5355 lines
149 KiB
C
5355 lines
149 KiB
C
|
/* CYGNUS LOCAL entire file */
|
|||
|
/* Global common subexpression elimination/Partial redundancy elimination
|
|||
|
and global constant/copy propagation for GNU compiler.
|
|||
|
Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GNU CC.
|
|||
|
|
|||
|
GNU CC is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2, or (at your option)
|
|||
|
any later version.
|
|||
|
|
|||
|
GNU CC is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with GNU CC; see the file COPYING. If not, write to
|
|||
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|||
|
Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
/* TODO
|
|||
|
- reordering of memory allocation and freeing to be more space efficient
|
|||
|
- do rough calc of how many regs are needed in each block, and a rough
|
|||
|
calc of how many regs are available in each class and use that to
|
|||
|
throttle back the code in cases where RTX_COST is minimal.
|
|||
|
- dead store elimination
|
|||
|
- a store to the same address as a load does not kill the load if the
|
|||
|
source of the store is also the destination of the load. Handling this
|
|||
|
allows more load motion, particularly out of loops.
|
|||
|
- ability to realloc sbitmap vectors would allow one initial computation
|
|||
|
of reg_set_in_block with only subsequent additions, rather than
|
|||
|
recomputing it for each pass
|
|||
|
|
|||
|
*/
|
|||
|
|
|||
|
/* References searched while implementing this.
|
|||
|
|
|||
|
Compilers Principles, Techniques and Tools
|
|||
|
Aho, Sethi, Ullman
|
|||
|
Addison-Wesley, 1988
|
|||
|
|
|||
|
Global Optimization by Suppression of Partial Redundancies
|
|||
|
E. Morel, C. Renvoise
|
|||
|
communications of the acm, Vol. 22, Num. 2, Feb. 1979
|
|||
|
|
|||
|
A Portable Machine-Independent Global Optimizer - Design and Measurements
|
|||
|
Frederick Chow
|
|||
|
Stanford Ph.D. thesis, Dec. 1983
|
|||
|
|
|||
|
A Fast Algorithm for Code Movement Optimization
|
|||
|
D.M. Dhamdhere
|
|||
|
SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
|
|||
|
|
|||
|
A Solution to a Problem with Morel and Renvoise's
|
|||
|
Global Optimization by Suppression of Partial Redundancies
|
|||
|
K-H Drechsler, M.P. Stadel
|
|||
|
ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
|
|||
|
|
|||
|
Practical Adaptation of the Global Optimization
|
|||
|
Algorithm of Morel and Renvoise
|
|||
|
D.M. Dhamdhere
|
|||
|
ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
|
|||
|
|
|||
|
Efficiently Computing Static Single Assignment Form and the Control
|
|||
|
Dependence Graph
|
|||
|
R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
|
|||
|
ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
|
|||
|
|
|||
|
Lazy Code Motion
|
|||
|
J. Knoop, O. Ruthing, B. Steffen
|
|||
|
ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
|
|||
|
|
|||
|
What's In a Region? Or Computing Control Dependence Regions in Near-Linear
|
|||
|
Time for Reducible Flow Control
|
|||
|
Thomas Ball
|
|||
|
ACM Letters on Programming Languages and Systems,
|
|||
|
Vol. 2, Num. 1-4, Mar-Dec 1993
|
|||
|
|
|||
|
An Efficient Representation for Sparse Sets
|
|||
|
Preston Briggs, Linda Torczon
|
|||
|
ACM Letters on Programming Languages and Systems,
|
|||
|
Vol. 2, Num. 1-4, Mar-Dec 1993
|
|||
|
|
|||
|
A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
|
|||
|
K-H Drechsler, M.P. Stadel
|
|||
|
ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
|
|||
|
|
|||
|
Partial Dead Code Elimination
|
|||
|
J. Knoop, O. Ruthing, B. Steffen
|
|||
|
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
|||
|
|
|||
|
Effective Partial Redundancy Elimination
|
|||
|
P. Briggs, K.D. Cooper
|
|||
|
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
|||
|
|
|||
|
The Program Structure Tree: Computing Control Regions in Linear Time
|
|||
|
R. Johnson, D. Pearson, K. Pingali
|
|||
|
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
|||
|
|
|||
|
Optimal Code Motion: Theory and Practice
|
|||
|
J. Knoop, O. Ruthing, B. Steffen
|
|||
|
ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
|
|||
|
|
|||
|
The power of assignment motion
|
|||
|
J. Knoop, O. Ruthing, B. Steffen
|
|||
|
ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
|
|||
|
|
|||
|
Global code motion / global value numbering
|
|||
|
C. Click
|
|||
|
ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
|
|||
|
|
|||
|
Value Driven Redundancy Elimination
|
|||
|
L.T. Simpson
|
|||
|
Rice University Ph.D. thesis, Apr. 1996
|
|||
|
|
|||
|
Value Numbering
|
|||
|
L.T. Simpson
|
|||
|
Massively Scalar Compiler Project, Rice University, Sep. 1996
|
|||
|
|
|||
|
High Performance Compilers for Parallel Computing
|
|||
|
Michael Wolfe
|
|||
|
Addison-Wesley, 1996
|
|||
|
|
|||
|
Advanced Compiler Design and Implementation
|
|||
|
Steven Muchnick
|
|||
|
Morgan Kaufmann, 1997
|
|||
|
|
|||
|
People wishing to speed up the code here should read:
|
|||
|
Elimination Algorithms for Data Flow Analysis
|
|||
|
B.G. Ryder, M.C. Paull
|
|||
|
ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
|
|||
|
|
|||
|
How to Analyze Large Programs Efficiently and Informatively
|
|||
|
D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
|
|||
|
ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
|
|||
|
|
|||
|
People wishing to do something different can find various possibilities
|
|||
|
in the above papers and elsewhere.
|
|||
|
*/
|
|||
|
|
|||
|
#include "config.h"
|
|||
|
#include "system.h"
|
|||
|
|
|||
|
#include "rtl.h"
|
|||
|
#include "regs.h"
|
|||
|
#include "hard-reg-set.h"
|
|||
|
#include "flags.h"
|
|||
|
#include "real.h"
|
|||
|
#include "insn-config.h"
|
|||
|
#include "recog.h"
|
|||
|
#include "basic-block.h"
|
|||
|
#include "output.h"
|
|||
|
#include "expr.h"
|
|||
|
|
|||
|
#include "obstack.h"
|
|||
|
#define obstack_chunk_alloc gmalloc
|
|||
|
#define obstack_chunk_free free
|
|||
|
|
|||
|
/* Maximum number of passes to perform. */
|
|||
|
#define MAX_PASSES 1
|
|||
|
|
|||
|
/* Propagate flow information through back edges and thus enable PRE's
|
|||
|
moving loop invariant calculations out of loops.
|
|||
|
|
|||
|
Originally this tended to create worse overall code, but several
|
|||
|
improvements during the development of PRE seem to have made following
|
|||
|
back edges generally a win.
|
|||
|
|
|||
|
Note much of the loop invariant code motion done here would normally
|
|||
|
be done by loop.c, which has more heuristics for when to move invariants
|
|||
|
out of loops. At some point we might need to move some of those
|
|||
|
heuristics into gcse.c. */
|
|||
|
#define FOLLOW_BACK_EDGES 1
|
|||
|
|
|||
|
/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
|
|||
|
are a superset of those done by GCSE.
|
|||
|
|
|||
|
We perform the following steps:
|
|||
|
|
|||
|
1) Compute basic block information.
|
|||
|
|
|||
|
2) Compute table of places where registers are set.
|
|||
|
|
|||
|
3) Perform copy/constant propagation.
|
|||
|
|
|||
|
4) Perform global cse.
|
|||
|
|
|||
|
5) Perform another pass of copy/constant propagation.
|
|||
|
|
|||
|
Two passes of copy/constant propagation are done because the first one
|
|||
|
enables more GCSE and the second one helps to clean up the copies that
|
|||
|
GCSE creates. This is needed more for PRE than for Classic because Classic
|
|||
|
GCSE will try to use an existing register containing the common
|
|||
|
subexpression rather than create a new one. This is harder to do for PRE
|
|||
|
because of the code motion (which Classic GCSE doesn't do).
|
|||
|
|
|||
|
Expressions we are interested in GCSE-ing are of the form
|
|||
|
(set (pseudo-reg) (expression)).
|
|||
|
Function want_to_gcse_p says what these are.
|
|||
|
|
|||
|
PRE handles moving invariant expressions out of loops (by treating them as
|
|||
|
partially redundant).
|
|||
|
|
|||
|
Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
|
|||
|
assignment) based GVN (global value numbering). L. T. Simpson's paper
|
|||
|
(Rice University) on value numbering is a useful reference for this.
|
|||
|
|
|||
|
**********************
|
|||
|
|
|||
|
We used to support multiple passes but there are diminishing returns in
|
|||
|
doing so. The first pass usually makes 90% of the changes that are doable.
|
|||
|
A second pass can make a few more changes made possible by the first pass.
|
|||
|
Experiments show any further passes don't make enough changes to justify
|
|||
|
the expense.
|
|||
|
|
|||
|
A study of spec92 using an unlimited number of passes:
|
|||
|
[1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
|
|||
|
[6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
|
|||
|
[12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
|
|||
|
|
|||
|
It was found doing copy propagation between each pass enables further
|
|||
|
substitutions.
|
|||
|
|
|||
|
PRE is quite expensive in complicated functions because the DFA can take
|
|||
|
awhile to converge. Hence we only perform one pass. Macro MAX_PASSES can
|
|||
|
be modified if one wants to experiment.
|
|||
|
|
|||
|
**********************
|
|||
|
|
|||
|
The steps for PRE are:
|
|||
|
|
|||
|
1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
|
|||
|
|
|||
|
2) Perform the data flow analysis for PRE.
|
|||
|
|
|||
|
3) Delete the redundant instructions
|
|||
|
|
|||
|
4) Insert the required copies [if any] that make the partially
|
|||
|
redundant instructions fully redundant.
|
|||
|
|
|||
|
5) For other reaching expressions, insert an instruction to copy the value
|
|||
|
to a newly created pseudo that will reach the redundant instruction.
|
|||
|
|
|||
|
The deletion is done first so that when we do insertions we
|
|||
|
know which pseudo reg to use.
|
|||
|
|
|||
|
Various papers have argued that PRE DFA is expensive (O(n^2)) and others
|
|||
|
argue it is not. The number of iterations for the algorithm to converge
|
|||
|
is typically 2-4 so I don't view it as that expensive (relatively speaking).
|
|||
|
|
|||
|
PRE GCSE depends heavily on the second CSE pass to clean up the copies
|
|||
|
we create. To make an expression reach the place where it's redundant,
|
|||
|
the result of the expression is copied to a new register, and the redundant
|
|||
|
expression is deleted by replacing it with this new register. Classic GCSE
|
|||
|
doesn't have this problem as much as it computes the reaching defs of
|
|||
|
each register in each block and thus can try to use an existing register.
|
|||
|
|
|||
|
**********************
|
|||
|
|
|||
|
A fair bit of simplicity is created by creating small functions for simple
|
|||
|
tasks, even when the function is only called in one place. This may
|
|||
|
measurably slow things down [or may not] by creating more function call
|
|||
|
overhead than is necessary. The source is laid out so that it's trivial
|
|||
|
to make the affected functions inline so that one can measure what speed
|
|||
|
up, if any, can be achieved, and maybe later when things settle things can
|
|||
|
be rearranged.
|
|||
|
|
|||
|
Help stamp out big monolithic functions! */
|
|||
|
|
|||
|
/* GCSE global vars. */
|
|||
|
|
|||
|
/* -dG dump file. */
|
|||
|
static FILE *gcse_file;
|
|||
|
|
|||
|
/* Note whether or not we should run jump optimization after gcse. We
|
|||
|
want to do this for two cases.
|
|||
|
|
|||
|
* If we changed any jumps via cprop.
|
|||
|
|
|||
|
* If we added any labels via edge splitting. */
|
|||
|
|
|||
|
static int run_jump_opt_after_gcse;
|
|||
|
|
|||
|
/* Element I is a list of I's predecessors/successors. */
|
|||
|
static int_list_ptr *s_preds;
|
|||
|
static int_list_ptr *s_succs;
|
|||
|
|
|||
|
/* Element I is the number of predecessors/successors of basic block I. */
|
|||
|
static int *num_preds;
|
|||
|
static int *num_succs;
|
|||
|
|
|||
|
/* Bitmaps are normally not included in debugging dumps.
|
|||
|
However it's useful to be able to print them from GDB.
|
|||
|
We could create special functions for this, but it's simpler to
|
|||
|
just allow passing stderr to the dump_foo fns. Since stderr can
|
|||
|
be a macro, we store a copy here. */
|
|||
|
static FILE *debug_stderr;
|
|||
|
|
|||
|
/* An obstack for our working variables. */
|
|||
|
static struct obstack gcse_obstack;
|
|||
|
|
|||
|
/* Non-zero for each mode that supports (set (reg) (reg)).
|
|||
|
This is trivially true for integer and floating point values.
|
|||
|
It may or may not be true for condition codes. */
|
|||
|
static char can_copy_p[(int) NUM_MACHINE_MODES];
|
|||
|
|
|||
|
/* Non-zero if can_copy_p has been initialized. */
|
|||
|
static int can_copy_init_p;
|
|||
|
|
|||
|
/* Hash table of expressions. */
|
|||
|
|
|||
|
struct expr
|
|||
|
{
|
|||
|
/* The expression (SET_SRC for expressions, PATTERN for assignments). */
|
|||
|
rtx expr;
|
|||
|
/* Index in the available expression bitmaps. */
|
|||
|
int bitmap_index;
|
|||
|
/* Next entry with the same hash. */
|
|||
|
struct expr *next_same_hash;
|
|||
|
/* List of anticipatable occurrences in basic blocks in the function.
|
|||
|
An "anticipatable occurrence" is one that is the first occurrence in the
|
|||
|
basic block, the operands are not modified in the basic block prior
|
|||
|
to the occurrence and the output is not used between the start of
|
|||
|
the block and the occurrence. */
|
|||
|
struct occr *antic_occr;
|
|||
|
/* List of available occurrence in basic blocks in the function.
|
|||
|
An "available occurrence" is one that is the last occurrence in the
|
|||
|
basic block and the operands are not modified by following statements in
|
|||
|
the basic block [including this insn]. */
|
|||
|
struct occr *avail_occr;
|
|||
|
/* Non-null if the computation is PRE redundant.
|
|||
|
The value is the newly created pseudo-reg to record a copy of the
|
|||
|
expression in all the places that reach the redundant copy. */
|
|||
|
rtx reaching_reg;
|
|||
|
};
|
|||
|
|
|||
|
/* Occurrence of an expression.
|
|||
|
There is one per basic block. If a pattern appears more than once the
|
|||
|
last appearance is used [or first for anticipatable expressions]. */
|
|||
|
|
|||
|
struct occr
|
|||
|
{
|
|||
|
/* Next occurrence of this expression. */
|
|||
|
struct occr *next;
|
|||
|
/* The insn that computes the expression. */
|
|||
|
rtx insn;
|
|||
|
/* Non-zero if this [anticipatable] occurrence has been deleted. */
|
|||
|
char deleted_p;
|
|||
|
/* Non-zero if this [available] occurrence has been copied to
|
|||
|
reaching_reg. */
|
|||
|
/* ??? This is mutually exclusive with deleted_p, so they could share
|
|||
|
the same byte. */
|
|||
|
char copied_p;
|
|||
|
};
|
|||
|
|
|||
|
/* Expression and copy propagation hash tables.
|
|||
|
Each hash table is an array of buckets.
|
|||
|
??? It is known that if it were an array of entries, structure elements
|
|||
|
`next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
|
|||
|
not clear whether in the final analysis a sufficient amount of memory would
|
|||
|
be saved as the size of the available expression bitmaps would be larger
|
|||
|
[one could build a mapping table without holes afterwards though].
|
|||
|
Someday I'll perform the computation and figure it out.
|
|||
|
*/
|
|||
|
|
|||
|
/* Total size of the expression hash table, in elements. */
|
|||
|
static int expr_hash_table_size;
|
|||
|
/* The table itself.
|
|||
|
This is an array of `expr_hash_table_size' elements. */
|
|||
|
static struct expr **expr_hash_table;
|
|||
|
|
|||
|
/* Total size of the copy propagation hash table, in elements. */
|
|||
|
static int set_hash_table_size;
|
|||
|
/* The table itself.
|
|||
|
This is an array of `set_hash_table_size' elements. */
|
|||
|
static struct expr **set_hash_table;
|
|||
|
|
|||
|
/* Mapping of uids to cuids.
|
|||
|
Only real insns get cuids. */
|
|||
|
static int *uid_cuid;
|
|||
|
|
|||
|
/* Highest UID in UID_CUID. */
|
|||
|
static int max_uid;
|
|||
|
|
|||
|
/* Get the cuid of an insn. */
|
|||
|
#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
|
|||
|
|
|||
|
/* Number of cuids. */
|
|||
|
static int max_cuid;
|
|||
|
|
|||
|
/* Mapping of cuids to insns. */
|
|||
|
static rtx *cuid_insn;
|
|||
|
|
|||
|
/* Get insn from cuid. */
|
|||
|
#define CUID_INSN(CUID) (cuid_insn[CUID])
|
|||
|
|
|||
|
/* Maximum register number in function prior to doing gcse + 1.
