{
|
|||
|
fputs (ASM_APP_OFF, file);
|
|||
|
app_on = 0;
|
|||
|
}
|
|||
|
if (NEXT_INSN (insn) != 0
|
|||
|
&& GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
|
|||
|
{
|
|||
|
rtx nextbody = PATTERN (NEXT_INSN (insn));
|
|||
|
|
|||
|
/* If this label is followed by a jump-table,
|
|||
|
make sure we put the label in the read-only section. Also
|
|||
|
possibly write the label and jump table together. */
|
|||
|
|
|||
|
if (GET_CODE (nextbody) == ADDR_VEC
|
|||
|
|| GET_CODE (nextbody) == ADDR_DIFF_VEC)
|
|||
|
{
|
|||
|
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
|
|||
|
/* In this case, the case vector is being moved by the
|
|||
|
target, so don't output the label at all. Leave that
|
|||
|
to the back end macros. */
|
|||
|
#else
|
|||
|
if (! JUMP_TABLES_IN_TEXT_SECTION)
|
|||
|
{
|
|||
|
readonly_data_section ();
|
|||
|
#ifdef READONLY_DATA_SECTION
|
|||
|
ASM_OUTPUT_ALIGN (file,
|
|||
|
exact_log2 (BIGGEST_ALIGNMENT
|
|||
|
/ BITS_PER_UNIT));
|
|||
|
#endif /* READONLY_DATA_SECTION */
|
|||
|
}
|
|||
|
else
|
|||
|
function_section (current_function_decl);
|
|||
|
|
|||
|
#ifdef ASM_OUTPUT_CASE_LABEL
|
|||
|
ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
|
|||
|
NEXT_INSN (insn));
|
|||
|
#else
|
|||
|
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
|
|||
|
#endif
|
|||
|
#endif
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
{
|
|||
|
register rtx body = PATTERN (insn);
|
|||
|
int insn_code_number;
|
|||
|
char *template;
|
|||
|
#ifdef HAVE_cc0
|
|||
|
rtx note;
|
|||
|
#endif
|
|||
|
|
|||
|
/* An INSN, JUMP_INSN or CALL_INSN.
|
|||
|
First check for special kinds that recog doesn't recognize. */
|
|||
|
|
|||
|
if (GET_CODE (body) == USE /* These are just declarations */
|
|||
|
|| GET_CODE (body) == CLOBBER)
|
|||
|
break;
|
|||
|
|
|||
|
#ifdef HAVE_cc0
|
|||
|
/* If there is a REG_CC_SETTER note on this insn, it means that
|
|||
|
the setting of the condition code was done in the delay slot
|
|||
|
of the insn that branched here. So recover the cc status
|
|||
|
from the insn that set it. */
|
|||
|
|
|||
|
note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
|
|||
|
if (note)
|
|||
|
{
|
|||
|
NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
|
|||
|
cc_prev_status = cc_status;
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
/* Detect insns that are really jump-tables
|
|||
|
and output them as such. */
|
|||
|
|
|||
|
if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
|
|||
|
{
|
|||
|
#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
|
|||
|
register int vlen, idx;
|
|||
|
#endif
|
|||
|
|
|||
|
if (prescan > 0)
|
|||
|
break;
|
|||
|
|
|||
|
if (app_on)
|
|||
|
{
|
|||
|
fputs (ASM_APP_OFF, file);
|
|||
|
app_on = 0;
|
|||
|
}
|
|||
|
|
|||
|
#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
|
|||
|
if (GET_CODE (body) == ADDR_VEC)
|
|||
|
{
|
|||
|
#ifdef ASM_OUTPUT_ADDR_VEC
|
|||
|
ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
|
|||
|
#else
|
|||
|
abort();
|
|||
|
#endif
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
|
|||
|
ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
|
|||
|
#else
|
|||
|
abort();
|
|||
|
#endif
|
|||
|
}
|
|||
|
#else
|
|||
|
vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
|
|||
|
for (idx = 0; idx < vlen; idx++)
|
|||
|
{
|
|||
|
if (GET_CODE (body) == ADDR_VEC)
|
|||
|
{
|
|||
|
#ifdef ASM_OUTPUT_ADDR_VEC_ELT
|
|||
|
ASM_OUTPUT_ADDR_VEC_ELT
|
|||
|
(file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
|
|||
|
#else
|
|||
|
abort ();
|
|||
|
#endif
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
|
|||
|
ASM_OUTPUT_ADDR_DIFF_ELT
|
|||
|
(file,
|
|||
|
body,
|
|||
|
CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
|
|||
|
CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
|
|||
|
#else
|
|||
|
abort ();
|
|||
|
#endif
|
|||
|
}
|
|||
|
}
|
|||
|
#ifdef ASM_OUTPUT_CASE_END
|
|||
|
ASM_OUTPUT_CASE_END (file,
|
|||
|
CODE_LABEL_NUMBER (PREV_INSN (insn)),
|
|||
|
insn);
|
|||
|
#endif
|
|||
|
#endif
|
|||
|
|
|||
|
function_section (current_function_decl);
|
|||
|
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (GET_CODE (body) == ASM_INPUT)
|
|||
|
{
|
|||
|
/* There's no telling what that did to the condition codes. */
|
|||
|
CC_STATUS_INIT;
|
|||
|
if (prescan > 0)
|
|||
|
break;
|
|||
|
if (! app_on)
|
|||
|
{
|
|||
|
fputs (ASM_APP_ON, file);
|
|||
|
app_on = 1;
|
|||
|
}
|
|||
|
fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* Detect `asm' construct with operands. */
|
|||
|
if (asm_noperands (body) >= 0)
|
|||
|
{
|
|||
|
unsigned int noperands = asm_noperands (body);
|
|||
|
rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
|
|||
|
char *string;
|
|||
|
|
|||
|
/* There's no telling what that did to the condition codes. */
|
|||
|
CC_STATUS_INIT;
|
|||
|
if (prescan > 0)
|
|||
|
break;
|
|||
|
|
|||
|
if (! app_on)
|
|||
|
{
|
|||
|
fputs (ASM_APP_ON, file);
|
|||
|
app_on = 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Get out the operand values. */
|
|||
|
string = decode_asm_operands (body, ops, NULL,
|
|||
|
NULL, NULL);
|
|||
|
/* Inhibit aborts on what would otherwise be compiler bugs. */
|
|||
|
insn_noperands = noperands;
|
|||
|
this_is_asm_operands = insn;
|
|||
|
|
|||
|
/* Output the insn using them. */
|
|||
|
output_asm_insn (string, ops);
|
|||
|
this_is_asm_operands = 0;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (prescan <= 0 && app_on)
|
|||
|
{
|
|||
|