|
|||
|
Registers created during this pass have regno >= max_gcse_regno.
|
|||
|
This is named with "gcse" to not collide with global of same name. */
|
|||
|
static int max_gcse_regno;
|
|||
|
|
|||
|
/* Maximum number of cse-able expressions found. */
|
|||
|
static int n_exprs;
|
|||
|
/* Maximum number of assignments for copy propagation found. */
|
|||
|
static int n_sets;
|
|||
|
|
|||
|
/* Table of registers that are modified.
|
|||
|
For each register, each element is a list of places where the pseudo-reg
|
|||
|
is set.
|
|||
|
|
|||
|
For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
|
|||
|
requires knowledge of which blocks kill which regs [and thus could use
|
|||
|
a bitmap instead of the lists `reg_set_table' uses].
|
|||
|
|
|||
|
`reg_set_table' and could be turned into an array of bitmaps
|
|||
|
(num-bbs x num-regs)
|
|||
|
[however perhaps it may be useful to keep the data as is].
|
|||
|
One advantage of recording things this way is that `reg_set_table' is
|
|||
|
fairly sparse with respect to pseudo regs but for hard regs could be
|
|||
|
fairly dense [relatively speaking].
|
|||
|
And recording sets of pseudo-regs in lists speeds
|
|||
|
up functions like compute_transp since in the case of pseudo-regs we only
|
|||
|
need to iterate over the number of times a pseudo-reg is set, not over the
|
|||
|
number of basic blocks [clearly there is a bit of a slow down in the cases
|
|||
|
where a pseudo is set more than once in a block, however it is believed
|
|||
|
that the net effect is to speed things up]. This isn't done for hard-regs
|
|||
|
because recording call-clobbered hard-regs in `reg_set_table' at each
|
|||
|
function call can consume a fair bit of memory, and iterating over hard-regs
|
|||
|
stored this way in compute_transp will be more expensive. */
|
|||
|
|
|||
|
typedef struct reg_set {
|
|||
|
/* The next setting of this register. */
|
|||
|
struct reg_set *next;
|
|||
|
/* The insn where it was set. */
|
|||
|
rtx insn;
|
|||
|
} reg_set;
|
|||
|
static reg_set **reg_set_table;
|
|||
|
/* Size of `reg_set_table'.
|
|||
|
The table starts out at max_gcse_regno + slop, and is enlarged as
|
|||
|
necessary. */
|
|||
|
static int reg_set_table_size;
|
|||
|
/* Amount to grow `reg_set_table' by when it's full. */
|
|||
|
#define REG_SET_TABLE_SLOP 100
|
|||
|
|
|||
|
/* Array, indexed by basic block number for a list of insns which modify
|
|||
|
memory within that block. */
|
|||
|
static rtx *modify_mem_list;
|
|||
|
|
|||
|
/* Bitmap containing one bit for each register in the program.
|
|||
|
Used when performing GCSE to track which registers have been set since
|
|||
|
the start of the basic block. */
|
|||
|
static sbitmap reg_set_bitmap;
|
|||
|
|
|||
|
/* For each block, a bitmap of registers set in the block.
|
|||
|
This is used by expr_killed_p and compute_transp.
|
|||
|
It is computed during hash table computation and not by compute_sets
|
|||
|
as it includes registers added since the last pass (or between cprop and
|
|||
|
gcse) and it's currently not easy to realloc sbitmap vectors. */
|
|||
|
static sbitmap *reg_set_in_block;
|
|||
|
|
|||
|
/* Various variables for statistics gathering. */
|
|||
|
|
|||
|
/* Memory used in a pass.
|
|||
|
This isn't intended to be absolutely precise. Its intent is only
|
|||
|
to keep an eye on memory usage. */
|
|||
|
static int bytes_used;
|
|||
|
/* GCSE substitutions made. */
|
|||
|
static int gcse_subst_count;
|
|||
|
/* Number of copy instructions created. */
|
|||
|
static int gcse_create_count;
|
|||
|
/* Number of constants propagated. */
|
|||
|
static int const_prop_count;
|
|||
|
/* Number of copys propagated. */
|
|||
|
static int copy_prop_count;
|
|||
|
|
|||
|
extern char *current_function_name;
|
|||
|
extern int current_function_calls_setjmp;
|
|||
|
|
|||
|
/* These variables are used by classic GCSE.
|
|||
|
Normally they'd be defined a bit later, but `rd_gen' needs to
|
|||
|
be declared sooner. */
|
|||
|
|
|||
|
/* A bitmap of all ones for implementing the algorithm for available
|
|||
|
expressions and reaching definitions. */
|
|||
|
/* ??? Available expression bitmaps have a different size than reaching
|
|||
|
definition bitmaps. This should be the larger of the two, however, it
|
|||
|
is not currently used for reaching definitions. */
|
|||
|
static sbitmap u_bitmap;
|
|||
|
|
|||
|
/* Each block has a bitmap of each type.
|
|||
|
The length of each blocks bitmap is:
|
|||
|
|
|||
|
max_cuid - for reaching definitions
|
|||
|
n_exprs - for available expressions
|
|||
|
|
|||
|
Thus we view the bitmaps as 2 dimensional arrays. i.e.
|
|||
|
rd_kill[block_num][cuid_num]
|
|||
|
ae_kill[block_num][expr_num]
|
|||
|
*/
|
|||
|
|
|||
|
/* For reaching defs */
|
|||
|
static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
|
|||
|
|
|||
|
/* for available exprs */
|
|||
|
static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
|
|||
|
|
|||
|
|
|||
|
static void compute_can_copy PROTO ((void));
|
|||
|
|
|||
|
static char *gmalloc PROTO ((unsigned int));
|
|||
|
static char *grealloc PROTO ((char *, unsigned int));
|
|||
|
static char *gcse_alloc PROTO ((unsigned long));
|
|||
|
static void alloc_gcse_mem PROTO ((rtx));
|
|||
|
static void free_gcse_mem PROTO ((void));
|
|||
|
static void alloc_reg_set_mem PROTO ((int));
|
|||
|
static void free_reg_set_mem PROTO ((void));
|
|||
|
static void record_one_set PROTO ((int, rtx));
|
|||
|
static void record_set_info PROTO ((rtx, rtx));
|
|||
|
static void compute_sets PROTO ((rtx));
|
|||
|
|
|||
|
static void hash_scan_insn PROTO ((rtx, int, int));
|
|||
|
static void hash_scan_set PROTO ((rtx, rtx, int));
|
|||
|
static void hash_scan_clobber PROTO ((rtx, rtx));
|
|||
|
static void hash_scan_call PROTO ((rtx, rtx));
|
|||
|
static int want_to_gcse_p PROTO ((rtx));
|
|||
|
static int oprs_unchanged_p PROTO ((rtx, rtx, int));
|
|||
|
static int oprs_anticipatable_p PROTO ((rtx, rtx));
|
|||
|
static int oprs_available_p PROTO ((rtx, rtx));
|
|||
|
static void insert_expr_in_table PROTO ((rtx, enum machine_mode,
|
|||
|
rtx, int, int));
|
|||
|
static void insert_set_in_table PROTO ((rtx, rtx));
|
|||
|
static unsigned int hash_expr PROTO ((rtx, enum machine_mode,
|
|||
|
int *, int));
|
|||
|
static unsigned int hash_expr_1 PROTO ((rtx, enum machine_mode, int *));
|
|||
|
static unsigned int hash_set PROTO ((int, int));
|
|||
|
static int expr_equiv_p PROTO ((rtx, rtx));
|
|||
|
static void record_last_reg_set_info PROTO ((rtx, int));
|
|||
|
static void record_last_mem_set_info PROTO ((rtx));
|
|||
|
static void record_last_set_info PROTO ((rtx, rtx));
|
|||
|
static void compute_hash_table PROTO ((int));
|
|||
|
static void alloc_set_hash_table PROTO ((int));
|
|||
|
static void free_set_hash_table PROTO ((void));
|
|||
|
static void compute_set_hash_table PROTO ((void));
|
|||
|
static void alloc_expr_hash_table PROTO ((int));
|
|||
|
static void free_expr_hash_table PROTO ((void));
|
|||
|
static void compute_expr_hash_table PROTO ((void));
|
|||
|
static void dump_hash_table PROTO ((FILE *, char *, struct expr **,
|
|||
|
int, int));
|
|||
|
static struct expr *lookup_set PROTO ((int, rtx));
|
|||
|
static struct expr *next_set PROTO ((int, struct expr *));
|
|||
|
static void reset_opr_set_tables PROTO ((void));
|
|||
|
static int oprs_not_set_p PROTO ((rtx, rtx));
|
|||
|
static void mark_call PROTO ((rtx));
|
|||
|
static void mark_set PROTO ((rtx, rtx));
|
|||
|
static void mark_clobber PROTO ((rtx, rtx));
|
|||
|
static void mark_oprs_set PROTO ((rtx));
|
|||
|
|
|||
|
static void alloc_cprop_mem PROTO ((int, int));
|
|||
|
static void free_cprop_mem PROTO ((void));
|
|||
|
static void compute_transp PROTO ((rtx, int, sbitmap *, int));
|
|||
|
static void compute_transpout PROTO ((void));
|
|||
|
static void compute_local_properties PROTO ((sbitmap *, sbitmap *,
|
|||
|
sbitmap *, int));
|
|||
|
static void compute_cprop_avinout PROTO ((void));
|
|||
|
static void compute_cprop_data PROTO ((void));
|
|||
|
static void find_used_regs PROTO ((rtx));
|
|||
|
static int try_replace_reg PROTO ((rtx, rtx, rtx));
|
|||
|
static struct expr *find_avail_set PROTO ((int, rtx));
|
|||
|
static int cprop_insn PROTO ((rtx, int));
|
|||
|
static int cprop PROTO ((int));
|
|||
|
static int one_cprop_pass PROTO ((int, int));
|
|||
|
|
|||
|
static void alloc_pre_mem PROTO ((int, int));
|
|||
|
static void free_pre_mem PROTO ((void));
|
|||
|
static void compute_pre_data PROTO ((void));
|
|||
|
static int pre_expr_reaches_here_p PROTO ((int, struct expr *,
|
|||
|
int, int, char *));
|
|||
|
static void insert_insn_end_bb PROTO ((struct expr *, int, int));
|
|||
|
static void pre_insert PROTO ((struct expr **));
|
|||
|
static void pre_insert_copy_insn PROTO ((struct expr *, rtx));
|
|||
|
static void pre_insert_copies PROTO ((void));
|
|||
|
static int pre_delete PROTO ((void));
|
|||
|
static int pre_gcse PROTO ((void));
|
|||
|
static int one_pre_gcse_pass PROTO ((int));
|
|||
|
|
|||
|
static void alloc_code_hoist_mem PROTO ((int, int));
|
|||
|
static void free_code_hoist_mem PROTO ((void));
|
|||
|
static void compute_code_hoist_vbeinout PROTO ((void));
|
|||
|
static void compute_code_hoist_data PROTO ((void));
|
|||
|
static int hoist_expr_reaches_here_p PROTO ((int, int, int, char *));
|
|||
|
static void hoist_code PROTO ((void));
|
|||
|
static int one_code_hoisting_pass PROTO ((void));
|
|||
|
static void alloc_rd_mem PROTO ((int, int));
|
|||
|
static void free_rd_mem PROTO ((void));
|
|||
|
static void handle_rd_kill_set PROTO ((rtx, int, int));
|
|||
|
static void compute_kill_rd PROTO ((void));
|
|||
|
static void compute_rd PROTO ((void));
|
|||
|
static void alloc_avail_expr_mem PROTO ((int, int));
|
|||
|
static void free_avail_expr_mem PROTO ((void));
|
|||
|
static void compute_ae_gen PROTO ((void));
|
|||
|
static int expr_killed_p PROTO ((rtx, int));
|
|||
|
static void compute_ae_kill PROTO ((void));
|
|||
|
static void compute_available PROTO ((void));
|
|||
|
static int expr_reaches_here_p PROTO ((struct occr *, struct expr *,
|
|||
|
int, int, char *));
|
|||
|
static rtx computing_insn PROTO ((struct expr *, rtx));
|
|||
|
static int def_reaches_here_p PROTO ((rtx, rtx));
|
|||
|
static int can_disregard_other_sets PROTO ((struct reg_set**, rtx, int));
|
|||
|
static int handle_avail_expr PROTO ((rtx, struct expr *));
|
|||
|
static int classic_gcse PROTO ((void));
|
|||
|
static int one_classic_gcse_pass PROTO ((int));
|
|||
|
|
|||
|
static void mems_conflict_for_gcse_p PROTO ((rtx, rtx));
|
|||
|
static int load_killed_in_block_p PROTO ((int, int, rtx, int));
|
|||
|
|
|||
|
|
|||
|
/* Entry point for global common subexpression elimination.
|
|||
|
F is the first instruction in the function. */
|
|||
|
|
|||
|
int
|
|||
|
gcse_main (f, file)
|
|||
|
rtx f;
|
|||
|
FILE *file;
|
|||
|
{
|
|||
|
int changed, pass;
|
|||
|
/* Bytes used at start of pass. */
|
|||
|
int initial_bytes_used;
|
|||
|
/* Maximum number of bytes used by a pass. */
|
|||
|
int max_pass_bytes;
|
|||
|
/* Point to release obstack data from for each pass. */
|
|||
|
char *gcse_obstack_bottom;
|
|||
|
|
|||
|
/* We do not construct an accurate cfg in functions which call
|
|||
|
setjmp, so just punt to be safe. */
|
|||
|
if (current_function_calls_setjmp)
|
|||
|
return 0;
|
|||
|
|
|||
|
/* Assume that we do not need to run jump optimizations after gcse. */
|
|||
|
run_jump_opt_after_gcse = 0;
|
|||
|
|
|||
|
/* For calling dump_foo fns from gdb. */
|
|||
|
debug_stderr = stderr;
|
|||
|
gcse_file = file;
|
|||
|
|
|||
|
|
|||
|
/* Identify the basic block information for this function, including
|
|||
|
successors and predecessors. */
|
|||
|
max_gcse_regno = max_reg_num ();
|
|||
|
find_basic_blocks (f, max_gcse_regno, file);
|
|||
|
|
|||
|
/* Return if there's nothing to do. */
|
|||
|
if (n_basic_blocks <= 1)
|
|||
|
{
|
|||
|
/* Free storage allocated by find_basic_blocks. */
|
|||
|
free_basic_block_vars (0);
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* See what modes support reg/reg copy operations. */
|
|||
|
if (! can_copy_init_p)
|
|||
|
{
|
|||
|
compute_can_copy ();
|
|||
|
can_copy_init_p = 1;
|
|||
|
}
|
|||
|
|
|||
|
gcc_obstack_init (&gcse_obstack);
|
|||
|
|
|||
|
/* Allocate and compute predecessors/successors. */
|
|||
|
|
|||
|
s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
|
|||
|
s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
|
|||
|
num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
|
|||
|
num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
|
|||
|
bytes_used = 4 * n_basic_blocks * sizeof (int_list_ptr);
|
|||
|
/* Compute the predecessors and successors for each basic block.
|
|||
|
A nonzero return value indicates that edges were split and thus
|
|||
|
basic block and preds/succs info must be recomputed. */
|
|||
|
if (compute_preds_succs (s_preds, s_succs, num_preds, num_succs, 1) != 0)
|
|||
|
{
|
|||
|
/* Call find_basic_blocks to compute the new number of basic
|
|||
|
blocks and new edge data. */
|
|||
|
find_basic_blocks (f, max_gcse_regno, file);
|
|||
|
|
|||
|
/* This leaks memory until the end of this function. I don't see
|
|||
|
a good way to fix this without introducing more complexity in
|
|||
|
this code. */
|
|||
|
s_preds
|
|||
|
= (int_list_ptr *) alloca (n_basic_blocks* sizeof (int_list_ptr));
|
|||
|
s_succs
|
|||
|
= (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
|
|||
|
num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
|
|||
|
num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
|
|||
|
bytes_used = 4 * n_basic_blocks * sizeof (int_list_ptr);
|
|||
|
|
|||
|
/* Now recompute predecessor and successor information. */
|
|||
|
compute_preds_succs (s_preds, s_succs, num_preds, num_succs, 0);
|
|||
|
|
|||
|
/* We split some edges, which introduces labels; run jump optimization
|
|||
|
after gcse so that any labels which were not used are deleted so as
|
|||
|
not to pessimize loop optimizations. */
|
|||
|
run_jump_opt_after_gcse = 1;
|
|||
|
}
|
|||
|
|
|||
|
if (file)
|
|||
|
dump_bb_data (file, s_preds, s_succs, 0);
|
|||
|
|
|||
|
/* We need alias analysis. */
|
|||
|
init_alias_analysis ();
|
|||
|
|
|||
|
/* Record where pseudo-registers are set.
|
|||
|
This data is kept accurate during each pass.
|
|||
|
??? We could also record hard-reg information here
|
|||
|
[since it's unchanging], however it is currently done during
|
|||
|
hash table computation.