fputs (ASM_APP_OFF, file);
|
|||
|
app_on = 0;
|
|||
|
}
|
|||
|
|
|||
|
if (GET_CODE (body) == SEQUENCE)
|
|||
|
{
|
|||
|
/* A delayed-branch sequence */
|
|||
|
register int i;
|
|||
|
rtx next;
|
|||
|
|
|||
|
if (prescan > 0)
|
|||
|
break;
|
|||
|
final_sequence = body;
|
|||
|
|
|||
|
/* The first insn in this SEQUENCE might be a JUMP_INSN that will
|
|||
|
force the restoration of a comparison that was previously
|
|||
|
thought unnecessary. If that happens, cancel this sequence
|
|||
|
and cause that insn to be restored. */
|
|||
|
|
|||
|
next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
|
|||
|
if (next != XVECEXP (body, 0, 1))
|
|||
|
{
|
|||
|
final_sequence = 0;
|
|||
|
return next;
|
|||
|
}
|
|||
|
|
|||
|
for (i = 1; i < XVECLEN (body, 0); i++)
|
|||
|
{
|
|||
|
rtx insn = XVECEXP (body, 0, i);
|
|||
|
rtx next = NEXT_INSN (insn);
|
|||
|
/* We loop in case any instruction in a delay slot gets
|
|||
|
split. */
|
|||
|
do
|
|||
|
insn = final_scan_insn (insn, file, 0, prescan, 1);
|
|||
|
while (insn != next);
|
|||
|
}
|
|||
|
#ifdef DBR_OUTPUT_SEQEND
|
|||
|
DBR_OUTPUT_SEQEND (file);
|
|||
|
#endif
|
|||
|
final_sequence = 0;
|
|||
|
|
|||
|
/* If the insn requiring the delay slot was a CALL_INSN, the
|
|||
|
insns in the delay slot are actually executed before the
|
|||
|
called function. Hence we don't preserve any CC-setting
|
|||
|
actions in these insns and the CC must be marked as being
|
|||
|
clobbered by the function. */
|
|||
|
if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
|
|||
|
{
|
|||
|
CC_STATUS_INIT;
|
|||
|
}
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* We have a real machine instruction as rtl. */
|
|||
|
|
|||
|
body = PATTERN (insn);
|
|||
|
|
|||
|
#ifdef HAVE_cc0
|
|||
|
set = single_set(insn);
|
|||
|
|
|||
|
/* Check for redundant test and compare instructions
|
|||
|
(when the condition codes are already set up as desired).
|
|||
|
This is done only when optimizing; if not optimizing,
|
|||
|
it should be possible for the user to alter a variable
|
|||
|
with the debugger in between statements
|
|||
|
and the next statement should reexamine the variable
|
|||
|
to compute the condition codes. */
|
|||
|
|
|||
|
if (optimize)
|
|||
|
{
|
|||
|
#if 0
|
|||
|
rtx set = single_set(insn);
|
|||
|
#endif
|
|||
|
|
|||
|
if (set
|
|||
|
&& GET_CODE (SET_DEST (set)) == CC0
|
|||
|
&& insn != last_ignored_compare)
|
|||
|
{
|
|||
|
if (GET_CODE (SET_SRC (set)) == SUBREG)
|
|||
|
SET_SRC (set) = alter_subreg (SET_SRC (set));
|
|||
|
else if (GET_CODE (SET_SRC (set)) == COMPARE)
|
|||
|
{
|
|||
|
if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
|
|||
|
XEXP (SET_SRC (set), 0)
|
|||
|
= alter_subreg (XEXP (SET_SRC (set), 0));
|
|||
|
if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
|
|||
|
XEXP (SET_SRC (set), 1)
|
|||
|
= alter_subreg (XEXP (SET_SRC (set), 1));
|
|||
|
}
|
|||
|
if ((cc_status.value1 != 0
|
|||
|
&& rtx_equal_p (SET_SRC (set), cc_status.value1))
|
|||
|
|| (cc_status.value2 != 0
|
|||
|
&& rtx_equal_p (SET_SRC (set), cc_status.value2)))
|
|||
|
{
|
|||
|
/* Don't delete insn if it has an addressing side-effect. */
|
|||
|
if (! FIND_REG_INC_NOTE (insn, 0)
|
|||
|
/* or if anything in it is volatile. */
|
|||
|
&& ! volatile_refs_p (PATTERN (insn)))
|
|||
|
{
|
|||
|
/* We don't really delete the insn; just ignore it. */
|
|||
|
last_ignored_compare = insn;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
/* Don't bother outputting obvious no-ops, even without -O.
|
|||
|
This optimization is fast and doesn't interfere with debugging.
|
|||
|
Don't do this if the insn is in a delay slot, since this
|
|||
|
will cause an improper number of delay insns to be written. */
|
|||
|
if (final_sequence == 0
|
|||
|
&& prescan >= 0
|
|||
|
&& GET_CODE (insn) == INSN && GET_CODE (body) == SET
|
|||
|
&& GET_CODE (SET_SRC (body)) == REG
|
|||
|
&& GET_CODE (SET_DEST (body)) == REG
|
|||
|
&& REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
|
|||
|
break;
|
|||
|
|
|||
|
#ifdef HAVE_cc0
|
|||
|
/* If this is a conditional branch, maybe modify it
|
|||
|
if the cc's are in a nonstandard state
|
|||
|
so that it accomplishes the same thing that it would
|
|||
|
do straightforwardly if the cc's were set up normally. */
|
|||
|
|
|||
|
if (cc_status.flags != 0
|
|||
|
&& GET_CODE (insn) == JUMP_INSN
|
|||
|
&& GET_CODE (body) == SET
|
|||
|
&& SET_DEST (body) == pc_rtx
|
|||
|
&& GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
|
|||
|
&& GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
|
|||
|
&& XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
|
|||
|
/* This is done during prescan; it is not done again
|
|||
|
in final scan when prescan has been done. */
|
|||
|
&& prescan >= 0)
|
|||
|
{
|
|||
|
/* This function may alter the contents of its argument
|
|||
|
and clear some of the cc_status.flags bits.
|
|||
|
It may also return 1 meaning condition now always true
|
|||
|
or -1 meaning condition now always false
|
|||
|
or 2 meaning condition nontrivial but altered. */
|
|||
|
register int result = alter_cond (XEXP (SET_SRC (body), 0));
|
|||
|
/* If condition now has fixed value, replace the IF_THEN_ELSE
|
|||
|
with its then-operand or its else-operand. */
|
|||
|
if (result == 1)
|
|||
|
SET_SRC (body) = XEXP (SET_SRC (body), 1);
|
|||
|
if (result == -1)
|
|||
|
SET_SRC (body) = XEXP (SET_SRC (body), 2);
|
|||
|
|
|||
|
/* The jump is now either unconditional or a no-op.
|
|||
|
If it has become a no-op, don't try to output it.
|
|||
|
(It would not be recognized.) */
|
|||
|
if (SET_SRC (body) == pc_rtx)
|
|||
|
{
|
|||
|
PUT_CODE (insn, NOTE);
|
|||
|
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
|||
|
NOTE_SOURCE_FILE (insn) = 0;
|
|||
|
break;
|
|||
|
}
|
|||
|
else if (GET_CODE (SET_SRC (body)) == RETURN)
|
|||
|
/* Replace (set (pc) (return)) with (return). */
|
|||
|
PATTERN (insn) = body = SET_SRC (body);
|
|||
|
|
|||
|
/* Rerecognize the instruction if it has changed. */
|
|||
|
if (result != 0)
|
|||
|
INSN_CODE (insn) = -1;
|
|||
|
}
|
|||
|
|
|||
|
/* Make same adjustments to instructions that examine the
|
|||
|
condition codes without jumping and instructions that
|
|||
|
handle conditional moves (if this machine has either one). */
|
|||
|
|
|||
|
if (cc_status.flags != 0
|
|||
|
&& set != 0)
|
|||
|
{
|
|||
|
rtx cond_rtx, then_rtx, else_rtx;
|
|||
|
|
|||
|
if (GET_CODE (insn) != JUMP_INSN
|
|||
|
&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
|
|||
|
{
|
|||
|
cond_rtx = XEXP (SET_SRC (set), 0);
|
|||
|
then_rtx = XEXP (SET_SRC (set), 1);
|
|||
|
else_rtx = XEXP (SET_SRC (set), 2);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
cond_rtx = SET_SRC (set);
|
|||
|
then_rtx = const_true_rtx;
|
|||
|
else_rtx = const0_rtx;
|
|||
|
}
|
|||
|
|
|||
|
switch (GET_CODE (cond_rtx))
|
|||
|
{
|
|||
|
case GTU:
|
|||
|
case GT:
|
|||
|
case LTU:
|
|||
|
case LT:
|
|||
|
case GEU:
|
|||
|
case GE:
|
|||
|
case LEU:
|
|||
|
case LE:
|
|||
|
case EQ:
|
|||
|
case NE:
|
|||
|
{
|
|||
|
register int result;
|
|||
|
if (XEXP (cond_rtx, 0) != cc0_rtx)
|
|||
|
break;
|
|||
|
result = alter_cond (cond_rtx);
|
|||
|
if (result == 1)
|
|||
|
validate_change (insn, &SET_SRC (set), then_rtx, 0);
|
|||
|
else if (result == -1)
|
|||
|
validate_change (insn, &SET_SRC (set), else_rtx, 0);
|
|||
|
else if (result == 2)
|
|||
|
INSN_CODE (insn) = -1;
|
|||
|
if (SET_DEST (set) == SET_SRC (set))
|
|||
|
{
|
|||
|
PUT_CODE (insn, NOTE);
|
|||
|
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
|||
|
NOTE_SOURCE_FILE (insn) = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
#endif
|
|||
|
|
|||
|
/* Do machine-specific peephole optimizations if desired. */
|
|||
|
|
|||
|
if (optimize && !flag_no_peephole && !nopeepholes)
|
|||
|
{
|
|||
|
rtx next = peephole (insn);
|
|||
|
/* When peepholing, if there were notes within the peephole,
|
|||
|
emit them before the peephole. */
|
|||
|
if (next != 0 && next != NEXT_INSN (insn))
|
|||
|
{
|
|||
|
rtx prev = PREV_INSN (insn);
|
|||
|
rtx note;
|
|||
|
|
|||
|
for (note = NEXT_INSN (insn); note != next;
|
|||
|
note = NEXT_INSN (note))
|
|||
|
final_scan_insn (note, file, optimize, prescan, nopeepholes);
|
|||
|
|
|||
|
/* In case this is prescan, put the notes
|
|||
|
in proper position for later rescan. */
|
|||
|
note = NEXT_INSN (insn);
|
|||
|
PREV_INSN (note) = prev;
|
|||
|
NEXT_INSN (prev) = note;
|
|||
|
NEXT_INSN (PREV_INSN (next)) = insn;
|
|||
|
PREV_INSN (insn) = PREV_INSN (next);
|
|||
|
NEXT_INSN (insn) = next;
|
|||
|
PREV_INSN (next) = insn;
|
|||
|
}
|
|||
|
|
|||
|
/* PEEPHOLE might have changed this. */
|
|||
|
body = PATTERN (insn);
|
|||
|
}
|
|||
|
|
|||
|
/* Try to recognize the instruction.
|
|||
|
If successful, verify that the operands satisfy the
|
|||
|
constraints for the instruction. Crash if they don't,
|
|||
|
since `reload' should have changed them so that they do. */
|
|||
|
|
|||
|
insn_code_number = recog_memoized (insn);
|
|||
|
extract_insn (insn);
|
|||
|
cleanup_subreg_operands (insn);
|
|||
|
|
|||
|
#ifdef REGISTER_CONSTRAINTS
|
|||
|
if (! constrain_operands (1))
|
|||
|
fatal_insn_not_found (insn);
|
|||
|
#endif
|
|||
|
|
|||
|
/* Some target machines need to prescan each insn before
|
|||
|
it is output. */
|
|||
|
|
|||
|
#ifdef FINAL_PRESCAN_INSN
|
|||
|
FINAL_PRESCAN_INSN (insn, recog_operand, recog_n_operands);
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef HAVE_cc0
|
|||
|
cc_prev_status = cc_status;
|
|||
|
|
|||
|
/* Update `cc_status' for this instruction.
|
|||
|
The instruction's output routine may change it further.