|
|||
|
|
|||
|
It may be tempting to compute MEM set information here too, but MEM
|
|||
|
sets will be subject to code motion one day and thus we need to compute
|
|||
|
information about memory sets when we build the hash tables. */
|
|||
|
|
|||
|
alloc_reg_set_mem (max_gcse_regno);
|
|||
|
compute_sets (f);
|
|||
|
|
|||
|
pass = 0;
|
|||
|
initial_bytes_used = bytes_used;
|
|||
|
max_pass_bytes = 0;
|
|||
|
gcse_obstack_bottom = gcse_alloc (1);
|
|||
|
changed = 1;
|
|||
|
while (changed && pass < MAX_PASSES)
|
|||
|
{
|
|||
|
changed = 0;
|
|||
|
if (file)
|
|||
|
fprintf (file, "GCSE pass %d\n\n", pass + 1);
|
|||
|
|
|||
|
/* Initialize bytes_used to the space for the pred/succ lists,
|
|||
|
and the reg_set_table data. */
|
|||
|
bytes_used = initial_bytes_used;
|
|||
|
|
|||
|
/* Each pass may create new registers, so recalculate each time. */
|
|||
|
max_gcse_regno = max_reg_num ();
|
|||
|
|
|||
|
alloc_gcse_mem (f);
|
|||
|
|
|||
|
/* Don't allow constant propagation to modify jumps
|
|||
|
during this pass. */
|
|||
|
changed = one_cprop_pass (pass + 1, 0);
|
|||
|
|
|||
|
if (optimize_size)
|
|||
|
changed |= one_classic_gcse_pass (pass + 1);
|
|||
|
else
|
|||
|
changed |= one_pre_gcse_pass (pass + 1);
|
|||
|
|
|||
|
if (max_pass_bytes < bytes_used)
|
|||
|
max_pass_bytes = bytes_used;
|
|||
|
|
|||
|
/* Free up memory, then reallocate for code hoisting. We can
|
|||
|
not re-use the existing allocated memory because the tables
|
|||
|
will not have info for the insns or registers created by
|
|||
|
partial redundancy elimination. */
|
|||
|
free_gcse_mem ();
|
|||
|
|
|||
|
/* CYGNUS LOCAL hoisting/law */
|
|||
|
/* It does not make sense to run code hoisting unless we optimizing
|
|||
|
for code size -- it rarely makes programs faster, and can make
|
|||
|
them bigger if we did partial redundancy elimination. */
|
|||
|
if (optimize_size)
|
|||
|
{
|
|||
|
max_gcse_regno = max_reg_num ();
|
|||
|
alloc_gcse_mem (f);
|
|||
|
changed |= one_code_hoisting_pass ();
|
|||
|
free_gcse_mem ();
|
|||
|
|
|||
|
if (max_pass_bytes < bytes_used)
|
|||
|
max_pass_bytes = bytes_used;
|
|||
|
}
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
|
|||
|
if (file)
|
|||
|
{
|
|||
|
fprintf (file, "\n");
|
|||
|
fflush (file);
|
|||
|
}
|
|||
|
obstack_free (&gcse_obstack, gcse_obstack_bottom);
|
|||
|
pass++;
|
|||
|
}
|
|||
|
|
|||
|
/* Do one last pass of copy propagation, including cprop into
|
|||
|
conditional jumps. */
|
|||
|
|
|||
|
max_gcse_regno = max_reg_num ();
|
|||
|
alloc_gcse_mem (f);
|
|||
|
/* This time, go ahead and allow cprop to alter jumps. */
|
|||
|
one_cprop_pass (pass + 1, 1);
|
|||
|
free_gcse_mem ();
|
|||
|
|
|||
|
if (file)
|
|||
|
{
|
|||
|
fprintf (file, "GCSE of %s: %d basic blocks, ",
|
|||
|
current_function_name, n_basic_blocks);
|
|||
|
fprintf (file, "%d pass%s, %d bytes\n\n",
|
|||
|
pass, pass > 1 ? "es" : "", max_pass_bytes);
|
|||
|
}
|
|||
|
|
|||
|
/* Free our obstack. */
|
|||
|
obstack_free (&gcse_obstack, NULL_PTR);
|
|||
|
/* Free reg_set_table. */
|
|||
|
free_reg_set_mem ();
|
|||
|
/* Free storage used to record predecessor/successor data. */
|
|||
|
free_bb_mem ();
|
|||
|
/* Free storage allocated by find_basic_blocks. */
|
|||
|
free_basic_block_vars (0);
|
|||
|
|
|||
|
/* We are finished with alias analysis. */
|
|||
|
end_alias_analysis ();
|
|||
|
|
|||
|
/* Record where pseudo-registers are set. */
|
|||
|
return run_jump_opt_after_gcse;
|
|||
|
}
|
|||
|
|
|||
|
/* Misc. utilities. */
|
|||
|
|
|||
|
/* Compute which modes support reg/reg copy operations. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_can_copy ()
|
|||
|
{
|
|||
|
int i;
|
|||
|
rtx reg,insn;
|
|||
|
char *free_point = (char *) oballoc (1);
|
|||
|
|
|||
|
bzero (can_copy_p, NUM_MACHINE_MODES);
|
|||
|
|
|||
|
start_sequence ();
|
|||
|
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
|||
|
{
|
|||
|
switch (GET_MODE_CLASS (i))
|
|||
|
{
|
|||
|
case MODE_CC :
|
|||
|
#ifdef AVOID_CCMODE_COPIES
|
|||
|
can_copy_p[i] = 0;
|
|||
|
#else
|
|||
|
reg = gen_rtx (REG, (enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
|
|||
|
insn = emit_insn (gen_rtx (SET, VOIDmode, reg, reg));
|
|||
|
if (recog (PATTERN (insn), insn, NULL_PTR) >= 0)
|
|||
|
can_copy_p[i] = 1;
|
|||
|
#endif
|
|||
|
break;
|
|||
|
default :
|
|||
|
can_copy_p[i] = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
end_sequence ();
|
|||
|
|
|||
|
/* Free the objects we just allocated. */
|
|||
|
obfree (free_point);
|
|||
|
}
|
|||
|
|
|||
|
/* Cover function to xmalloc to record bytes allocated. */
|
|||
|
|
|||
|
static char *
|
|||
|
gmalloc (size)
|
|||
|
unsigned int size;
|
|||
|
{
|
|||
|
bytes_used += size;
|
|||
|
return xmalloc (size);
|
|||
|
}
|
|||
|
|
|||
|
/* Cover function to xrealloc.
|
|||
|
We don't record the additional size since we don't know it.
|
|||
|
It won't affect memory usage stats much anyway. */
|
|||
|
|
|||
|
static char *
|
|||
|
grealloc (ptr, size)
|
|||
|
char *ptr;
|
|||
|
unsigned int size;
|
|||
|
{
|
|||
|
return xrealloc (ptr, size);
|
|||
|
}
|
|||
|
|
|||
|
/* Cover function to obstack_alloc.
|
|||
|
We don't need to record the bytes allocated here since
|
|||
|
obstack_chunk_alloc is set to gmalloc. */
|
|||
|
|
|||
|
static char *
|
|||
|
gcse_alloc (size)
|
|||
|
unsigned long size;
|
|||
|
{
|
|||
|
return (char *) obstack_alloc (&gcse_obstack, size);
|
|||
|
}
|
|||
|
|
|||
|
/* Allocate memory for the cuid mapping array,
|
|||
|
and reg/memory set tracking tables.
|
|||
|
|
|||
|
This is called at the start of each pass. */
|
|||
|
|
|||
|
static void
|
|||
|
alloc_gcse_mem (f)
|
|||
|
rtx f;
|
|||
|
{
|
|||
|
int i,n;
|
|||
|
rtx insn;
|
|||
|
|
|||
|
/* Find the largest UID and create a mapping from UIDs to CUIDs.
|
|||
|
CUIDs are like UIDs except they increase monotonically, have no gaps,
|
|||
|
and only apply to real insns. */
|
|||
|
|
|||
|
max_uid = get_max_uid ();
|
|||
|
n = (max_uid + 1) * sizeof (int);
|
|||
|
uid_cuid = (int *) gmalloc (n);
|
|||
|
bzero ((char *) uid_cuid, n);
|
|||
|
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
INSN_CUID (insn) = i++;
|
|||
|
else
|
|||
|
INSN_CUID (insn) = i;
|
|||
|
}
|
|||
|
|
|||
|
/* Create a table mapping cuids to insns. */
|
|||
|
|
|||
|
max_cuid = i;
|
|||
|
n = (max_cuid + 1) * sizeof (rtx);
|
|||
|
cuid_insn = (rtx *) gmalloc (n);
|
|||
|
bzero ((char *) cuid_insn, n);
|
|||
|
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
{
|
|||
|
CUID_INSN (i) = insn;
|
|||
|
i++;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Allocate vars to track sets of regs. */
|
|||
|
|
|||
|
reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno);
|
|||
|
|
|||
|
/* Allocate vars to track sets of regs, memory per block. */
|
|||
|
|
|||
|
reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
|
|||
|
max_gcse_regno);
|
|||
|
|
|||
|
/* Allocate array to keep a list of insns which modify memory in each
|
|||
|
basic block. */
|
|||
|
modify_mem_list = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx *));
|
|||
|
}
|
|||
|
|
|||
|
/* Free memory allocated by alloc_gcse_mem. */
|
|||
|
|
|||
|
static void
|
|||
|
free_gcse_mem ()
|
|||
|
{
|
|||
|
free (uid_cuid);
|
|||
|
free (cuid_insn);
|
|||
|
|
|||
|
free (reg_set_bitmap);
|
|||
|
|
|||
|
free (reg_set_in_block);
|
|||
|
free (modify_mem_list);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Compute the local properties of each recorded expression.
|
|||
|
Local properties are those that are defined by the block, irrespective
|
|||
|
of other blocks.
|
|||
|
|
|||
|
An expression is transparent in a block if its operands are not modified
|
|||
|
in the block.
|
|||
|
|
|||
|
An expression is computed (locally available) in a block if it is computed
|
|||
|
at least once and expression would contain the same value if the
|
|||
|
computation was moved to the end of the block.
|
|||
|
|
|||
|
An expression is locally anticipatable in a block if it is computed at
|
|||
|
least once and expression would contain the same value if the computation
|
|||
|
was moved to the beginning of the block.
|
|||
|
|
|||
|
We call this routine for cprop, pre and code hoisting. They all
|
|||
|
compute basically the same information and thus can easily share
|
|||
|
this code.
|
|||
|
|
|||
|
TRANSP, COMP, and ANTLOC are destination sbitmaps for recording
|
|||
|
local properties. If NULL, then it is not necessary to compute
|
|||
|
or record that particular property.
|
|||
|
|
|||
|
SETP controls which hash table to look at. If zero, this routine
|
|||
|
looks at the expr hash table; if nonzero this routine looks at
|
|||
|
the set hash table. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_local_properties (transp, comp, antloc, setp)
|
|||
|
sbitmap *transp;
|
|||
|
sbitmap *comp;
|
|||
|
sbitmap *antloc;
|
|||
|
int setp;
|
|||
|
{
|
|||
|
int i, hash_table_size;
|
|||
|
struct expr **hash_table;
|
|||
|
|
|||
|
/* Initialize any bitmaps that were passed in. */
|
|||
|
if (transp)
|
|||
|
sbitmap_vector_ones (transp, n_basic_blocks);
|
|||
|
if (comp)
|
|||
|
sbitmap_vector_zero (comp, n_basic_blocks);
|
|||
|
if (antloc)
|
|||
|
sbitmap_vector_zero (antloc, n_basic_blocks);
|
|||
|
|
|||
|
/* We use the same code for cprop, pre and hoisting. For cprop
|
|||
|
we care about the set hash table, for pre and hoisting we
|
|||
|
care about the expr hash table. */
|
|||
|
hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
|
|||
|
hash_table = setp ? set_hash_table : expr_hash_table;
|
|||
|
|
|||
|
for (i = 0; i < hash_table_size; i++)
|
|||
|
{
|
|||
|
struct expr *expr;
|
|||
|
|
|||
|
for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
|
|||
|
{
|
|||
|
struct occr *occr;
|
|||
|
int indx = expr->bitmap_index;
|
|||
|
|
|||
|
/* The expression is transparent in this block if it is not killed.
|
|||
|
We start by assuming all are transparent [none are killed], and
|
|||
|
then reset the bits for those that are. */
|
|||
|
|
|||
|
if (transp)
|
|||
|
compute_transp (expr->expr, indx, transp, setp);
|
|||
|
|
|||
|
/* The occurrences recorded in antic_occr are exactly those that
|
|||
|
we want to set to non-zero in ANTLOC. */
|
|||
|
|
|||
|
if (antloc)
|
|||
|
{
|
|||
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
|||
|
{
|
|||
|
int bb = BLOCK_NUM (occr->insn);
|
|||
|
SET_BIT (antloc[bb], indx);
|
|||
|
|
|||
|
/* While we're scanning the table, this is a good place to
|
|||
|
initialize this. */
|
|||
|
occr->deleted_p = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* The occurrences recorded in avail_occr are exactly those that
|
|||
|
we want to set to non-zero in COMP. */
|
|||
|
if (comp)
|
|||
|
{
|
|||
|
|
|||
|
for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
|
|||
|
{
|
|||
|
int bb = BLOCK_NUM (occr->insn);
|
|||
|
SET_BIT (comp[bb], indx);
|
|||
|
|
|||
|
/* While we're scanning the table, this is a good place to
|
|||
|
initialize this. */
|
|||
|
occr->copied_p = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* While we're scanning the table, this is a good place to
|
|||
|
initialize this. */
|
|||
|
expr->reaching_reg = 0;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Register set information.
|
|||
|
|
|||
|
`reg_set_table' records where each register is set or otherwise
|
|||
|
modified. */
|
|||
|
|
|||
|
static struct obstack reg_set_obstack;
|
|||
|
|
|||
|
static void
|
|||
|
alloc_reg_set_mem (n_regs)
|
|||
|
int n_regs;
|
|||
|
{
|
|||
|
int n;
|
|||
|
|
|||
|
reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
|
|||
|
n = reg_set_table_size * sizeof (struct reg_set *);
|
|||
|
reg_set_table = (struct reg_set **) gmalloc (n);
|
|||
|
bzero ((char *) reg_set_table, n);
|
|||
|
|
|||
|
gcc_obstack_init (®_set_obstack);
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
free_reg_set_mem ()
|
|||
|
{
|
|||
|
free (reg_set_table);
|
|||
|
obstack_free (®_set_obstack, NULL_PTR);
|
|||
|
}
|
|||
|
|
|||
|
/* Record REGNO in the reg_set table. */
|
|||
|
|
|||
|
static void
|
|||
|
record_one_set (regno, insn)
|
|||
|
int regno;
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
/* allocate a new reg_set element and link it onto the list */
|
|||
|
struct reg_set *new_reg_info, *reg_info_ptr1, *reg_info_ptr2;
|
|||
|
|
|||
|
/* If the table isn't big enough, enlarge it. */
|
|||
|
if (regno >= reg_set_table_size)
|
|||
|
{
|
|||
|
int new_size = regno + REG_SET_TABLE_SLOP;
|
|||
|
reg_set_table = (struct reg_set **)
|
|||
|
grealloc ((char *) reg_set_table,
|
|||
|
new_size * sizeof (struct reg_set *));
|
|||
|
bzero ((char *) (reg_set_table + reg_set_table_size),
|
|||
|
(new_size - reg_set_table_size) * sizeof (struct reg_set *));
|
|||
|
reg_set_table_size = new_size;
|
|||
|
}
|
|||
|
|
|||
|
new_reg_info = (struct reg_set *) obstack_alloc (®_set_obstack,
|
|||
|
sizeof (struct reg_set));
|
|||
|
bytes_used += sizeof (struct reg_set);
|
|||
|
new_reg_info->insn = insn;
|
|||
|
new_reg_info->next = NULL;
|
|||
|
if (reg_set_table[regno] == NULL)
|
|||
|
reg_set_table[regno] = new_reg_info;
|
|||
|
else
|
|||
|
{
|
|||
|
reg_info_ptr1 = reg_info_ptr2 = reg_set_table[regno];
|
|||
|
/* ??? One could keep a "last" pointer to speed this up. */
|
|||
|
while (reg_info_ptr1 != NULL)
|
|||
|
{
|
|||
|
reg_info_ptr2 = reg_info_ptr1;
|
|||
|
reg_info_ptr1 = reg_info_ptr1->next;
|
|||
|
}
|
|||
|
reg_info_ptr2->next = new_reg_info;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* For communication between next two functions (via note_stores). */
|
|||
|
static rtx record_set_insn;
|
|||
|
|
|||
|
/* Called from compute_sets via note_stores to handle one
|
|||
|
SET or CLOBBER in an insn. */
|
|||
|
|
|||
|
static void
|
|||
|
record_set_info (dest, setter)
|
|||
|
rtx dest, setter;
|
|||
|
{
|
|||
|
if (GET_CODE (dest) == SUBREG)
|
|||
|
dest = SUBREG_REG (dest);
|
|||
|
|
|||
|
if (GET_CODE (dest) == REG)
|
|||
|
{
|
|||
|
if (REGNO (dest) >= FIRST_PSEUDO_REGISTER)
|
|||
|
record_one_set (REGNO (dest), record_set_insn);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Scan the function and record each set of each pseudo-register.