|
|||
|
If the output routine for a jump insn needs to depend
|
|||
|
on the cc status, it should look at cc_prev_status. */
|
|||
|
|
|||
|
NOTICE_UPDATE_CC (body, insn);
|
|||
|
#endif
|
|||
|
|
|||
|
debug_insn = insn;
|
|||
|
|
|||
|
|
|||
|
/* If the proper template needs to be chosen by some C code,
|
|||
|
run that code and get the real template. */
|
|||
|
|
|||
|
template = insn_template[insn_code_number];
|
|||
|
if (template == 0)
|
|||
|
{
|
|||
|
template = (*insn_outfun[insn_code_number]) (recog_operand, insn);
|
|||
|
|
|||
|
/* If the C code returns 0, it means that it is a jump insn
|
|||
|
which follows a deleted test insn, and that test insn
|
|||
|
needs to be reinserted. */
|
|||
|
if (template == 0)
|
|||
|
{
|
|||
|
if (prev_nonnote_insn (insn) != last_ignored_compare)
|
|||
|
abort ();
|
|||
|
return prev_nonnote_insn (insn);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If the template is the string "#", it means that this insn must
|
|||
|
be split. */
|
|||
|
if (template[0] == '#' && template[1] == '\0')
|
|||
|
{
|
|||
|
rtx new = try_split (body, insn, 0);
|
|||
|
|
|||
|
/* If we didn't split the insn, go away. */
|
|||
|
if (new == insn && PATTERN (new) == body)
|
|||
|
fatal_insn ("Could not split insn", insn);
|
|||
|
|
|||
|
#ifdef HAVE_ATTR_length
|
|||
|
/* This instruction should have been split in shorten_branches,
|
|||
|
to ensure that we would have valid length info for the
|
|||
|
splitees. */
|
|||
|
abort ();
|
|||
|
#endif
|
|||
|
|
|||
|
return new;
|
|||
|
}
|
|||
|
|
|||
|
if (prescan > 0)
|
|||
|
break;
|
|||
|
|
|||
|
/* Output assembler code from the template. */
|
|||
|
|
|||
|
output_asm_insn (template, recog_operand);
|
|||
|
|
|||
|
|
|||
|
#if 0
|
|||
|
/* It's not at all clear why we did this and doing so interferes
|
|||
|
with tests we'd like to do to use REG_WAS_0 notes, so let's try
|
|||
|
with this out. */
|
|||
|
|
|||
|
/* Mark this insn as having been output. */
|
|||
|
INSN_DELETED_P (insn) = 1;
|
|||
|
#endif
|
|||
|
|
|||
|
debug_insn = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
return NEXT_INSN (insn);
|
|||
|
}
|
|||
|
|
|||
|
/* Output debugging info to the assembler file FILE
|
|||
|
based on the NOTE-insn INSN, assumed to be a line number. */
|
|||
|
|
|||
|
static void
|
|||
|
output_source_line (file, insn)
|
|||
|
FILE *file;
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
register char *filename = NOTE_SOURCE_FILE (insn);
|
|||
|
|
|||
|
last_filename = filename;
|
|||
|
last_linenum = NOTE_LINE_NUMBER (insn);
|
|||
|
high_block_linenum = MAX (last_linenum, high_block_linenum);
|
|||
|
high_function_linenum = MAX (last_linenum, high_function_linenum);
|
|||
|
|
|||
|
if (write_symbols != NO_DEBUG)
|
|||
|
{
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
#ifdef DWARF2_DEBUGGING_INFO
|
|||
|
if (write_symbols == DWARF2_DEBUG)
|
|||
|
dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
|
|||
|
#endif
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* For each operand in INSN, simplify (subreg (reg)) so that it refers
|
|||
|
directly to the desired hard register. */
|
|||
|
void
|
|||
|
cleanup_subreg_operands (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
extract_insn (insn);
|
|||
|
for (i = 0; i < recog_n_operands; i++)
|
|||
|
{
|
|||
|
if (GET_CODE (recog_operand[i]) == SUBREG)
|
|||
|
recog_operand[i] = alter_subreg (recog_operand[i]);
|
|||
|
else if (GET_CODE (recog_operand[i]) == PLUS
|
|||
|
|| GET_CODE (recog_operand[i]) == MULT)
|
|||
|
recog_operand[i] = walk_alter_subreg (recog_operand[i]);
|
|||
|
}
|
|||
|
|
|||
|
for (i = 0; i < recog_n_dups; i++)
|
|||
|
{
|
|||
|
if (GET_CODE (*recog_dup_loc[i]) == SUBREG)
|
|||
|
*recog_dup_loc[i] = alter_subreg (*recog_dup_loc[i]);
|
|||
|
else if (GET_CODE (*recog_dup_loc[i]) == PLUS
|
|||
|
|| GET_CODE (*recog_dup_loc[i]) == MULT)
|
|||
|
*recog_dup_loc[i] = walk_alter_subreg (*recog_dup_loc[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If X is a SUBREG, replace it with a REG or a MEM,
|
|||
|
based on the thing it is a subreg of. */
|
|||
|
|
|||
|
rtx
|
|||
|
alter_subreg (x)
|
|||
|
register rtx x;
|
|||
|
{
|
|||
|
register rtx y = SUBREG_REG (x);
|
|||
|
|
|||
|
if (GET_CODE (y) == SUBREG)
|
|||
|
y = alter_subreg (y);
|
|||
|
|
|||
|
/* If reload is operating, we may be replacing inside this SUBREG.
|
|||
|
Check for that and make a new one if so. */
|
|||
|
if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
|
|||
|
x = copy_rtx (x);
|
|||
|
|
|||
|
if (GET_CODE (y) == REG)
|
|||
|
{
|
|||
|
/* If the word size is larger than the size of this register,
|
|||
|
adjust the register number to compensate. */
|
|||
|
/* ??? Note that this just catches stragglers created by/for
|
|||
|
integrate. It would be better if we either caught these
|
|||
|
earlier, or kept _all_ subregs until now and eliminate
|
|||
|
gen_lowpart and friends. */
|
|||
|
|
|||
|
PUT_CODE (x, REG);
|
|||
|
#ifdef ALTER_HARD_SUBREG
|
|||
|
REGNO (x) = ALTER_HARD_SUBREG(GET_MODE (x), SUBREG_WORD (x),
|
|||
|
GET_MODE (y), REGNO (y));
|
|||
|
#else
|
|||
|
REGNO (x) = REGNO (y) + SUBREG_WORD (x);
|
|||
|
#endif
|
|||
|
/* This field has a different meaning for REGs and SUBREGs. Make sure
|
|||
|
to clear it! */
|
|||
|
x->used = 0;
|
|||
|
}
|
|||
|
else if (GET_CODE (y) == MEM)
|
|||
|
{
|
|||
|
register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
|
|||
|
PUT_CODE (x, MEM);
|
|||
|
MEM_COPY_ATTRIBUTES (x, y);
|
|||
|
MEM_ALIAS_SET (x) = MEM_ALIAS_SET (y);
|
|||
|
XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
|
|||
|
}
|
|||
|
|
|||
|
return x;
|
|||
|
}
|
|||
|
|
|||
|
/* Do alter_subreg on all the SUBREGs contained in X. */
|
|||
|
|
|||
|
static rtx
|
|||
|
walk_alter_subreg (x)
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
switch (GET_CODE (x))
|
|||
|
{
|
|||
|
case PLUS:
|
|||
|
case MULT:
|
|||
|
XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
|
|||
|
XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
|
|||
|
break;
|
|||
|
|
|||
|
case MEM:
|
|||
|
XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
|
|||
|
break;
|
|||
|
|
|||
|
case SUBREG:
|
|||
|
return alter_subreg (x);
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
return x;
|
|||
|
}
|
|||
|
|
|||
|
#ifdef HAVE_cc0
|
|||
|
|
|||
|
/* Given BODY, the body of a jump instruction, alter the jump condition
|
|||
|
as required by the bits that are set in cc_status.flags.