|
|||
|
|
|||
|
This is called once, at the start of the gcse pass.
|
|||
|
See the comments for `reg_set_table' for further docs. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_sets (f)
|
|||
|
rtx f;
|
|||
|
{
|
|||
|
rtx insn = f;
|
|||
|
|
|||
|
while (insn)
|
|||
|
{
|
|||
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
{
|
|||
|
record_set_insn = insn;
|
|||
|
note_stores (PATTERN (insn), record_set_info);
|
|||
|
}
|
|||
|
insn = NEXT_INSN (insn);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Hash table support. */
|
|||
|
|
|||
|
#define NEVER_SET -1
|
|||
|
|
|||
|
/* For each register, the cuid of the first/last insn in the block to set it,
|
|||
|
or -1 if not set. */
|
|||
|
static int *reg_first_set;
|
|||
|
static int *reg_last_set;
|
|||
|
|
|||
|
/* Perform a quick check whether X, the source of a set, is something
|
|||
|
we want to consider for GCSE. */
|
|||
|
|
|||
|
static int
|
|||
|
want_to_gcse_p (x)
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
enum rtx_code code = GET_CODE (x);
|
|||
|
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case REG:
|
|||
|
case SUBREG:
|
|||
|
case CONST_INT:
|
|||
|
case CONST_DOUBLE:
|
|||
|
case CALL:
|
|||
|
return 0;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Used for communication between mems_conflict_for_gcse_p and
|
|||
|
load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
|
|||
|
conflict between two memory references. */
|
|||
|
static int gcse_mems_conflict_p;
|
|||
|
|
|||
|
/* Used for communication between mems_conflict_for_gcse_p and
|
|||
|
load_killed_in_block_p. A memory reference for a load instruction,
|
|||
|
mems_conflict_for_gcse_p will see if a memory store conflicts with
|
|||
|
this memory load. */
|
|||
|
static rtx gcse_mem_operand;
|
|||
|
|
|||
|
/* DEST is the output of an instruction. If it is a memory reference, and
|
|||
|
possibly conflicts with the load found in gcse_mem_operand, then set
|
|||
|
gcse_mems_conflict_p to a nonzero value. */
|
|||
|
|
|||
|
static void
|
|||
|
mems_conflict_for_gcse_p (dest, setter)
|
|||
|
rtx dest, setter;
|
|||
|
{
|
|||
|
while (GET_CODE (dest) == SUBREG
|
|||
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
|||
|
|| GET_CODE (dest) == SIGN_EXTRACT
|
|||
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
|||
|
dest = XEXP (dest, 0);
|
|||
|
|
|||
|
/* If DEST is not a MEM, then it will not conflict with the load. Note
|
|||
|
that function calls are assumed to clobber memory, but are handled
|
|||
|
elsewhere. */
|
|||
|
if (GET_CODE (dest) != MEM)
|
|||
|
return;
|
|||
|
|
|||
|
if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
|
|||
|
rtx_addr_varies_p))
|
|||
|
gcse_mems_conflict_p = 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Return nonzero if the expression in X (a memory reference) is killed
|
|||
|
in block BB before or after the insn with the CUID in UID_LIMIT.
|
|||
|
AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
|
|||
|
before UID_LIMIT.
|
|||
|
|
|||
|
To check the entire block, set UID_LIMIT to max_uid + 1 and
|
|||
|
AVAIL_P to 0. */
|
|||
|
|
|||
|
static int
|
|||
|
load_killed_in_block_p (bb, uid_limit, x, avail_p)
|
|||
|
int bb;
|
|||
|
int uid_limit;
|
|||
|
rtx x;
|
|||
|
int avail_p;
|
|||
|
{
|
|||
|
rtx list_entry = modify_mem_list[bb];
|
|||
|
while (list_entry)
|
|||
|
{
|
|||
|
rtx setter;
|
|||
|
/* Ignore entries in the list that do not apply. */
|
|||
|
if ((avail_p
|
|||
|
&& INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
|
|||
|
|| (! avail_p
|
|||
|
&& INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
|
|||
|
{
|
|||
|
list_entry = XEXP (list_entry, 1);
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
setter = XEXP (list_entry, 0);
|
|||
|
|
|||
|
/* If SETTER is a call everything is clobbered. Note that calls
|
|||
|
to pure functions are never put on the list, so we need not
|
|||
|
worry about them. */
|
|||
|
if (GET_CODE (setter) == CALL_INSN)
|
|||
|
return 1;
|
|||
|
|
|||
|
/* SETTER must be an INSN of some kind that sets memory. Call
|
|||
|
note_stores to examine each hunk of memory that is modified.
|
|||
|
|
|||
|
The note_stores interface is pretty limited, so we have to
|
|||
|
communicate via global variables. Yuk. */
|
|||
|
gcse_mem_operand = x;
|
|||
|
gcse_mems_conflict_p = 0;
|
|||
|
note_stores (PATTERN (setter), mems_conflict_for_gcse_p);
|
|||
|
if (gcse_mems_conflict_p)
|
|||
|
return 1;
|
|||
|
list_entry = XEXP (list_entry, 1);
|
|||
|
}
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Return non-zero if the operands of expression X are unchanged from the
|
|||
|
start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
|
|||
|
or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
|
|||
|
|
|||
|
static int
|
|||
|
oprs_unchanged_p (x, insn, avail_p)
|
|||
|
rtx x, insn;
|
|||
|
int avail_p;
|
|||
|
{
|
|||
|
int i;
|
|||
|
enum rtx_code code;
|
|||
|
char *fmt;
|
|||
|
|
|||
|
/* repeat is used to turn tail-recursion into iteration. */
|
|||
|
repeat:
|
|||
|
|
|||
|
if (x == 0)
|
|||
|
return 1;
|
|||
|
|
|||
|
code = GET_CODE (x);
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case REG:
|
|||
|
if (avail_p)
|
|||
|
return (reg_last_set[REGNO (x)] == NEVER_SET
|
|||
|
|| reg_last_set[REGNO (x)] < INSN_CUID (insn));
|
|||
|
else
|
|||
|
return (reg_first_set[REGNO (x)] == NEVER_SET
|
|||
|
|| reg_first_set[REGNO (x)] >= INSN_CUID (insn));
|
|||
|
|
|||
|
case MEM:
|
|||
|
if (load_killed_in_block_p (BLOCK_NUM (insn), INSN_CUID (insn),
|
|||
|
x, avail_p))
|
|||
|
return 0;
|
|||
|
|
|||
|
/* There is no conflict for the memory locations. Now check that the
|
|||
|
address itself has not changed. */
|
|||
|
x = XEXP (x, 0);
|
|||
|
goto repeat;
|
|||
|
|
|||
|
case PRE_DEC:
|
|||
|
case PRE_INC:
|
|||
|
case POST_DEC:
|
|||
|
case POST_INC:
|
|||
|
return 0;
|
|||
|
|
|||
|
case PC:
|
|||
|
case CC0: /*FIXME*/
|
|||
|
case CONST:
|
|||
|
case CONST_INT:
|
|||
|
case CONST_DOUBLE:
|
|||
|
case SYMBOL_REF:
|
|||
|
case LABEL_REF:
|
|||
|
case ADDR_VEC:
|
|||
|
case ADDR_DIFF_VEC:
|
|||
|
return 1;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
i = GET_RTX_LENGTH (code) - 1;
|
|||
|
fmt = GET_RTX_FORMAT (code);
|
|||
|
for (; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
{
|
|||
|
rtx tem = XEXP (x, i);
|
|||
|
|
|||
|
/* If we are about to do the last recursive call
|
|||
|
needed at this level, change it into iteration.
|
|||
|
This function is called enough to be worth it. */
|
|||
|
if (i == 0)
|
|||
|
{
|
|||
|
x = tem;
|
|||
|
goto repeat;
|
|||
|
}
|
|||
|
if (! oprs_unchanged_p (tem, insn, avail_p))
|
|||
|
return 0;
|
|||
|
}
|
|||
|
else if (fmt[i] == 'E')
|
|||
|
{
|
|||
|
int j;
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
{
|
|||
|
if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
|
|||
|
return 0;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Return non-zero if the operands of expression X are unchanged from
|
|||
|
the start of INSN's basic block up to but not including INSN. */
|
|||
|
|
|||
|
static int
|
|||
|
oprs_anticipatable_p (x, insn)
|
|||
|
rtx x, insn;
|
|||
|
{
|
|||
|
return oprs_unchanged_p (x, insn, 0);
|
|||
|
}
|
|||
|
|
|||
|
/* Return non-zero if the operands of expression X are unchanged from
|
|||
|
INSN to the end of INSN's basic block. */
|
|||
|
|
|||
|
static int
|
|||
|
oprs_available_p (x, insn)
|
|||
|
rtx x, insn;
|
|||
|
{
|
|||
|
return oprs_unchanged_p (x, insn, 1);
|
|||
|
}
|
|||
|
|
|||
|
/* Hash expression X.
|
|||
|
MODE is only used if X is a CONST_INT.
|
|||
|
A boolean indicating if a volatile operand is found or if the expression
|
|||
|
contains something we don't want to insert in the table is stored in
|
|||
|
DO_NOT_RECORD_P.
|
|||
|
|
|||
|
??? One might want to merge this with canon_hash. Later. */
|
|||
|
|
|||
|
static unsigned int
|
|||
|
hash_expr (x, mode, do_not_record_p, hash_table_size)
|
|||
|
rtx x;
|
|||
|
enum machine_mode mode;
|
|||
|
int *do_not_record_p;
|
|||
|
int hash_table_size;
|
|||
|
{
|
|||
|
unsigned int hash;
|
|||
|
|
|||
|
*do_not_record_p = 0;
|
|||
|
|
|||
|
hash = hash_expr_1 (x, mode, do_not_record_p);
|
|||
|
return hash % hash_table_size;
|
|||
|
}
|
|||
|
|
|||
|
/* Subroutine of hash_expr to do the actual work. */
|
|||
|
|
|||
|
static unsigned int
|
|||
|
hash_expr_1 (x, mode, do_not_record_p)
|
|||
|
rtx x;
|
|||
|
enum machine_mode mode;
|
|||
|
int *do_not_record_p;
|
|||
|
{
|
|||
|
int i, j;
|
|||
|
unsigned hash = 0;
|
|||
|
enum rtx_code code;
|
|||
|
char *fmt;
|
|||
|
|
|||
|
/* repeat is used to turn tail-recursion into iteration. */
|
|||
|
repeat:
|
|||
|
|
|||
|
if (x == 0)
|
|||
|
return hash;
|
|||
|
|
|||
|
code = GET_CODE (x);
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case REG:
|
|||
|
{
|
|||
|
register int regno = REGNO (x);
|
|||
|
hash += ((unsigned) REG << 7) + regno;
|
|||
|
return hash;
|
|||
|
}
|
|||
|
|
|||
|
case CONST_INT:
|
|||
|
{
|
|||
|
unsigned HOST_WIDE_INT tem = INTVAL (x);
|
|||
|
hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
|
|||
|
return hash;
|
|||
|
}
|
|||
|
|
|||
|
case CONST_DOUBLE:
|
|||
|
/* This is like the general case, except that it only counts
|
|||
|
the integers representing the constant. */
|
|||
|
hash += (unsigned) code + (unsigned) GET_MODE (x);
|
|||
|
if (GET_MODE (x) != VOIDmode)
|
|||
|
for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
|
|||
|
{
|
|||
|
unsigned tem = XINT (x, i);
|
|||
|
hash += tem;
|
|||
|
}
|
|||
|
else
|
|||
|
hash += ((unsigned) CONST_DOUBLE_LOW (x)
|
|||
|
+ (unsigned) CONST_DOUBLE_HIGH (x));
|
|||
|
return hash;
|
|||
|
|
|||
|
/* Assume there is only one rtx object for any given label. */
|
|||
|
case LABEL_REF:
|
|||
|
/* We don't hash on the address of the CODE_LABEL to avoid bootstrap
|
|||
|
differences and differences between each stage's debugging dumps. */
|
|||
|
hash += ((unsigned) LABEL_REF << 7) + CODE_LABEL_NUMBER (XEXP (x, 0));
|
|||
|
return hash;
|
|||
|
|
|||
|
case SYMBOL_REF:
|
|||
|
{
|
|||
|
/* Don't hash on the symbol's address to avoid bootstrap differences.
|
|||
|
Different hash values may cause expressions to be recorded in
|
|||
|
different orders and thus different registers to be used in the
|
|||
|
final assembler. This also avoids differences in the dump files
|
|||
|
between various stages. */
|
|||
|
unsigned int h = 0;
|
|||
|
unsigned char *p = (unsigned char *) XSTR (x, 0);
|
|||
|
while (*p)
|
|||
|
h += (h << 7) + *p++; /* ??? revisit */
|
|||
|
hash += ((unsigned) SYMBOL_REF << 7) + h;
|
|||
|
return hash;
|
|||
|
}
|
|||
|
|
|||
|
case MEM:
|
|||
|
if (MEM_VOLATILE_P (x))
|
|||
|
{
|
|||
|
*do_not_record_p = 1;
|
|||
|
return 0;
|
|||
|
}
|
|||
|
hash += (unsigned) MEM;
|
|||
|
x = XEXP (x, 0);
|
|||
|
goto repeat;
|
|||
|
|
|||
|
case PRE_DEC:
|
|||
|
case PRE_INC:
|
|||
|
case POST_DEC:
|
|||
|
case POST_INC:
|
|||
|
case PC:
|
|||
|
case CC0:
|
|||
|
case CALL:
|
|||
|
case UNSPEC_VOLATILE:
|
|||
|
*do_not_record_p = 1;
|
|||
|
return 0;
|
|||
|
|
|||
|
case ASM_OPERANDS:
|
|||
|
if (MEM_VOLATILE_P (x))
|
|||
|
{
|
|||
|
*do_not_record_p = 1;
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
i = GET_RTX_LENGTH (code) - 1;
|
|||
|
hash += (unsigned) code + (unsigned) GET_MODE (x);
|
|||
|
fmt = GET_RTX_FORMAT (code);
|
|||
|
for (; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
{
|
|||
|
rtx tem = XEXP (x, i);
|
|||
|
|
|||
|
/* If we are about to do the last recursive call
|
|||
|
needed at this level, change it into iteration.
|
|||
|
This function is called enough to be worth it. */
|
|||
|
if (i == 0)
|
|||
|
{
|
|||
|
x = tem;
|
|||
|
goto repeat;
|
|||
|
}
|
|||
|
hash += hash_expr_1 (tem, 0, do_not_record_p);
|
|||
|
if (*do_not_record_p)
|
|||
|
return 0;
|
|||
|
}
|
|||
|
else if (fmt[i] == 'E')
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
{
|
|||
|
hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
|
|||
|
if (*do_not_record_p)
|
|||
|
return 0;
|
|||
|
}
|
|||
|
else if (fmt[i] == 's')
|
|||
|
{
|
|||
|
register unsigned char *p = (unsigned char *) XSTR (x, i);
|
|||
|
if (p)
|
|||
|
while (*p)
|
|||
|
hash += *p++;
|
|||
|
}
|
|||
|
else if (fmt[i] == 'i')
|
|||
|
{
|
|||
|
register unsigned tem = XINT (x, i);
|
|||
|
hash += tem;
|
|||
|
}
|
|||
|
else
|
|||
|
abort ();
|
|||
|
}
|
|||
|
|
|||
|
return hash;
|
|||
|
}
|
|||
|
|
|||
|
/* Hash a set of register REGNO.
|
|||
|
|
|||
|
Sets are hashed on the register that is set.
|
|||
|
This simplifies the PRE copy propagation code.
|
|||
|
|
|||
|
??? May need to make things more elaborate. Later, as necessary. */
|
|||
|
|
|||
|
static unsigned int
|
|||
|
hash_set (regno, hash_table_size)
|
|||
|
int regno;
|
|||
|
int hash_table_size;
|
|||
|
{
|
|||
|
unsigned int hash;
|
|||
|
|
|||
|
hash = regno;
|
|||
|
return hash % hash_table_size;
|
|||
|
}
|
|||
|
|
|||
|
/* Return non-zero if exp1 is equivalent to exp2.