|
|||
|
Not all of the bits there can be handled at this level in all cases.
|
|||
|
|
|||
|
The value is normally 0.
|
|||
|
1 means that the condition has become always true.
|
|||
|
-1 means that the condition has become always false.
|
|||
|
2 means that COND has been altered. */
|
|||
|
|
|||
|
static int
|
|||
|
alter_cond (cond)
|
|||
|
register rtx cond;
|
|||
|
{
|
|||
|
int value = 0;
|
|||
|
|
|||
|
if (cc_status.flags & CC_REVERSED)
|
|||
|
{
|
|||
|
value = 2;
|
|||
|
PUT_CODE (cond, swap_condition (GET_CODE (cond)));
|
|||
|
}
|
|||
|
|
|||
|
if (cc_status.flags & CC_INVERTED)
|
|||
|
{
|
|||
|
value = 2;
|
|||
|
PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
|
|||
|
}
|
|||
|
|
|||
|
if (cc_status.flags & CC_NOT_POSITIVE)
|
|||
|
switch (GET_CODE (cond))
|
|||
|
{
|
|||
|
case LE:
|
|||
|
case LEU:
|
|||
|
case GEU:
|
|||
|
/* Jump becomes unconditional. */
|
|||
|
return 1;
|
|||
|
|
|||
|
case GT:
|
|||
|
case GTU:
|
|||
|
case LTU:
|
|||
|
/* Jump becomes no-op. */
|
|||
|
return -1;
|
|||
|
|
|||
|
case GE:
|
|||
|
PUT_CODE (cond, EQ);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
|
|||
|
case LT:
|
|||
|
PUT_CODE (cond, NE);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (cc_status.flags & CC_NOT_NEGATIVE)
|
|||
|
switch (GET_CODE (cond))
|
|||
|
{
|
|||
|
case GE:
|
|||
|
case GEU:
|
|||
|
/* Jump becomes unconditional. */
|
|||
|
return 1;
|
|||
|
|
|||
|
case LT:
|
|||
|
case LTU:
|
|||
|
/* Jump becomes no-op. */
|
|||
|
return -1;
|
|||
|
|
|||
|
case LE:
|
|||
|
case LEU:
|
|||
|
PUT_CODE (cond, EQ);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
|
|||
|
case GT:
|
|||
|
case GTU:
|
|||
|
PUT_CODE (cond, NE);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (cc_status.flags & CC_NO_OVERFLOW)
|
|||
|
switch (GET_CODE (cond))
|
|||
|
{
|
|||
|
case GEU:
|
|||
|
/* Jump becomes unconditional. */
|
|||
|
return 1;
|
|||
|
|
|||
|
case LEU:
|
|||
|
PUT_CODE (cond, EQ);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
|
|||
|
case GTU:
|
|||
|
PUT_CODE (cond, NE);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
|
|||
|
case LTU:
|
|||
|
/* Jump becomes no-op. */
|
|||
|
return -1;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
|
|||
|
switch (GET_CODE (cond))
|
|||
|
{
|
|||
|
default:
|
|||
|
abort ();
|
|||
|
|
|||
|
case NE:
|
|||
|
PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
|
|||
|
case EQ:
|
|||
|
PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (cc_status.flags & CC_NOT_SIGNED)
|
|||
|
/* The flags are valid if signed condition operators are converted
|
|||
|
to unsigned. */
|
|||
|
switch (GET_CODE (cond))
|
|||
|
{
|
|||
|
case LE:
|
|||
|
PUT_CODE (cond, LEU);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
|
|||
|
case LT:
|
|||
|
PUT_CODE (cond, LTU);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
|
|||
|
case GT:
|
|||
|
PUT_CODE (cond, GTU);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
|
|||
|
case GE:
|
|||
|
PUT_CODE (cond, GEU);
|
|||
|
value = 2;
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
return value;
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
/* Report inconsistency between the assembler template and the operands.
|
|||
|
In an `asm', it's the user's fault; otherwise, the compiler's fault. */
|
|||
|
|
|||
|
void
|
|||
|
output_operand_lossage (str)
|
|||
|
char *str;
|
|||
|
{
|
|||
|
if (this_is_asm_operands)
|
|||
|
error_for_asm (this_is_asm_operands, "invalid `asm': %s", str);
|
|||
|
else
|
|||
|
fatal ("Internal compiler error, output_operand_lossage `%s'", str);
|
|||
|
}
|
|||
|
|
|||
|
/* Output of assembler code from a template, and its subroutines. */
|
|||
|
|
|||
|
/* Output text from TEMPLATE to the assembler output file,
|
|||
|
obeying %-directions to substitute operands taken from
|
|||
|
the vector OPERANDS.
|
|||
|
|
|||
|
%N (for N a digit) means print operand N in usual manner.
|
|||
|
%lN means require operand N to be a CODE_LABEL or LABEL_REF
|
|||
|
and print the label name with no punctuation.
|
|||
|
%cN means require operand N to be a constant
|
|||
|
and print the constant expression with no punctuation.
|
|||
|
%aN means expect operand N to be a memory address
|
|||
|
(not a memory reference!) and print a reference
|
|||
|
to that address.