|
|||
|
??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
|
|||
|
|
|||
|
static int
|
|||
|
expr_equiv_p (x, y)
|
|||
|
rtx x, y;
|
|||
|
{
|
|||
|
register int i, j;
|
|||
|
register enum rtx_code code;
|
|||
|
register char *fmt;
|
|||
|
|
|||
|
if (x == y)
|
|||
|
return 1;
|
|||
|
if (x == 0 || y == 0)
|
|||
|
return x == y;
|
|||
|
|
|||
|
code = GET_CODE (x);
|
|||
|
if (code != GET_CODE (y))
|
|||
|
return 0;
|
|||
|
|
|||
|
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
|
|||
|
if (GET_MODE (x) != GET_MODE (y))
|
|||
|
return 0;
|
|||
|
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case PC:
|
|||
|
case CC0:
|
|||
|
return x == y;
|
|||
|
|
|||
|
case CONST_INT:
|
|||
|
return INTVAL (x) == INTVAL (y);
|
|||
|
|
|||
|
case LABEL_REF:
|
|||
|
return XEXP (x, 0) == XEXP (y, 0);
|
|||
|
|
|||
|
case SYMBOL_REF:
|
|||
|
return XSTR (x, 0) == XSTR (y, 0);
|
|||
|
|
|||
|
case REG:
|
|||
|
return REGNO (x) == REGNO (y);
|
|||
|
|
|||
|
/* For commutative operations, check both orders. */
|
|||
|
case PLUS:
|
|||
|
case MULT:
|
|||
|
case AND:
|
|||
|
case IOR:
|
|||
|
case XOR:
|
|||
|
case NE:
|
|||
|
case EQ:
|
|||
|
return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
|
|||
|
&& expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
|
|||
|
|| (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
|
|||
|
&& expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* Compare the elements. If any pair of corresponding elements
|
|||
|
fail to match, return 0 for the whole thing. */
|
|||
|
|
|||
|
fmt = GET_RTX_FORMAT (code);
|
|||
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
switch (fmt[i])
|
|||
|
{
|
|||
|
case 'e':
|
|||
|
if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
|
|||
|
return 0;
|
|||
|
break;
|
|||
|
|
|||
|
case 'E':
|
|||
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
|||
|
return 0;
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
|
|||
|
return 0;
|
|||
|
break;
|
|||
|
|
|||
|
case 's':
|
|||
|
if (strcmp (XSTR (x, i), XSTR (y, i)))
|
|||
|
return 0;
|
|||
|
break;
|
|||
|
|
|||
|
case 'i':
|
|||
|
if (XINT (x, i) != XINT (y, i))
|
|||
|
return 0;
|
|||
|
break;
|
|||
|
|
|||
|
case 'w':
|
|||
|
if (XWINT (x, i) != XWINT (y, i))
|
|||
|
return 0;
|
|||
|
break;
|
|||
|
|
|||
|
case '0':
|
|||
|
break;
|
|||
|
|
|||
|
default:
|
|||
|
abort ();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Insert expression X in INSN in the hash table.
|
|||
|
If it is already present, record it as the last occurrence in INSN's
|
|||
|
basic block.
|
|||
|
|
|||
|
MODE is the mode of the value X is being stored into.
|
|||
|
It is only used if X is a CONST_INT.
|
|||
|
|
|||
|
ANTIC_P is non-zero if X is an anticipatable expression.
|
|||
|
AVAIL_P is non-zero if X is an available expression. */
|
|||
|
|
|||
|
static void
|
|||
|
insert_expr_in_table (x, mode, insn, antic_p, avail_p)
|
|||
|
rtx x;
|
|||
|
enum machine_mode mode;
|
|||
|
rtx insn;
|
|||
|
int antic_p, avail_p;
|
|||
|
{
|
|||
|
int found, do_not_record_p;
|
|||
|
unsigned int hash;
|
|||
|
struct expr *cur_expr, *last_expr = NULL;
|
|||
|
struct occr *antic_occr, *avail_occr;
|
|||
|
struct occr *last_occr = NULL;
|
|||
|
|
|||
|
hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
|
|||
|
|
|||
|
/* Do not insert expression in table if it contains volatile operands,
|
|||
|
or if hash_expr determines the expression is something we don't want
|
|||
|
to or can't handle. */
|
|||
|
if (do_not_record_p)
|
|||
|
return;
|
|||
|
|
|||
|
cur_expr = expr_hash_table[hash];
|
|||
|
found = 0;
|
|||
|
|
|||
|
while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
|
|||
|
{
|
|||
|
/* If the expression isn't found, save a pointer to the end of
|
|||
|
the list. */
|
|||
|
last_expr = cur_expr;
|
|||
|
cur_expr = cur_expr->next_same_hash;
|
|||
|
}
|
|||
|
|
|||
|
if (! found)
|
|||
|
{
|
|||
|
cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
|
|||
|
bytes_used += sizeof (struct expr);
|
|||
|
if (expr_hash_table[hash] == NULL)
|
|||
|
{
|
|||
|
/* This is the first pattern that hashed to this index. */
|
|||
|
expr_hash_table[hash] = cur_expr;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Add EXPR to end of this hash chain. */
|
|||
|
last_expr->next_same_hash = cur_expr;
|
|||
|
}
|
|||
|
/* Set the fields of the expr element. */
|
|||
|
cur_expr->expr = x;
|
|||
|
cur_expr->bitmap_index = n_exprs++;
|
|||
|
cur_expr->next_same_hash = NULL;
|
|||
|
cur_expr->antic_occr = NULL;
|
|||
|
cur_expr->avail_occr = NULL;
|
|||
|
}
|
|||
|
|
|||
|
/* Now record the occurrence(s). */
|
|||
|
|
|||
|
if (antic_p)
|
|||
|
{
|
|||
|
antic_occr = cur_expr->antic_occr;
|
|||
|
|
|||
|
/* Search for another occurrence in the same basic block. */
|
|||
|
while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
|
|||
|
{
|
|||
|
/* If an occurrence isn't found, save a pointer to the end of
|
|||
|
the list. */
|
|||
|
last_occr = antic_occr;
|
|||
|
antic_occr = antic_occr->next;
|
|||
|
}
|
|||
|
|
|||
|
if (antic_occr)
|
|||
|
{
|
|||
|
/* Found another instance of the expression in the same basic block.
|
|||
|
Prefer the currently recorded one. We want the first one in the
|
|||
|
block and the block is scanned from start to end. */
|
|||
|
; /* nothing to do */
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* First occurrence of this expression in this basic block. */
|
|||
|
antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
|
|||
|
bytes_used += sizeof (struct occr);
|
|||
|
/* First occurrence of this expression in any block? */
|
|||
|
if (cur_expr->antic_occr == NULL)
|
|||
|
cur_expr->antic_occr = antic_occr;
|
|||
|
else
|
|||
|
last_occr->next = antic_occr;
|
|||
|
antic_occr->insn = insn;
|
|||
|
antic_occr->next = NULL;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (avail_p)
|
|||
|
{
|
|||
|
avail_occr = cur_expr->avail_occr;
|
|||
|
|
|||
|
/* Search for another occurrence in the same basic block. */
|
|||
|
while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
|
|||
|
{
|
|||
|
/* If an occurrence isn't found, save a pointer to the end of
|
|||
|
the list. */
|
|||
|
last_occr = avail_occr;
|
|||
|
avail_occr = avail_occr->next;
|
|||
|
}
|
|||
|
|
|||
|
if (avail_occr)
|
|||
|
{
|
|||
|
/* Found another instance of the expression in the same basic block.
|
|||
|
Prefer this occurrence to the currently recorded one. We want
|
|||
|
the last one in the block and the block is scanned from start
|
|||
|
to end. */
|
|||
|
avail_occr->insn = insn;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* First occurrence of this expression in this basic block. */
|
|||
|
avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
|
|||
|
bytes_used += sizeof (struct occr);
|
|||
|
/* First occurrence of this expression in any block? */
|
|||
|
if (cur_expr->avail_occr == NULL)
|
|||
|
cur_expr->avail_occr = avail_occr;
|
|||
|
else
|
|||
|
last_occr->next = avail_occr;
|
|||
|
avail_occr->insn = insn;
|
|||
|
avail_occr->next = NULL;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Insert pattern X in INSN in the hash table.
|
|||
|
X is a SET of a reg to either another reg or a constant.
|
|||
|
If it is already present, record it as the last occurrence in INSN's
|
|||
|
basic block. */
|
|||
|
|
|||
|
static void
|
|||
|
insert_set_in_table (x, insn)
|
|||
|
rtx x;
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
int found;
|
|||
|
unsigned int hash;
|
|||
|
struct expr *cur_expr, *last_expr = NULL;
|
|||
|
struct occr *cur_occr, *last_occr = NULL;
|
|||
|
|
|||
|
if (GET_CODE (x) != SET
|
|||
|
|| GET_CODE (SET_DEST (x)) != REG)
|
|||
|
abort ();
|
|||
|
|
|||
|
hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
|
|||
|
|
|||
|
cur_expr = set_hash_table[hash];
|
|||
|
found = 0;
|
|||
|
|
|||
|
while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
|
|||
|
{
|
|||
|
/* If the expression isn't found, save a pointer to the end of
|
|||
|
the list. */
|
|||
|
last_expr = cur_expr;
|
|||
|
cur_expr = cur_expr->next_same_hash;
|
|||
|
}
|
|||
|
|
|||
|
if (! found)
|
|||
|
{
|
|||
|
cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
|
|||
|
bytes_used += sizeof (struct expr);
|
|||
|
if (set_hash_table[hash] == NULL)
|
|||
|
{
|
|||
|
/* This is the first pattern that hashed to this index. */
|
|||
|
set_hash_table[hash] = cur_expr;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Add EXPR to end of this hash chain. */
|
|||
|
last_expr->next_same_hash = cur_expr;
|
|||
|
}
|
|||
|
/* Set the fields of the expr element.
|
|||
|
We must copy X because it can be modified when copy propagation is
|
|||
|
performed on its operands. */
|
|||
|
/* ??? Should this go in a different obstack? */
|
|||
|
cur_expr->expr = copy_rtx (x);
|
|||
|
cur_expr->bitmap_index = n_sets++;
|
|||
|
cur_expr->next_same_hash = NULL;
|
|||
|
cur_expr->antic_occr = NULL;
|
|||
|
cur_expr->avail_occr = NULL;
|
|||
|
}
|
|||
|
|
|||
|
/* Now record the occurrence. */
|
|||
|
|
|||
|
cur_occr = cur_expr->avail_occr;
|
|||
|
|
|||
|
/* Search for another occurrence in the same basic block. */
|
|||
|
while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
|
|||
|
{
|
|||
|
/* If an occurrence isn't found, save a pointer to the end of
|
|||
|
the list. */
|
|||
|
last_occr = cur_occr;
|
|||
|
cur_occr = cur_occr->next;
|
|||
|
}
|
|||
|
|
|||
|
if (cur_occr)
|
|||
|
{
|
|||
|
/* Found another instance of the expression in the same basic block.
|
|||
|
Prefer this occurrence to the currently recorded one. We want
|
|||
|
the last one in the block and the block is scanned from start
|
|||
|
to end. */
|
|||
|
cur_occr->insn = insn;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* First occurrence of this expression in this basic block. */
|
|||
|
cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
|
|||
|
bytes_used += sizeof (struct occr);
|
|||
|
/* First occurrence of this expression in any block? */
|
|||
|
if (cur_expr->avail_occr == NULL)
|
|||
|
cur_expr->avail_occr = cur_occr;
|
|||
|
else
|
|||
|
last_occr->next = cur_occr;
|
|||
|
cur_occr->insn = insn;
|
|||
|
cur_occr->next = NULL;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Scan pattern PAT of INSN and add an entry to the hash table.
|
|||
|
If SET_P is non-zero, this is for the assignment hash table,
|
|||
|
otherwise it is for the expression hash table. */
|
|||
|
|
|||
|
static void
|
|||
|
hash_scan_set (pat, insn, set_p)
|
|||
|
rtx pat, insn;
|
|||
|
int set_p;
|
|||
|
{
|
|||
|
rtx src = SET_SRC (pat);
|
|||
|
rtx dest = SET_DEST (pat);
|
|||
|
|
|||
|
if (GET_CODE (src) == CALL)
|
|||
|
hash_scan_call (src, insn);
|
|||
|
|
|||
|
if (GET_CODE (dest) == REG)
|
|||
|
{
|
|||
|
int regno = REGNO (dest);
|
|||
|
rtx tmp;
|
|||
|
|
|||
|
/* Only record sets of pseudo-regs in the hash table. */
|
|||
|
if (! set_p
|
|||
|
&& regno >= FIRST_PSEUDO_REGISTER
|
|||
|
/* Don't GCSE something if we can't do a reg/reg copy. */
|
|||
|
&& can_copy_p [GET_MODE (dest)]
|
|||
|
/* Is SET_SRC something we want to gcse? */
|
|||
|
&& want_to_gcse_p (src))
|
|||
|
{
|
|||
|
/* An expression is not anticipatable if its operands are
|
|||
|
modified before this insn. */
|
|||
|
int antic_p = oprs_anticipatable_p (src, insn);
|
|||
|
/* An expression is not available if its operands are
|
|||
|
subsequently modified, including this insn. */
|
|||
|
int avail_p = oprs_available_p (src, insn);
|
|||
|
insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
|
|||
|
}
|
|||
|
/* Record sets for constant/copy propagation. */
|
|||
|
else if (set_p
|
|||
|
&& regno >= FIRST_PSEUDO_REGISTER
|
|||
|
&& ((GET_CODE (src) == REG
|
|||
|
&& REGNO (src) >= FIRST_PSEUDO_REGISTER
|
|||
|
&& can_copy_p [GET_MODE (dest)])
|
|||
|
/* ??? CONST_INT:wip */
|
|||
|
|| GET_CODE (src) == CONST_INT)
|
|||
|
/* A copy is not available if its src or dest is subsequently
|
|||
|
modified. Here we want to search from INSN+1 on, but
|
|||
|
oprs_available_p searches from INSN on. */
|
|||
|
&& (insn == BLOCK_END (BLOCK_NUM (insn))
|
|||
|
|| ((tmp = next_nonnote_insn (insn)) != NULL_RTX
|
|||
|
&& oprs_available_p (pat, tmp))))
|
|||
|
insert_set_in_table (pat, insn);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
hash_scan_clobber (x, insn)
|
|||
|
rtx x, insn;
|
|||
|
{
|
|||
|
/* Currently nothing to do. */
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
hash_scan_call (x, insn)
|
|||
|
rtx x, insn;
|
|||
|
{
|
|||
|
/* Currently nothing to do. */
|
|||
|
}
|
|||
|
|
|||
|
/* Process INSN and add hash table entries as appropriate.
|
|||
|
|
|||
|
Only available expressions that set a single pseudo-reg are recorded.
|
|||
|
|
|||
|
Single sets in a PARALLEL could be handled, but it's an extra complication
|
|||
|
that isn't dealt with right now. The trick is handling the CLOBBERs that
|
|||
|
are also in the PARALLEL. Later.
|
|||
|
|
|||
|
If SET_P is non-zero, this is for the assignment hash table,
|
|||
|
otherwise it is for the expression hash table.
|
|||
|
If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
|
|||
|
not record any expressions. */
|
|||
|
|
|||
|
static void
|
|||
|
hash_scan_insn (insn, set_p, in_libcall_block)
|
|||
|
rtx insn;
|
|||
|
int set_p;
|
|||
|
int in_libcall_block;
|
|||
|
{
|
|||
|
rtx pat = PATTERN (insn);
|
|||
|
|
|||
|
/* Pick out the sets of INSN and for other forms of instructions record
|
|||
|
what's been modified. */
|
|||
|
|
|||
|
if (GET_CODE (pat) == SET && ! in_libcall_block)
|
|||
|
hash_scan_set (pat, insn, set_p);
|
|||
|
else if (GET_CODE (pat) == PARALLEL)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
|||
|
{
|
|||
|
rtx x = XVECEXP (pat, 0, i);
|
|||
|
|
|||
|
if (GET_CODE (x) == SET)
|
|||
|
{
|
|||
|
if (GET_CODE (SET_SRC (x)) == CALL)
|
|||
|
hash_scan_call (SET_SRC (x), insn);
|
|||
|
}
|
|||
|
else if (GET_CODE (x) == CLOBBER)
|
|||
|
hash_scan_clobber (x, insn);
|
|||
|
else if (GET_CODE (x) == CALL)
|
|||
|
hash_scan_call (x, insn);
|
|||
|
}
|
|||
|
}
|
|||
|
else if (GET_CODE (pat) == CLOBBER)
|
|||
|
hash_scan_clobber (pat, insn);
|
|||
|
else if (GET_CODE (pat) == CALL)
|
|||
|
hash_scan_call (pat, insn);
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
dump_hash_table (file, name, table, table_size, total_size)
|
|||
|
FILE *file;
|
|||
|
char *name;
|
|||
|
struct expr **table;
|
|||
|
int table_size, total_size;
|
|||
|
{
|
|||
|
int i;
|
|||
|
/* Flattened out table, so it's printed in proper order. */
|
|||
|
struct expr **flat_table = (struct expr **) alloca (total_size * sizeof (struct expr *));
|
|||
|
unsigned int *hash_val = (unsigned int *) alloca (total_size * sizeof (unsigned int));
|
|||
|
|
|||
|
bzero ((char *) flat_table, total_size * sizeof (struct expr *));
|
|||
|
for (i = 0; i < table_size; i++)
|
|||
|
{
|
|||
|
struct expr *expr;
|
|||
|
|
|||
|
for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
|
|||
|
{
|
|||
|
flat_table[expr->bitmap_index] = expr;
|
|||
|
hash_val[expr->bitmap_index] = i;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fprintf (file, "%s hash table (%d buckets, %d entries)\n",
|
|||
|
name, table_size, total_size);
|
|||
|
|
|||
|
for (i = 0; i < total_size; i++)
|
|||
|
{
|
|||
|
struct expr *expr = flat_table[i];
|
|||
|
|
|||
|
fprintf (file, "Index %d (hash value %d)\n ",
|
|||
|
expr->bitmap_index, hash_val[i]);
|
|||
|
print_rtl (file, expr->expr);
|
|||
|
fprintf (file, "\n");
|
|||
|
}
|
|||
|
|
|||
|
fprintf (file, "\n");
|
|||
|
}
|
|||
|
|
|||
|
/* Record register first/last/block set information for REGNO in INSN.