|
|||
|
%nN means expect operand N to be a constant
|
|||
|
and print a constant expression for minus the value
|
|||
|
of the operand, with no other punctuation. */
|
|||
|
|
|||
|
static void
|
|||
|
output_asm_name ()
|
|||
|
{
|
|||
|
if (flag_print_asm_name)
|
|||
|
{
|
|||
|
/* Annotate the assembly with a comment describing the pattern and
|
|||
|
alternative used. */
|
|||
|
if (debug_insn)
|
|||
|
{
|
|||
|
register int num = INSN_CODE (debug_insn);
|
|||
|
fprintf (asm_out_file, "\t%s %d\t%s",
|
|||
|
ASM_COMMENT_START, INSN_UID (debug_insn), insn_name[num]);
|
|||
|
if (insn_n_alternatives[num] > 1)
|
|||
|
fprintf (asm_out_file, "/%d", which_alternative + 1);
|
|||
|
#ifdef HAVE_ATTR_length
|
|||
|
fprintf (asm_out_file, "\t[length = %d]", get_attr_length (debug_insn));
|
|||
|
#endif
|
|||
|
/* Clear this so only the first assembler insn
|
|||
|
of any rtl insn will get the special comment for -dp. */
|
|||
|
debug_insn = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
output_asm_insn (template, operands)
|
|||
|
char *template;
|
|||
|
rtx *operands;
|
|||
|
{
|
|||
|
register char *p;
|
|||
|
register int c;
|
|||
|
|
|||
|
/* An insn may return a null string template
|
|||
|
in a case where no assembler code is needed. */
|
|||
|
if (*template == 0)
|
|||
|
return;
|
|||
|
|
|||
|
p = template;
|
|||
|
putc ('\t', asm_out_file);
|
|||
|
|
|||
|
#ifdef ASM_OUTPUT_OPCODE
|
|||
|
ASM_OUTPUT_OPCODE (asm_out_file, p);
|
|||
|
#endif
|
|||
|
|
|||
|
while ((c = *p++))
|
|||
|
switch (c)
|
|||
|
{
|
|||
|
case '\n':
|
|||
|
output_asm_name ();
|
|||
|
putc (c, asm_out_file);
|
|||
|
#ifdef ASM_OUTPUT_OPCODE
|
|||
|
while ((c = *p) == '\t')
|
|||
|
{
|
|||
|
putc (c, asm_out_file);
|
|||
|
p++;
|
|||
|
}
|
|||
|
ASM_OUTPUT_OPCODE (asm_out_file, p);
|
|||
|
#endif
|
|||
|
break;
|
|||
|
|
|||
|
|
|||
|
case '%':
|
|||
|
/* %% outputs a single %. */
|
|||
|
if (*p == '%')
|
|||
|
{
|
|||
|
p++;
|
|||
|
putc (c, asm_out_file);
|
|||
|
}
|
|||
|
/* %= outputs a number which is unique to each insn in the entire
|
|||
|
compilation. This is useful for making local labels that are
|
|||
|
referred to more than once in a given insn. */
|
|||
|
else if (*p == '=')
|
|||
|
{
|
|||
|
p++;
|
|||
|
fprintf (asm_out_file, "%d", insn_counter);
|
|||
|
}
|
|||
|
/* % followed by a letter and some digits
|
|||
|
outputs an operand in a special way depending on the letter.
|
|||
|
Letters `acln' are implemented directly.
|
|||
|
Other letters are passed to `output_operand' so that
|
|||
|
the PRINT_OPERAND macro can define them. */
|
|||
|
else if ((*p >= 'a' && *p <= 'z')
|
|||
|
|| (*p >= 'A' && *p <= 'Z'))
|
|||
|
{
|
|||
|
int letter = *p++;
|
|||
|
c = atoi (p);
|
|||
|
|
|||
|
if (! (*p >= '0' && *p <= '9'))
|
|||
|
output_operand_lossage ("operand number missing after %-letter");
|
|||
|
else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
|
|||
|
output_operand_lossage ("operand number out of range");
|
|||
|
else if (letter == 'l')
|
|||
|
output_asm_label (operands[c]);
|
|||
|
else if (letter == 'a')
|
|||
|
output_address (operands[c]);
|
|||
|
else if (letter == 'c')
|
|||
|
{
|
|||
|
if (CONSTANT_ADDRESS_P (operands[c]))
|
|||
|
output_addr_const (asm_out_file, operands[c]);
|
|||
|
else
|
|||
|
output_operand (operands[c], 'c');
|
|||
|
}
|
|||
|
else if (letter == 'n')
|
|||
|
{
|
|||
|
if (GET_CODE (operands[c]) == CONST_INT)
|
|||
|
{
|
|||
|
print_wint(asm_out_file, -INTVAL(operands[c]));
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
putc ('-', asm_out_file);
|
|||
|
output_addr_const (asm_out_file, operands[c]);
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
output_operand (operands[c], letter);
|
|||
|
|
|||
|
while ((c = *p) >= '0' && c <= '9') p++;
|
|||
|
}
|
|||
|
/* % followed by a digit outputs an operand the default way. */
|
|||
|
else if (*p >= '0' && *p <= '9')
|
|||
|
{
|
|||
|
c = atoi (p);
|
|||
|
if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
|
|||
|
output_operand_lossage ("operand number out of range");
|
|||
|
else
|
|||
|
output_operand (operands[c], 0);
|
|||
|
while ((c = *p) >= '0' && c <= '9') p++;
|
|||
|
}
|
|||
|
/* % followed by punctuation: output something for that
|
|||
|
punctuation character alone, with no operand.
|
|||
|
The PRINT_OPERAND macro decides what is actually done. */
|
|||
|
#ifdef PRINT_OPERAND_PUNCT_VALID_P
|
|||
|
else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char)*p))
|
|||
|
output_operand (NULL_RTX, *p++);
|
|||
|
#endif
|
|||
|
else
|
|||
|
output_operand_lossage ("invalid %%-code");
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
putc (c, asm_out_file);
|
|||
|
}
|
|||
|
|
|||
|
output_asm_name ();
|
|||
|
|
|||
|
putc ('\n', asm_out_file);
|
|||
|
}
|
|||
|
|
|||
|
/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
|
|||
|
|
|||
|
void
|
|||
|
output_asm_label (x)
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
char buf[256];
|
|||
|
|
|||
|
if (GET_CODE (x) == LABEL_REF)
|
|||
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
|
|||
|
else if (GET_CODE (x) == CODE_LABEL)
|
|||
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
|
|||
|
else
|
|||
|
output_operand_lossage ("`%l' operand isn't a label");
|
|||
|
|
|||
|
assemble_name (asm_out_file, buf);
|
|||
|
}
|
|||
|
|
|||
|
/* Print operand X using machine-dependent assembler syntax.
|
|||
|
The macro PRINT_OPERAND is defined just to control this function.
|
|||
|
CODE is a non-digit that preceded the operand-number in the % spec,
|
|||
|
such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
|
|||
|
between the % and the digits.
|
|||
|
When CODE is a non-letter, X is 0.