|
|||
|
reg_first_set records the first place in the block where the register
|
|||
|
is set and is used to compute "anticipatability".
|
|||
|
reg_last_set records the last place in the block where the register
|
|||
|
is set and is used to compute "availability".
|
|||
|
reg_set_in_block records whether the register is set in the block
|
|||
|
and is used to compute "transparency". */
|
|||
|
|
|||
|
static void
|
|||
|
record_last_reg_set_info (insn, regno)
|
|||
|
rtx insn;
|
|||
|
int regno;
|
|||
|
{
|
|||
|
if (reg_first_set[regno] == NEVER_SET)
|
|||
|
reg_first_set[regno] = INSN_CUID (insn);
|
|||
|
reg_last_set[regno] = INSN_CUID (insn);
|
|||
|
SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno);
|
|||
|
}
|
|||
|
|
|||
|
/* Record memory modification information for INSN. We do not actually care
|
|||
|
about the memory location(s) that are set, or even how they are set (consider
|
|||
|
a CALL_INSN). We merely need to record which insns modify memory. */
|
|||
|
|
|||
|
static void
|
|||
|
record_last_mem_set_info (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
modify_mem_list[BLOCK_NUM (insn)]
|
|||
|
= gen_rtx_INSN_LIST (VOIDmode, insn, modify_mem_list[BLOCK_NUM (insn)]);
|
|||
|
}
|
|||
|
|
|||
|
/* Used for communicating between next two routines. */
|
|||
|
static rtx last_set_insn;
|
|||
|
|
|||
|
/* Called from compute_hash_table via note_stores to handle one
|
|||
|
SET or CLOBBER in an insn. */
|
|||
|
|
|||
|
static void
|
|||
|
record_last_set_info (dest, setter)
|
|||
|
rtx dest;
|
|||
|
rtx setter;
|
|||
|
{
|
|||
|
if (GET_CODE (dest) == SUBREG)
|
|||
|
dest = SUBREG_REG (dest);
|
|||
|
|
|||
|
if (GET_CODE (dest) == REG)
|
|||
|
record_last_reg_set_info (last_set_insn, REGNO (dest));
|
|||
|
else if (GET_CODE (dest) == MEM
|
|||
|
/* Ignore pushes, they clobber nothing. */
|
|||
|
&& ! push_operand (dest, GET_MODE (dest)))
|
|||
|
record_last_mem_set_info (last_set_insn);
|
|||
|
}
|
|||
|
|
|||
|
/* Top level function to create an expression or assignment hash table.
|
|||
|
|
|||
|
Expression entries are placed in the hash table if
|
|||
|
- they are of the form (set (pseudo-reg) src),
|
|||
|
- src is something we want to perform GCSE on,
|
|||
|
- none of the operands are subsequently modified in the block
|
|||
|
|
|||
|
Assignment entries are placed in the hash table if
|
|||
|
- they are of the form (set (pseudo-reg) src),
|
|||
|
- src is something we want to perform const/copy propagation on,
|
|||
|
- none of the operands or target are subsequently modified in the block
|
|||
|
Currently src must be a pseudo-reg or a const_int.
|
|||
|
|
|||
|
F is the first insn.
|
|||
|
SET_P is non-zero for computing the assignment hash table. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_hash_table (set_p)
|
|||
|
int set_p;
|
|||
|
{
|
|||
|
int bb;
|
|||
|
|
|||
|
/* While we compute the hash table we also compute a bit array of which
|
|||
|
registers are set in which blocks.
|
|||
|
We also compute which blocks set memory, in the absence of aliasing
|
|||
|
support [which is TODO].
|
|||
|
??? This isn't needed during const/copy propagation, but it's cheap to
|
|||
|
compute. Later. */
|
|||
|
sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
|
|||
|
bzero ((rtx *) modify_mem_list, n_basic_blocks * sizeof (rtx *));
|
|||
|
|
|||
|
/* Some working arrays used to track first and last set in each block. */
|
|||
|
/* ??? One could use alloca here, but at some size a threshold is crossed
|
|||
|
beyond which one should use malloc. Are we at that threshold here? */
|
|||
|
reg_first_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
|
|||
|
reg_last_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
|
|||
|
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
rtx insn;
|
|||
|
int regno;
|
|||
|
int in_libcall_block;
|
|||
|
int i;
|
|||
|
|
|||
|
/* First pass over the instructions records information used to
|
|||
|
determine when registers and memory are first and last set.
|
|||
|
??? The hard-reg reg_set_in_block computation could be moved to
|
|||
|
compute_sets since they currently don't change. */
|
|||
|
|
|||
|
for (i = 0; i < max_gcse_regno; i++)
|
|||
|
reg_first_set[i] = reg_last_set[i] = NEVER_SET;
|
|||
|
|
|||
|
for (insn = BLOCK_HEAD (bb);
|
|||
|
insn && insn != NEXT_INSN (BLOCK_END (bb));
|
|||
|
insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
#ifdef NON_SAVING_SETJMP
|
|||
|
if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
|
|||
|
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
|
|||
|
{
|
|||
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
|||
|
record_last_reg_set_info (insn, regno);
|
|||
|
continue;
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
|
|||
|
continue;
|
|||
|
|
|||
|
if (GET_CODE (insn) == CALL_INSN)
|
|||
|
{
|
|||
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
|||
|
if ((call_used_regs[regno]
|
|||
|
&& regno != STACK_POINTER_REGNUM
|
|||
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
|||
|
&& regno != HARD_FRAME_POINTER_REGNUM
|
|||
|
#endif
|
|||
|
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
|||
|
&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
|
|||
|
#endif
|
|||
|
#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
|
|||
|
&& ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
|
|||
|
#endif
|
|||
|
|
|||
|
&& regno != FRAME_POINTER_REGNUM)
|
|||
|
|| global_regs[regno])
|
|||
|
record_last_reg_set_info (insn, regno);
|
|||
|
if (! CONST_CALL_P (insn))
|
|||
|
record_last_mem_set_info (insn);
|
|||
|
}
|
|||
|
|
|||
|
last_set_insn = insn;
|
|||
|
note_stores (PATTERN (insn), record_last_set_info);
|
|||
|
}
|
|||
|
|
|||
|
/* The next pass builds the hash table. */
|
|||
|
|
|||
|
for (insn = BLOCK_HEAD (bb), in_libcall_block = 0;
|
|||
|
insn && insn != NEXT_INSN (BLOCK_END (bb));
|
|||
|
insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
{
|
|||
|
if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
|
|||
|
in_libcall_block = 1;
|
|||
|
else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
|
|||
|
in_libcall_block = 0;
|
|||
|
hash_scan_insn (insn, set_p, in_libcall_block);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
free (reg_first_set);
|
|||
|
free (reg_last_set);
|
|||
|
/* Catch bugs early. */
|
|||
|
reg_first_set = reg_last_set = 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Allocate space for the set hash table.
|
|||
|
N_INSNS is the number of instructions in the function.
|
|||
|
It is used to determine the number of buckets to use. */
|
|||
|
|
|||
|
static void
|
|||
|
alloc_set_hash_table (n_insns)
|
|||
|
int n_insns;
|
|||
|
{
|
|||
|
int n;
|
|||
|
|
|||
|
set_hash_table_size = n_insns / 4;
|
|||
|
if (set_hash_table_size < 11)
|
|||
|
set_hash_table_size = 11;
|
|||
|
/* Attempt to maintain efficient use of hash table.
|
|||
|
Making it an odd number is simplest for now.
|
|||
|
??? Later take some measurements. */
|
|||
|
set_hash_table_size |= 1;
|
|||
|
n = set_hash_table_size * sizeof (struct expr *);
|
|||
|
set_hash_table = (struct expr **) gmalloc (n);
|
|||
|
}
|
|||
|
|
|||
|
/* Free things allocated by alloc_set_hash_table. */
|
|||
|
|
|||
|
static void
|
|||
|
free_set_hash_table ()
|
|||
|
{
|
|||
|
free (set_hash_table);
|
|||
|
}
|
|||
|
|
|||
|
/* Compute the hash table for doing copy/const propagation. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_set_hash_table ()
|
|||
|
{
|
|||
|
/* Initialize count of number of entries in hash table. */
|
|||
|
n_sets = 0;
|
|||
|
bzero ((char *) set_hash_table, set_hash_table_size * sizeof (struct expr *));
|
|||
|
|
|||
|
compute_hash_table (1);
|
|||
|
}
|
|||
|
|
|||
|
/* Allocate space for the expression hash table.
|
|||
|
N_INSNS is the number of instructions in the function.
|
|||
|
It is used to determine the number of buckets to use. */
|
|||
|
|
|||
|
static void
|
|||
|
alloc_expr_hash_table (n_insns)
|
|||
|
int n_insns;
|
|||
|
{
|
|||
|
int n;
|
|||
|
|
|||
|
expr_hash_table_size = n_insns / 2;
|
|||
|
/* Make sure the amount is usable. */
|
|||
|
if (expr_hash_table_size < 11)
|
|||
|
expr_hash_table_size = 11;
|
|||
|
/* Attempt to maintain efficient use of hash table.
|
|||
|
Making it an odd number is simplest for now.
|
|||
|
??? Later take some measurements. */
|
|||
|
expr_hash_table_size |= 1;
|
|||
|
n = expr_hash_table_size * sizeof (struct expr *);
|
|||
|
expr_hash_table = (struct expr **) gmalloc (n);
|
|||
|
}
|
|||
|
|
|||
|
/* Free things allocated by alloc_expr_hash_table. */
|
|||
|
|
|||
|
static void
|
|||
|
free_expr_hash_table ()
|
|||
|
{
|
|||
|
free (expr_hash_table);
|
|||
|
}
|
|||
|
|
|||
|
/* Compute the hash table for doing GCSE. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_expr_hash_table ()
|
|||
|
{
|
|||
|
/* Initialize count of number of entries in hash table. */
|
|||
|
n_exprs = 0;
|
|||
|
bzero ((char *) expr_hash_table, expr_hash_table_size * sizeof (struct expr *));
|
|||
|
|
|||
|
compute_hash_table (0);
|
|||
|
}
|
|||
|
|
|||
|
/* Expression tracking support. */
|
|||
|
|
|||
|
/* Lookup pattern PAT in the expression table.
|
|||
|
The result is a pointer to the table entry, or NULL if not found. */
|
|||
|
|
|||
|
static struct expr *
|
|||
|
lookup_expr (pat)
|
|||
|
rtx pat;
|
|||
|
{
|
|||
|
int do_not_record_p;
|
|||
|
unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
|
|||
|
expr_hash_table_size);
|
|||
|
struct expr *expr;
|
|||
|
|
|||
|
if (do_not_record_p)
|
|||
|
return NULL;
|
|||
|
|
|||
|
expr = expr_hash_table[hash];
|
|||
|
|
|||
|
while (expr && ! expr_equiv_p (expr->expr, pat))
|
|||
|
expr = expr->next_same_hash;
|
|||
|
|
|||
|
return expr;
|
|||
|
}
|
|||
|
|
|||
|
/* Lookup REGNO in the set table.
|
|||
|
If PAT is non-NULL look for the entry that matches it, otherwise return
|
|||
|
the first entry for REGNO.
|
|||
|
The result is a pointer to the table entry, or NULL if not found. */
|
|||
|
|
|||
|
static struct expr *
|
|||
|
lookup_set (regno, pat)
|
|||
|
int regno;
|
|||
|
rtx pat;
|
|||
|
{
|
|||
|
unsigned int hash = hash_set (regno, set_hash_table_size);
|
|||
|
struct expr *expr;
|
|||
|
|
|||
|
expr = set_hash_table[hash];
|
|||
|
|
|||
|
if (pat)
|
|||
|
{
|
|||
|
while (expr && ! expr_equiv_p (expr->expr, pat))
|
|||
|
expr = expr->next_same_hash;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
while (expr && REGNO (SET_DEST (expr->expr)) != regno)
|
|||
|
expr = expr->next_same_hash;
|
|||
|
}
|
|||
|
|
|||
|
return expr;
|
|||
|
}
|
|||
|
|
|||
|
/* Return the next entry for REGNO in list EXPR. */
|
|||
|
|
|||
|
static struct expr *
|
|||
|
next_set (regno, expr)
|
|||
|
int regno;
|
|||
|
struct expr *expr;
|
|||
|
{
|
|||
|
do
|
|||
|
expr = expr->next_same_hash;
|
|||
|
while (expr && REGNO (SET_DEST (expr->expr)) != regno);
|
|||
|
return expr;
|
|||
|
}
|
|||
|
|
|||
|
/* Reset tables used to keep track of what's still available [since the
|
|||
|
start of the block]. */
|
|||
|
|
|||
|
static void
|
|||
|
reset_opr_set_tables ()
|
|||
|
{
|
|||
|
/* Maintain a bitmap of which regs have been set since beginning of
|
|||
|
the block. */
|
|||
|
sbitmap_zero (reg_set_bitmap);
|
|||
|
/* Also keep a record of the last instruction to modify memory.
|
|||
|
For now this is very trivial, we only record whether any memory
|
|||
|
location has been modified. */
|
|||
|
bzero ((char *)modify_mem_list, n_basic_blocks * sizeof (rtx *));
|
|||
|
}
|
|||
|
|
|||
|
/* Return non-zero if the operands of X are not set before INSN in
|
|||
|
INSN's basic block. */
|
|||
|
|
|||
|
static int
|
|||
|
oprs_not_set_p (x, insn)
|
|||
|
rtx x, insn;
|
|||
|
{
|
|||
|
int i;
|
|||
|
enum rtx_code code;
|
|||
|
char *fmt;
|
|||
|
|
|||
|
/* repeat is used to turn tail-recursion into iteration. */
|
|||
|
repeat:
|
|||
|
|
|||
|
if (x == 0)
|
|||
|
return 1;
|
|||
|
|
|||
|
code = GET_CODE (x);
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case PC:
|
|||
|
case CC0:
|
|||
|
case CONST:
|
|||
|
case CONST_INT:
|
|||
|
case CONST_DOUBLE:
|
|||
|
case SYMBOL_REF:
|
|||
|
case LABEL_REF:
|
|||
|
case ADDR_VEC:
|
|||
|
case ADDR_DIFF_VEC:
|
|||
|
return 1;
|
|||
|
|
|||
|
case MEM:
|
|||
|
if (load_killed_in_block_p (BLOCK_NUM (insn), INSN_CUID (insn), x, 0))
|
|||
|
return 0;
|
|||
|
|
|||
|
/* There is no conflict for the memory locations. Now check that the
|
|||
|
address itself has not changed. */
|
|||
|
x = XEXP (x, 0);
|
|||
|
goto repeat;
|
|||
|
|
|||
|
case REG:
|
|||
|
return ! TEST_BIT (reg_set_bitmap, REGNO (x));
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
fmt = GET_RTX_FORMAT (code);
|
|||
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
{
|
|||
|
int not_set_p;
|
|||
|
/* If we are about to do the last recursive call
|
|||
|
needed at this level, change it into iteration.
|
|||
|
This function is called enough to be worth it. */
|
|||
|
if (i == 0)
|
|||
|
{
|
|||
|
x = XEXP (x, 0);
|
|||
|
goto repeat;
|
|||
|
}
|
|||
|
not_set_p = oprs_not_set_p (XEXP (x, i), insn);
|
|||
|
if (! not_set_p)
|
|||
|
return 0;
|
|||
|
}
|
|||
|
else if (fmt[i] == 'E')
|
|||
|
{
|
|||
|
int j;
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
{
|
|||
|
int not_set_p = oprs_not_set_p (XVECEXP (x, i, j), insn);
|
|||
|
if (! not_set_p)
|
|||
|
return 0;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Mark things set by a CALL. */
|
|||
|
|
|||
|
static void
|
|||
|
mark_call (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
if (! CONST_CALL_P (insn))
|
|||
|
record_last_mem_set_info (insn);
|
|||
|
}
|
|||
|
|
|||
|
/* Mark things set by a SET. */
|
|||
|
|
|||
|
static void
|
|||
|
mark_set (pat, insn)
|
|||
|
rtx pat, insn;
|
|||
|
{
|
|||
|
rtx dest = SET_DEST (pat);
|
|||
|
|
|||
|
while (GET_CODE (dest) == SUBREG
|
|||
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
|||
|
|| GET_CODE (dest) == SIGN_EXTRACT
|
|||
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
|||
|
dest = XEXP (dest, 0);
|
|||
|
|
|||
|
if (GET_CODE (dest) == REG)
|
|||
|
SET_BIT (reg_set_bitmap, REGNO (dest));
|
|||
|
else if (GET_CODE (dest) == MEM)
|
|||
|
record_last_mem_set_info (insn);
|
|||
|
|
|||
|
if (GET_CODE (SET_SRC (pat)) == CALL)
|
|||
|
mark_call (insn);
|
|||
|
}
|
|||
|
|
|||
|
/* Record things set by a CLOBBER. */
|
|||
|
|
|||
|
static void
|
|||
|
mark_clobber (pat, insn)
|
|||
|
rtx pat, insn;
|
|||
|
{
|
|||
|
rtx clob = XEXP (pat, 0);
|
|||
|
|
|||
|
while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
|
|||
|
clob = XEXP (clob, 0);
|
|||
|
|
|||
|
if (GET_CODE (clob) == REG)
|
|||
|
SET_BIT (reg_set_bitmap, REGNO (clob));
|
|||
|
else
|
|||
|
record_last_mem_set_info (insn);
|
|||
|
}
|
|||
|
|
|||
|
/* Record things set by INSN.