|
|||
|
|
|||
|
The meanings of the letters are machine-dependent and controlled
|
|||
|
by PRINT_OPERAND. */
|
|||
|
|
|||
|
static void
|
|||
|
output_operand (x, code)
|
|||
|
rtx x;
|
|||
|
int code;
|
|||
|
{
|
|||
|
if (x && GET_CODE (x) == SUBREG)
|
|||
|
x = alter_subreg (x);
|
|||
|
|
|||
|
/* If X is a pseudo-register, abort now rather than writing trash to the
|
|||
|
assembler file. */
|
|||
|
|
|||
|
if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
|
|||
|
abort ();
|
|||
|
|
|||
|
PRINT_OPERAND (asm_out_file, x, code);
|
|||
|
}
|
|||
|
|
|||
|
/* Print a memory reference operand for address X
|
|||
|
using machine-dependent assembler syntax. */
|
|||
|
|
|||
|
void
|
|||
|
output_address (x)
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
walk_alter_subreg (x);
|
|||
|
|
|||
|
if (GET_CODE(x) == REG)
|
|||
|
{
|
|||
|
fprintf(asm_out_file, "[%s]", reg_names[REGNO(x)]);
|
|||
|
}
|
|||
|
else if (GET_CODE(x) == POST_INC)
|
|||
|
{
|
|||
|
fprintf(asm_out_file, "%s!", reg_names[REGNO(XEXP(x, 0))]);
|
|||
|
}
|
|||
|
else if (GET_CODE(x) == PLUS)
|
|||
|
{
|
|||
|
if (GET_CODE(XEXP(x, 1)) == CONST_INT)
|
|||
|
{
|
|||
|
fprintf(asm_out_file, "[%s, #", reg_names[REGNO(XEXP(x, 0))]);
|
|||
|
print_wint(asm_out_file, INTVAL(XEXP(x, 1)));
|
|||
|
fprintf(asm_out_file, "]");
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
fprintf(asm_out_file, "[%s, %s]",
|
|||
|
reg_names[REGNO(XEXP(x, 0))],
|
|||
|
reg_names[REGNO(XEXP(x, 1))]);
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
output_addr_const(asm_out_file, x);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Print an integer constant expression in assembler syntax.
|
|||
|
Addition and subtraction are the only arithmetic
|
|||
|
that may appear in these expressions. */
|
|||
|
|
|||
|
void
|
|||
|
output_addr_const (file, x)
|
|||
|
FILE *file;
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
char buf[256];
|
|||
|
|
|||
|
restart:
|
|||
|
switch (GET_CODE (x))
|
|||
|
{
|
|||
|
case PC:
|
|||
|
abort ();
|
|||
|
break;
|
|||
|
|
|||
|
case SYMBOL_REF:
|
|||
|
assemble_name (file, XSTR (x, 0));
|
|||
|
break;
|
|||
|
|
|||
|
case LABEL_REF:
|
|||
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
|
|||
|
assemble_name (file, buf);
|
|||
|
break;
|
|||
|
|
|||
|
case CODE_LABEL:
|
|||
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
|
|||
|
assemble_name (file, buf);
|
|||
|
break;
|
|||
|
|
|||
|
case CONST_INT:
|
|||
|
print_wint(file, INTVAL(x));
|
|||
|
break;
|
|||
|
|
|||
|
case CONST:
|
|||
|
/* This used to output parentheses around the expression,
|
|||
|
but that does not work on the 386 (either ATT or BSD assembler). */
|
|||
|
output_addr_const (file, XEXP (x, 0));
|
|||
|
break;
|
|||
|
|
|||
|
case CONST_DOUBLE:
|
|||
|
if (GET_MODE (x) == VOIDmode)
|
|||
|
{
|
|||
|
/* We can use %d if the number is one word and positive. */
|
|||
|
if (CONST_DOUBLE_HIGH (x))
|
|||
|
fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
|
|||
|
CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
|
|||
|
else if (CONST_DOUBLE_LOW (x) < 0)
|
|||
|
fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
|
|||
|
else
|
|||
|
print_wint(file, CONST_DOUBLE_LOW(x));
|
|||
|
}
|
|||
|
else
|
|||
|
/* We can't handle floating point constants;
|
|||
|
PRINT_OPERAND must handle them. */
|
|||
|
output_operand_lossage ("floating constant misused");
|
|||
|
break;
|
|||
|
|
|||
|
case PLUS:
|
|||
|
/* Some assemblers need integer constants to appear last (eg masm). */
|
|||
|
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
|
|||
|
{
|
|||
|
output_addr_const (file, XEXP (x, 1));
|
|||
|
if (INTVAL (XEXP (x, 0)) >= 0 || flag_hex_asm)
|
|||
|
fprintf (file, "+");
|
|||
|
output_addr_const (file, XEXP (x, 0));
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
output_addr_const (file, XEXP (x, 0));
|
|||
|
if (INTVAL (XEXP (x, 1)) >= 0 || flag_hex_asm)
|
|||
|
fprintf (file, "+");
|
|||
|
output_addr_const (file, XEXP (x, 1));
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
case MINUS:
|
|||
|
/* Avoid outputting things like x-x or x+5-x,
|
|||
|
since some assemblers can't handle that. */
|
|||
|
x = simplify_subtraction (x);
|
|||
|
if (GET_CODE (x) != MINUS)
|
|||
|
goto restart;
|
|||
|
|
|||
|
output_addr_const (file, XEXP (x, 0));
|
|||
|
fprintf (file, "-");
|
|||
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
|||
|
&& INTVAL (XEXP (x, 1)) < 0)
|
|||
|
{
|
|||
|
fprintf (file, ASM_OPEN_PAREN);
|
|||
|
output_addr_const (file, XEXP (x, 1));
|
|||
|
fprintf (file, ASM_CLOSE_PAREN);
|
|||
|
}
|
|||
|
else
|
|||
|
output_addr_const (file, XEXP (x, 1));
|
|||
|
break;
|
|||
|
|
|||
|
case ZERO_EXTEND:
|
|||
|
case SIGN_EXTEND:
|
|||
|
output_addr_const (file, XEXP (x, 0));
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
output_operand_lossage ("invalid expression as operand");
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* A poor man's fprintf, with the added features of %I, %R, and %L.
|
|||
|
%R prints the value of REGISTER_PREFIX.
|
|||
|
%L prints the value of LOCAL_LABEL_PREFIX.
|
|||
|
%I prints the value of IMMEDIATE_PREFIX.
|
|||
|
%O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
|
|||
|
Also supported are %d, %x, %s, %e, %f, %g and %%.
|
|||
|
|
|||
|
We handle alternate assembler dialects here, just like output_asm_insn. */
|
|||
|
|
|||
|
void
|
|||
|
asm_fprintf (FILE *file, char *p, ...)