|
|||
|
This data is used by oprs_not_set_p. */
|
|||
|
|
|||
|
static void
|
|||
|
mark_oprs_set (insn)
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
rtx pat = PATTERN (insn);
|
|||
|
|
|||
|
if (GET_CODE (pat) == SET)
|
|||
|
mark_set (pat, insn);
|
|||
|
else if (GET_CODE (pat) == PARALLEL)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
|||
|
{
|
|||
|
rtx x = XVECEXP (pat, 0, i);
|
|||
|
|
|||
|
if (GET_CODE (x) == SET)
|
|||
|
mark_set (x, insn);
|
|||
|
else if (GET_CODE (x) == CLOBBER)
|
|||
|
mark_clobber (x, insn);
|
|||
|
else if (GET_CODE (x) == CALL)
|
|||
|
mark_call (insn);
|
|||
|
}
|
|||
|
}
|
|||
|
else if (GET_CODE (pat) == CLOBBER)
|
|||
|
mark_clobber (pat, insn);
|
|||
|
else if (GET_CODE (pat) == CALL)
|
|||
|
mark_call (insn);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Classic GCSE reaching definition support. */
|
|||
|
|
|||
|
/* Allocate reaching def variables. */
|
|||
|
|
|||
|
static void
|
|||
|
alloc_rd_mem (n_blocks, n_insns)
|
|||
|
int n_blocks, n_insns;
|
|||
|
{
|
|||
|
rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
|
|||
|
sbitmap_vector_zero (rd_kill, n_basic_blocks);
|
|||
|
|
|||
|
rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
|
|||
|
sbitmap_vector_zero (rd_gen, n_basic_blocks);
|
|||
|
|
|||
|
reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
|
|||
|
sbitmap_vector_zero (reaching_defs, n_basic_blocks);
|
|||
|
|
|||
|
rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
|
|||
|
sbitmap_vector_zero (rd_out, n_basic_blocks);
|
|||
|
}
|
|||
|
|
|||
|
/* Free reaching def variables. */
|
|||
|
|
|||
|
static void
|
|||
|
free_rd_mem ()
|
|||
|
{
|
|||
|
free (rd_kill);
|
|||
|
free (rd_gen);
|
|||
|
free (reaching_defs);
|
|||
|
free (rd_out);
|
|||
|
}
|
|||
|
|
|||
|
/* Add INSN to the kills of BB.
|
|||
|
REGNO, set in BB, is killed by INSN. */
|
|||
|
|
|||
|
static void
|
|||
|
handle_rd_kill_set (insn, regno, bb)
|
|||
|
rtx insn;
|
|||
|
int regno, bb;
|
|||
|
{
|
|||
|
struct reg_set *this_reg = reg_set_table[regno];
|
|||
|
|
|||
|
while (this_reg)
|
|||
|
{
|
|||
|
if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
|
|||
|
SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn));
|
|||
|
this_reg = this_reg->next;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Compute the set of kill's for reaching definitions. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_kill_rd ()
|
|||
|
{
|
|||
|
int bb,cuid;
|
|||
|
|
|||
|
/* For each block
|
|||
|
For each set bit in `gen' of the block (i.e each insn which
|
|||
|
generates a definition in the block)
|
|||
|
Call the reg set by the insn corresponding to that bit regx
|
|||
|
Look at the linked list starting at reg_set_table[regx]
|
|||
|
For each setting of regx in the linked list, which is not in
|
|||
|
this block
|
|||
|
Set the bit in `kill' corresponding to that insn
|
|||
|
*/
|
|||
|
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
for (cuid = 0; cuid < max_cuid; cuid++)
|
|||
|
{
|
|||
|
if (TEST_BIT (rd_gen[bb], cuid))
|
|||
|
{
|
|||
|
rtx insn = CUID_INSN (cuid);
|
|||
|
rtx pat = PATTERN (insn);
|
|||
|
|
|||
|
if (GET_CODE (insn) == CALL_INSN)
|
|||
|
{
|
|||
|
int regno;
|
|||
|
|
|||
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
|||
|
{
|
|||
|
if ((call_used_regs[regno]
|
|||
|
&& regno != STACK_POINTER_REGNUM
|
|||
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
|||
|
&& regno != HARD_FRAME_POINTER_REGNUM
|
|||
|
#endif
|
|||
|
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
|||
|
&& ! (regno == ARG_POINTER_REGNUM
|
|||
|
&& fixed_regs[regno])
|
|||
|
#endif
|
|||
|
#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
|
|||
|
&& ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
|
|||
|
#endif
|
|||
|
&& regno != FRAME_POINTER_REGNUM)
|
|||
|
|| global_regs[regno])
|
|||
|
handle_rd_kill_set (insn, regno, bb);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (GET_CODE (pat) == PARALLEL)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
/* We work backwards because ... */
|
|||
|
for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
|
|||
|
if ((code == SET || code == CLOBBER)
|
|||
|
&& GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
|
|||
|
handle_rd_kill_set (insn,
|
|||
|
REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
|
|||
|
bb);
|
|||
|
}
|
|||
|
}
|
|||
|
else if (GET_CODE (pat) == SET)
|
|||
|
{
|
|||
|
if (GET_CODE (SET_DEST (pat)) == REG)
|
|||
|
{
|
|||
|
/* Each setting of this register outside of this block
|
|||
|
must be marked in the set of kills in this block. */
|
|||
|
handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
|
|||
|
}
|
|||
|
}
|
|||
|
/* FIXME: CLOBBER? */
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Compute the reaching definitions as in
|
|||
|
Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
|
|||
|
Chapter 10. It is the same algorithm as used for computing available
|
|||
|
expressions but applied to the gens and kills of reaching definitions. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_rd ()
|
|||
|
{
|
|||
|
int bb, changed, passes;
|
|||
|
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);
|
|||
|
|
|||
|
passes = 0;
|
|||
|
changed = 1;
|
|||
|
while (changed)
|
|||
|
{
|
|||
|
changed = 0;
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
sbitmap_union_of_predecessors (reaching_defs[bb], rd_out,
|
|||
|
bb, s_preds);
|
|||
|
changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb],
|
|||
|
reaching_defs[bb], rd_kill[bb]);
|
|||
|
}
|
|||
|
passes++;
|
|||
|
}
|
|||
|
|
|||
|
if (gcse_file)
|
|||
|
fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
|
|||
|
}
|
|||
|
|
|||
|
/* Classic GCSE available expression support. */
|
|||
|
|
|||
|
/* Allocate memory for available expression computation. */
|
|||
|
|
|||
|
static void
|
|||
|
alloc_avail_expr_mem (n_blocks, n_exprs)
|
|||
|
int n_blocks, n_exprs;
|
|||
|
{
|
|||
|
ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
sbitmap_vector_zero (ae_kill, n_basic_blocks);
|
|||
|
|
|||
|
ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
sbitmap_vector_zero (ae_gen, n_basic_blocks);
|
|||
|
|
|||
|
ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
sbitmap_vector_zero (ae_in, n_basic_blocks);
|
|||
|
|
|||
|
ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
sbitmap_vector_zero (ae_out, n_basic_blocks);
|
|||
|
|
|||
|
u_bitmap = (sbitmap) sbitmap_alloc (n_exprs);
|
|||
|
sbitmap_ones (u_bitmap);
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
free_avail_expr_mem ()
|
|||
|
{
|
|||
|
free (ae_kill);
|
|||
|
free (ae_gen);
|
|||
|
free (ae_in);
|
|||
|
free (ae_out);
|
|||
|
free (u_bitmap);
|
|||
|
}
|
|||
|
|
|||
|
/* Compute the set of available expressions generated in each basic block. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_ae_gen ()
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
/* For each recorded occurrence of each expression, set ae_gen[bb][expr].
|
|||
|
This is all we have to do because an expression is not recorded if it
|
|||
|
is not available, and the only expressions we want to work with are the
|
|||
|
ones that are recorded. */
|
|||
|
|
|||
|
for (i = 0; i < expr_hash_table_size; i++)
|
|||
|
{
|
|||
|
struct expr *expr = expr_hash_table[i];
|
|||
|
while (expr != NULL)
|
|||
|
{
|
|||
|
struct occr *occr = expr->avail_occr;
|
|||
|
while (occr != NULL)
|
|||
|
{
|
|||
|
SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
|
|||
|
occr = occr->next;
|
|||
|
}
|
|||
|
expr = expr->next_same_hash;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Return non-zero if expression X is killed in BB. */
|
|||
|
|
|||
|
static int
|
|||
|
expr_killed_p (x, bb)
|
|||
|
rtx x;
|
|||
|
int bb;
|
|||
|
{
|
|||
|
int i;
|
|||
|
enum rtx_code code;
|
|||
|
char *fmt;
|
|||
|
|
|||
|
/* repeat is used to turn tail-recursion into iteration. */
|
|||
|
repeat:
|
|||
|
|
|||
|
if (x == 0)
|
|||
|
return 1;
|
|||
|
|
|||
|
code = GET_CODE (x);
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case REG:
|
|||
|
return TEST_BIT (reg_set_in_block[bb], REGNO (x));
|
|||
|
|
|||
|
case MEM:
|
|||
|
if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
|
|||
|
return 1;
|
|||
|
|
|||
|
/* There is no conflict for the memory locations. Now check that the
|
|||
|
address itself has not changed. */
|
|||
|
x = XEXP (x, 0);
|
|||
|
goto repeat;
|
|||
|
|
|||
|
case PC:
|
|||
|
case CC0: /*FIXME*/
|
|||
|
case CONST:
|
|||
|
case CONST_INT:
|
|||
|
case CONST_DOUBLE:
|
|||
|
case SYMBOL_REF:
|
|||
|
case LABEL_REF:
|
|||
|
case ADDR_VEC:
|
|||
|
case ADDR_DIFF_VEC:
|
|||
|
return 0;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
i = GET_RTX_LENGTH (code) - 1;
|
|||
|
fmt = GET_RTX_FORMAT (code);
|
|||
|
for (; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
{
|
|||
|
rtx tem = XEXP (x, i);
|
|||
|
|
|||
|
/* If we are about to do the last recursive call
|
|||
|
needed at this level, change it into iteration.
|
|||
|
This function is called enough to be worth it. */
|
|||
|
if (i == 0)
|
|||
|
{
|
|||
|
x = tem;
|
|||
|
goto repeat;
|
|||
|
}
|
|||
|
if (expr_killed_p (tem, bb))
|
|||
|
return 1;
|
|||
|
}
|
|||
|
else if (fmt[i] == 'E')
|
|||
|
{
|
|||
|
int j;
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
{
|
|||
|
if (expr_killed_p (XVECEXP (x, i, j), bb))
|
|||
|
return 1;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Compute the set of available expressions killed in each basic block. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_ae_kill ()
|
|||
|
{
|
|||
|
int bb,i;
|
|||
|
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
for (i = 0; i < expr_hash_table_size; i++)
|
|||
|
{
|
|||
|
struct expr *expr = expr_hash_table[i];
|
|||
|
|
|||
|
for ( ; expr != NULL; expr = expr->next_same_hash)
|
|||
|
{
|
|||
|
/* Skip EXPR if generated in this block. */
|
|||
|
if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
|
|||
|
continue;
|
|||
|
|
|||
|
if (expr_killed_p (expr->expr, bb))
|
|||
|
SET_BIT (ae_kill[bb], expr->bitmap_index);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Compute available expressions.
|
|||
|
|
|||
|
Implement the algorithm to find available expressions
|
|||
|
as given in the Aho Sethi Ullman book, pages 627-631. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_available ()
|
|||
|
{
|
|||
|
int bb, changed, passes;
|
|||
|
|
|||
|
sbitmap_zero (ae_in[0]);
|
|||
|
|
|||
|
sbitmap_copy (ae_out[0] /*dst*/, ae_gen[0] /*src*/);
|
|||
|
|
|||
|
for (bb = 1; bb < n_basic_blocks; bb++)
|
|||
|
sbitmap_difference (ae_out[bb], u_bitmap, ae_kill[bb]);
|
|||
|
|
|||
|
passes = 0;
|
|||
|
changed = 1;
|
|||
|
while (changed)
|
|||
|
{
|
|||
|
changed = 0;
|
|||
|
for (bb = 1; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
sbitmap_intersect_of_predecessors (ae_in[bb], ae_out, bb, s_preds);
|
|||
|
changed |= sbitmap_union_of_diff (ae_out[bb], ae_gen[bb],
|
|||
|
ae_in[bb], ae_kill[bb]);
|
|||
|
}
|
|||
|
passes++;
|
|||
|
}
|
|||
|
|
|||
|
if (gcse_file)
|
|||
|
fprintf (gcse_file, "avail expr computation: %d passes\n", passes);
|
|||
|
}
|
|||
|
|
|||
|
/* Actually perform the Classic GCSE optimizations. */
|
|||
|
|
|||
|
/* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
|
|||
|
|
|||
|
CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
|
|||
|
as a positive reach. We want to do this when there are two computations
|
|||
|
of the expression in the block.
|
|||
|
|
|||
|
VISITED is a pointer to a working buffer for tracking which BB's have
|
|||
|
been visited. It is NULL for the top-level call.
|
|||
|
|
|||
|
We treat reaching expressions that go through blocks containing the same
|
|||
|
reaching expression as "not reaching". E.g. if EXPR is generated in blocks
|
|||
|
2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
|
|||
|
2 as not reaching. The intent is to improve the probability of finding
|
|||
|
only one reaching expression and to reduce register lifetimes by picking
|
|||
|
the closest such expression. */
|
|||
|
|
|||
|
static int
|
|||
|
expr_reaches_here_p (occr, expr, bb, check_self_loop, visited)
|
|||
|
struct occr *occr;
|
|||
|
struct expr *expr;
|
|||
|
int bb;
|
|||
|
int check_self_loop;
|
|||
|
char *visited;
|
|||
|
{
|
|||
|
int_list_ptr pred;
|
|||
|
|
|||
|
if (visited == NULL)
|
|||
|
{
|
|||
|
visited = (char *) alloca (n_basic_blocks);
|
|||
|
bzero (visited, n_basic_blocks);
|
|||
|
}
|
|||
|
|
|||
|
for (pred = s_preds[bb]; pred != NULL; pred = pred->next)
|
|||
|
{
|
|||
|
int pred_bb = INT_LIST_VAL (pred);
|
|||
|
|
|||
|
if (visited[pred_bb])
|
|||
|
{
|
|||
|
/* This predecessor has already been visited.
|
|||
|
Nothing to do. */
|
|||
|
;
|
|||
|
}
|
|||
|
else if (pred_bb == bb)
|
|||
|
{
|
|||
|
/* BB loops on itself. */
|
|||
|
if (check_self_loop
|
|||
|
&& TEST_BIT (ae_gen[pred_bb], expr->bitmap_index)
|
|||
|
&& BLOCK_NUM (occr->insn) == pred_bb)
|
|||
|
return 1;
|
|||
|
visited[pred_bb] = 1;
|
|||
|
}
|
|||
|
/* Ignore this predecessor if it kills the expression. */
|
|||
|
else if (TEST_BIT (ae_kill[pred_bb], expr->bitmap_index))
|
|||
|
visited[pred_bb] = 1;
|
|||
|
/* Does this predecessor generate this expression? */
|
|||
|
else if (TEST_BIT (ae_gen[pred_bb], expr->bitmap_index))
|
|||
|
{
|
|||
|
/* Is this the occurrence we're looking for?
|
|||
|
Note that there's only one generating occurrence per block
|
|||
|
so we just need to check the block number. */
|
|||
|
if (BLOCK_NUM (occr->insn) == pred_bb)
|
|||
|
return 1;
|
|||
|
visited[pred_bb] = 1;
|
|||
|
}
|
|||
|
/* Neither gen nor kill. */
|
|||
|
else
|
|||
|
{
|
|||
|
visited[pred_bb] = 1;
|
|||
|
if (expr_reaches_here_p (occr, expr, pred_bb, check_self_loop, visited))
|
|||
|
return 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* All paths have been checked. */
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Return the instruction that computes EXPR that reaches INSN's basic block.
|
|||
|
If there is more than one such instruction, return NULL.
|
|||
|
|
|||
|
Called only by handle_avail_expr. */
|
|||
|
|
|||
|
|
|||
|
static rtx
|
|||
|
computing_insn (expr, insn)
|
|||
|
struct expr *expr;
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
int bb = BLOCK_NUM (insn);
|
|||
|
|
|||
|
if (expr->avail_occr->next == NULL)
|
|||
|
{
|
|||
|
if (BLOCK_NUM (expr->avail_occr->insn) == bb)
|
|||
|
{
|
|||
|
/* The available expression is actually itself
|
|||
|
(i.e. a loop in the flow graph) so do nothing. */
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
/* (FIXME) Case that we found a pattern that was created by
|
|||
|
a substitution that took place. */
|
|||
|
return expr->avail_occr->insn;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Pattern is computed more than once.