|
|||
|
{
|
|||
|
va_list argptr;
|
|||
|
char buf[10];
|
|||
|
char *q, c;
|
|||
|
|
|||
|
va_start (argptr, p);
|
|||
|
|
|||
|
|
|||
|
buf[0] = '%';
|
|||
|
|
|||
|
while ((c = *p++))
|
|||
|
switch (c)
|
|||
|
{
|
|||
|
|
|||
|
case '%':
|
|||
|
c = *p++;
|
|||
|
q = &buf[1];
|
|||
|
while ((c >= '0' && c <= '9') || c == '.')
|
|||
|
{
|
|||
|
*q++ = c;
|
|||
|
c = *p++;
|
|||
|
}
|
|||
|
switch (c)
|
|||
|
{
|
|||
|
case '%':
|
|||
|
fprintf (file, "%%");
|
|||
|
break;
|
|||
|
|
|||
|
case 'd': case 'i': case 'u':
|
|||
|
case 'x': case 'p': case 'X':
|
|||
|
case 'o':
|
|||
|
*q++ = c;
|
|||
|
*q = 0;
|
|||
|
fprintf (file, buf, va_arg (argptr, int));
|
|||
|
break;
|
|||
|
|
|||
|
case 'l':
|
|||
|
*q++ = c;
|
|||
|
*q++ = *p++;
|
|||
|
*q = 0;
|
|||
|
fprintf (file, buf, va_arg (argptr, long));
|
|||
|
break;
|
|||
|
|
|||
|
case 'e':
|
|||
|
case 'f':
|
|||
|
case 'g':
|
|||
|
*q++ = c;
|
|||
|
*q = 0;
|
|||
|
fprintf (file, buf, va_arg (argptr, double));
|
|||
|
break;
|
|||
|
|
|||
|
case 's':
|
|||
|
*q++ = c;
|
|||
|
*q = 0;
|
|||
|
fprintf (file, buf, va_arg (argptr, char *));
|
|||
|
break;
|
|||
|
|
|||
|
case 'O':
|
|||
|
#ifdef ASM_OUTPUT_OPCODE
|
|||
|
ASM_OUTPUT_OPCODE (asm_out_file, p);
|
|||
|
#endif
|
|||
|
break;
|
|||
|
|
|||
|
case 'R':
|
|||
|
#ifdef REGISTER_PREFIX
|
|||
|
fprintf (file, "%s", REGISTER_PREFIX);
|
|||
|
#endif
|
|||
|
break;
|
|||
|
|
|||
|
case 'I':
|
|||
|
#ifdef IMMEDIATE_PREFIX
|
|||
|
fprintf (file, "%s", IMMEDIATE_PREFIX);
|
|||
|
#endif
|
|||
|
break;
|
|||
|
|
|||
|
case 'L':
|
|||
|
#ifdef LOCAL_LABEL_PREFIX
|
|||
|
fprintf (file, "%s", LOCAL_LABEL_PREFIX);
|
|||
|
#endif
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
abort ();
|
|||
|
}
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
fputc (c, file);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Split up a CONST_DOUBLE or integer constant rtx
|
|||
|
into two rtx's for single words,
|
|||
|
storing in *FIRST the word that comes first in memory in the target
|
|||
|
and in *SECOND the other. */
|
|||
|
|
|||
|
void
|
|||
|
split_double (value, first, second)
|
|||
|
rtx value;
|
|||
|
rtx *first, *second;
|
|||
|
{
|
|||
|
if (GET_CODE (value) == CONST_INT)
|
|||
|
{
|
|||
|
if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
|
|||
|
{
|
|||
|
/* In this case the CONST_INT holds both target words.
|
|||
|
Extract the bits from it into two word-sized pieces.
|
|||
|
Sign extend each half to HOST_WIDE_INT. */
|
|||
|
rtx low, high;
|
|||
|
/* On machines where HOST_BITS_PER_WIDE_INT == BITS_PER_WORD
|
|||
|
the shift below will cause a compiler warning, even though
|
|||
|
this code won't be executed. So put the shift amounts in
|
|||
|
variables to avoid the warning. */
|
|||
|
int rshift = HOST_BITS_PER_WIDE_INT - BITS_PER_WORD;
|
|||
|
int lshift = HOST_BITS_PER_WIDE_INT - 2 * BITS_PER_WORD;
|
|||
|
|
|||
|
low = GEN_INT ((INTVAL (value) << rshift) >> rshift);
|
|||
|
high = GEN_INT ((INTVAL (value) << lshift) >> rshift);
|
|||
|
|
|||
|
*first = low;
|
|||
|
*second = high;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* The rule for using CONST_INT for a wider mode
|
|||
|
is that we regard the value as signed.
|
|||
|
So sign-extend it. */
|
|||
|
rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
|
|||
|
|
|||
|
*first = value;
|
|||
|
*second = high;
|
|||
|
}
|
|||
|
}
|
|||
|
else if (GET_CODE (value) != CONST_DOUBLE)
|
|||
|
{
|
|||
|
*first = value;
|
|||
|
*second = const0_rtx;
|
|||
|
}
|
|||
|
else if (GET_MODE (value) == VOIDmode
|
|||
|
/* This is the old way we did CONST_DOUBLE integers. */
|
|||
|
|| GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
|
|||
|
{
|
|||
|
/* In an integer, the words are defined as most and least significant.
|
|||
|
So order them by the target's convention. */
|
|||
|
*first = GEN_INT (CONST_DOUBLE_LOW (value));
|
|||
|
*second = GEN_INT (CONST_DOUBLE_HIGH (value));
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
REAL_VALUE_TYPE r; long l[2];
|
|||
|
REAL_VALUE_FROM_CONST_DOUBLE (r, value);
|
|||
|
|
|||
|
/* Note, this converts the REAL_VALUE_TYPE to the target's
|
|||
|
format, splits up the floating point double and outputs
|
|||
|
exactly 32 bits of it into each of l[0] and l[1] --
|
|||
|
not necessarily BITS_PER_WORD bits. */
|
|||
|
REAL_VALUE_TO_TARGET_DOUBLE (r, l);
|
|||
|
|
|||
|
*first = GEN_INT ((HOST_WIDE_INT) l[0]);
|
|||
|
*second = GEN_INT ((HOST_WIDE_INT) l[1]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Return nonzero if this function has no function calls. */
|
|||
|
|
|||
|
int
|
|||
|
leaf_function_p ()
|
|||
|
{
|
|||
|
rtx insn;
|
|||
|
|
|||
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
if (GET_CODE (insn) == CALL_INSN)
|
|||
|
return 0;
|
|||
|
if (GET_CODE (insn) == INSN
|
|||
|
&& GET_CODE (PATTERN (insn)) == SEQUENCE
|
|||
|
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN)
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
return 1;
|
|||
|
}
|