|
|||
|
Search backwards from this insn to see how many of these
|
|||
|
computations actually reach this insn. */
|
|||
|
struct occr *occr;
|
|||
|
rtx insn_computes_expr = NULL;
|
|||
|
int can_reach = 0;
|
|||
|
|
|||
|
for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
|
|||
|
{
|
|||
|
if (BLOCK_NUM (occr->insn) == bb)
|
|||
|
{
|
|||
|
/* The expression is generated in this block.
|
|||
|
The only time we care about this is when the expression
|
|||
|
is generated later in the block [and thus there's a loop].
|
|||
|
We let the normal cse pass handle the other cases. */
|
|||
|
if (INSN_CUID (insn) < INSN_CUID (occr->insn))
|
|||
|
{
|
|||
|
if (expr_reaches_here_p (occr, expr, bb, 1, NULL))
|
|||
|
{
|
|||
|
can_reach++;
|
|||
|
if (can_reach > 1)
|
|||
|
return NULL;
|
|||
|
insn_computes_expr = occr->insn;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
else /* Computation of the pattern outside this block. */
|
|||
|
{
|
|||
|
if (expr_reaches_here_p (occr, expr, bb, 0, NULL))
|
|||
|
{
|
|||
|
can_reach++;
|
|||
|
if (can_reach > 1)
|
|||
|
return NULL;
|
|||
|
insn_computes_expr = occr->insn;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (insn_computes_expr == NULL)
|
|||
|
abort ();
|
|||
|
return insn_computes_expr;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Return non-zero if the definition in DEF_INSN can reach INSN.
|
|||
|
Only called by can_disregard_other_sets. */
|
|||
|
|
|||
|
static int
|
|||
|
def_reaches_here_p (insn, def_insn)
|
|||
|
rtx insn, def_insn;
|
|||
|
{
|
|||
|
rtx reg;
|
|||
|
|
|||
|
if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
|
|||
|
return 1;
|
|||
|
|
|||
|
if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
|
|||
|
{
|
|||
|
if (INSN_CUID (def_insn) < INSN_CUID (insn))
|
|||
|
{
|
|||
|
if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
|
|||
|
return 1;
|
|||
|
if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
|
|||
|
reg = XEXP (PATTERN (def_insn), 0);
|
|||
|
else if (GET_CODE (PATTERN (def_insn)) == SET)
|
|||
|
reg = SET_DEST (PATTERN (def_insn));
|
|||
|
else
|
|||
|
abort ();
|
|||
|
return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
|
|||
|
}
|
|||
|
else
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Return non-zero if *ADDR_THIS_REG can only have one value at INSN.
|
|||
|
The value returned is the number of definitions that reach INSN.
|
|||
|
Returning a value of zero means that [maybe] more than one definition
|
|||
|
reaches INSN and the caller can't perform whatever optimization it is
|
|||
|
trying. i.e. it is always safe to return zero. */
|
|||
|
|
|||
|
static int
|
|||
|
can_disregard_other_sets (addr_this_reg, insn, for_combine)
|
|||
|
struct reg_set **addr_this_reg;
|
|||
|
rtx insn;
|
|||
|
int for_combine;
|
|||
|
{
|
|||
|
int number_of_reaching_defs = 0;
|
|||
|
struct reg_set *this_reg = *addr_this_reg;
|
|||
|
|
|||
|
while (this_reg)
|
|||
|
{
|
|||
|
if (def_reaches_here_p (insn, this_reg->insn))
|
|||
|
{
|
|||
|
number_of_reaching_defs++;
|
|||
|
/* Ignore parallels for now. */
|
|||
|
if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
|
|||
|
return 0;
|
|||
|
if (!for_combine
|
|||
|
&& (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
|
|||
|
|| ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
|
|||
|
SET_SRC (PATTERN (insn)))))
|
|||
|
{
|
|||
|
/* A setting of the reg to a different value reaches INSN. */
|
|||
|
return 0;
|
|||
|
}
|
|||
|
if (number_of_reaching_defs > 1)
|
|||
|
{
|
|||
|
/* If in this setting the value the register is being
|
|||
|
set to is equal to the previous value the register
|
|||
|
was set to and this setting reaches the insn we are
|
|||
|
trying to do the substitution on then we are ok. */
|
|||
|
|
|||
|
if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
|
|||
|
return 0;
|
|||
|
if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
|
|||
|
SET_SRC (PATTERN (insn))))
|
|||
|
return 0;
|
|||
|
}
|
|||
|
*addr_this_reg = this_reg;
|
|||
|
}
|
|||
|
|
|||
|
/* prev_this_reg = this_reg; */
|
|||
|
this_reg = this_reg->next;
|
|||
|
}
|
|||
|
|
|||
|
return number_of_reaching_defs;
|
|||
|
}
|
|||
|
|
|||
|
/* Expression computed by insn is available and the substitution is legal,
|
|||
|
so try to perform the substitution.
|
|||
|
|
|||
|
The result is non-zero if any changes were made. */
|
|||
|
|
|||
|
static int
|
|||
|
handle_avail_expr (insn, expr)
|
|||
|
rtx insn;
|
|||
|
struct expr *expr;
|
|||
|
{
|
|||
|
rtx pat, insn_computes_expr;
|
|||
|
rtx to;
|
|||
|
struct reg_set *this_reg;
|
|||
|
int found_setting, use_src;
|
|||
|
int changed = 0;
|
|||
|
|
|||
|
/* We only handle the case where one computation of the expression
|
|||
|
reaches this instruction. */
|
|||
|
insn_computes_expr = computing_insn (expr, insn);
|
|||
|
if (insn_computes_expr == NULL)
|
|||
|
return 0;
|
|||
|
|
|||
|
found_setting = 0;
|
|||
|
use_src = 0;
|
|||
|
|
|||
|
/* At this point we know only one computation of EXPR outside of this
|
|||
|
block reaches this insn. Now try to find a register that the
|
|||
|
expression is computed into. */
|
|||
|
|
|||
|
if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG)
|
|||
|
{
|
|||
|
/* This is the case when the available expression that reaches
|
|||
|
here has already been handled as an available expression. */
|
|||
|
int regnum_for_replacing = REGNO (SET_SRC (PATTERN (insn_computes_expr)));
|
|||
|
/* If the register was created by GCSE we can't use `reg_set_table',
|
|||
|
however we know it's set only once. */
|
|||
|
if (regnum_for_replacing >= max_gcse_regno
|
|||
|
/* If the register the expression is computed into is set only once,
|
|||
|
or only one set reaches this insn, we can use it. */
|
|||
|
|| (((this_reg = reg_set_table[regnum_for_replacing]),
|
|||
|
this_reg->next == NULL)
|
|||
|
|| can_disregard_other_sets (&this_reg, insn, 0)))
|
|||
|
{
|
|||
|
use_src = 1;
|
|||
|
found_setting = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (!found_setting)
|
|||
|
{
|
|||
|
int regnum_for_replacing = REGNO (SET_DEST (PATTERN (insn_computes_expr)));
|
|||
|
/* This shouldn't happen. */
|
|||
|
if (regnum_for_replacing >= max_gcse_regno)
|
|||
|
abort ();
|
|||
|
this_reg = reg_set_table[regnum_for_replacing];
|
|||
|
/* If the register the expression is computed into is set only once,
|
|||
|
or only one set reaches this insn, use it. */
|
|||
|
if (this_reg->next == NULL
|
|||
|
|| can_disregard_other_sets (&this_reg, insn, 0))
|
|||
|
found_setting = 1;
|
|||
|
}
|
|||
|
|
|||
|
if (found_setting)
|
|||
|
{
|
|||
|
pat = PATTERN (insn);
|
|||
|
if (use_src)
|
|||
|
to = SET_SRC (PATTERN (insn_computes_expr));
|
|||
|
else
|
|||
|
to = SET_DEST (PATTERN (insn_computes_expr));
|
|||
|
changed = validate_change (insn, &SET_SRC (pat), to, 0);
|
|||
|
|
|||
|
/* We should be able to ignore the return code from validate_change but
|
|||
|
to play it safe we check. */
|
|||
|
if (changed)
|
|||
|
{
|
|||
|
gcse_subst_count++;
|
|||
|
if (gcse_file != NULL)
|
|||
|
{
|
|||
|
fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d %s insn %d\n",
|
|||
|
INSN_UID (insn), REGNO (to),
|
|||
|
use_src ? "from" : "set in",
|
|||
|
INSN_UID (insn_computes_expr));
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
}
|
|||
|
/* The register that the expr is computed into is set more than once. */
|
|||
|
else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
|
|||
|
{
|
|||
|
/* Insert an insn after insnx that copies the reg set in insnx
|
|||
|
into a new pseudo register call this new register REGN.
|
|||
|
From insnb until end of basic block or until REGB is set
|
|||
|
replace all uses of REGB with REGN. */
|
|||
|
rtx new_insn;
|
|||
|
|
|||
|
to = gen_reg_rtx (GET_MODE (SET_DEST (PATTERN (insn_computes_expr))));
|
|||
|
|
|||
|
/* Generate the new insn. */
|
|||
|
/* ??? If the change fails, we return 0, even though we created
|
|||
|
an insn. I think this is ok. */
|
|||
|
new_insn = emit_insn_after (gen_rtx (SET, VOIDmode, to,
|
|||
|
SET_DEST (PATTERN (insn_computes_expr))),
|
|||
|
insn_computes_expr);
|
|||
|
/* Keep block number table up to date. */
|
|||
|
set_block_num (new_insn, BLOCK_NUM (insn_computes_expr));
|
|||
|
/* Keep register set table up to date. */
|
|||
|
record_one_set (REGNO (to), new_insn);
|
|||
|
|
|||
|
gcse_create_count++;
|
|||
|
if (gcse_file != NULL)
|
|||
|
{
|
|||
|
fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d, computed in insn %d,\n",
|
|||
|
INSN_UID (NEXT_INSN (insn_computes_expr)),
|
|||
|
REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))),
|
|||
|
INSN_UID (insn_computes_expr));
|
|||
|
fprintf (gcse_file, " into newly allocated reg %d\n", REGNO (to));
|
|||
|
}
|
|||
|
|
|||
|
pat = PATTERN (insn);
|
|||
|
|
|||
|
/* Do register replacement for INSN. */
|
|||
|
changed = validate_change (insn, &SET_SRC (pat),
|
|||
|
SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr))),
|
|||
|
0);
|
|||
|
|
|||
|
/* We should be able to ignore the return code from validate_change but
|
|||
|
to play it safe we check. */
|
|||
|
if (changed)
|
|||
|
{
|
|||
|
gcse_subst_count++;
|
|||
|
if (gcse_file != NULL)
|
|||
|
{
|
|||
|
fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d set in insn %d\n",
|
|||
|
INSN_UID (insn),
|
|||
|
REGNO (SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr)))),
|
|||
|
INSN_UID (insn_computes_expr));
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return changed;
|
|||
|
}
|
|||
|
|
|||
|
/* Perform classic GCSE.
|
|||
|
This is called by one_classic_gcse_pass after all the dataflow analysis
|
|||
|
has been done.
|
|||
|
|
|||
|
The result is non-zero if a change was made. */
|
|||
|
|
|||
|
static int
|
|||
|
classic_gcse ()
|
|||
|
{
|
|||
|
int bb, changed;
|
|||
|
rtx insn;
|
|||
|
|
|||
|
/* Note we start at block 1. */
|
|||
|
|
|||
|
changed = 0;
|
|||
|
for (bb = 1; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
/* Reset tables used to keep track of what's still valid [since the
|
|||
|
start of the block]. */
|
|||
|
reset_opr_set_tables ();
|
|||
|
|
|||
|
for (insn = BLOCK_HEAD (bb);
|
|||
|
insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
|
|||
|
insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
/* Is insn of form (set (pseudo-reg) ...)? */
|
|||
|
|
|||
|
if (GET_CODE (insn) == INSN
|
|||
|
&& GET_CODE (PATTERN (insn)) == SET
|
|||
|
&& GET_CODE (SET_DEST (PATTERN (insn))) == REG
|
|||
|
&& REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
rtx pat = PATTERN (insn);
|
|||
|
rtx src = SET_SRC (pat);
|
|||
|
struct expr *expr;
|
|||
|
|
|||
|
if (want_to_gcse_p (src)
|
|||
|
/* Is the expression recorded? */
|
|||
|
&& ((expr = lookup_expr (src)) != NULL)
|
|||
|
/* Is the expression available [at the start of the
|
|||
|
block]? */
|
|||
|
&& TEST_BIT (ae_in[bb], expr->bitmap_index)
|
|||
|
/* Are the operands unchanged since the start of the
|
|||
|
block? */
|
|||
|
&& oprs_not_set_p (src, insn))
|
|||
|
changed |= handle_avail_expr (insn, expr);
|
|||
|
}
|
|||
|
|
|||
|
/* Keep track of everything modified by this insn. */
|
|||
|
/* ??? Need to be careful w.r.t. mods done to INSN. */
|
|||
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
mark_oprs_set (insn);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return changed;
|
|||
|
}
|
|||
|
|
|||
|
/* Top level routine to perform one classic GCSE pass.
|
|||
|
|
|||
|
Return non-zero if a change was made. */
|
|||
|
|
|||
|
static int
|
|||
|
one_classic_gcse_pass (pass)
|
|||
|
int pass;
|
|||
|
{
|
|||
|
int changed = 0;
|
|||
|
|
|||
|
gcse_subst_count = 0;
|
|||
|
gcse_create_count = 0;
|
|||
|
|
|||
|
alloc_expr_hash_table (max_cuid);
|
|||
|
alloc_rd_mem (n_basic_blocks, max_cuid);
|
|||
|
compute_expr_hash_table ();
|
|||
|
if (gcse_file)
|
|||
|
dump_hash_table (gcse_file, "Expression", expr_hash_table,
|
|||
|
expr_hash_table_size, n_exprs);
|
|||
|
if (n_exprs > 0)
|
|||
|
{
|
|||
|
compute_kill_rd ();
|
|||
|
compute_rd ();
|
|||
|
alloc_avail_expr_mem (n_basic_blocks, n_exprs);
|
|||
|
compute_ae_gen ();
|
|||
|
compute_ae_kill ();
|
|||
|
compute_available ();
|
|||
|
changed = classic_gcse ();
|
|||
|
free_avail_expr_mem ();
|
|||
|
}
|
|||
|
free_rd_mem ();
|
|||
|
free_expr_hash_table ();
|
|||
|
|
|||
|
if (gcse_file)
|
|||
|
{
|
|||
|
fprintf (gcse_file, "\n");
|
|||
|
fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
|
|||
|
current_function_name, pass,
|
|||
|
bytes_used, gcse_subst_count, gcse_create_count);
|
|||
|
}
|
|||
|
|
|||
|
return changed;
|
|||
|
}
|
|||
|
|
|||
|
/* Compute copy/constant propagation working variables. */
|
|||
|
|
|||
|
/* Local properties of assignments. */
|
|||
|
|
|||
|
static sbitmap *cprop_pavloc;
|
|||
|
static sbitmap *cprop_absaltered;
|
|||
|
|
|||
|
/* Global properties of assignments (computed from the local properties). */
|
|||
|
|
|||
|
static sbitmap *cprop_avin;
|
|||
|
static sbitmap *cprop_avout;
|
|||
|
|
|||
|
/* Allocate vars used for copy/const propagation.
|
|||
|
N_BLOCKS is the number of basic blocks.
|
|||
|
N_SETS is the number of sets. */
|
|||
|
|
|||
|
static void
|
|||
|
alloc_cprop_mem (n_blocks, n_sets)
|
|||
|
int n_blocks, n_sets;
|
|||
|
{
|
|||
|
cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
|
|||
|
cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
|
|||
|
|
|||
|
cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
|
|||
|
cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
|
|||
|
}
|
|||
|
|
|||
|
/* Free vars used by copy/const propagation. */
|
|||
|
|
|||
|
static void
|
|||
|
free_cprop_mem ()
|
|||
|
{
|
|||
|
free (cprop_pavloc);
|
|||
|
free (cprop_absaltered);
|
|||
|
free (cprop_avin);
|
|||
|
free (cprop_avout);
|
|||
|
}
|
|||
|
|
|||
|
/* For each block, compute whether X is transparent.
|
|||
|
X is either an expression or an assignment [though we don't care which,
|
|||
|
for this context an assignment is treated as an expression].
|
|||
|
For each block where an element of X is modified, set (SET_P == 1) or reset
|
|||
|
(SET_P == 0) the INDX bit in BMAP. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_transp (x, indx, bmap, set_p)
|
|||
|
rtx x;
|
|||
|
int indx;
|
|||
|
sbitmap *bmap;
|
|||
|
int set_p;
|
|||
|
{
|
|||
|
int bb,i;
|
|||
|
enum rtx_code code;
|
|||
|
char *fmt;
|
|||
|
|
|||
|
/* repeat is used to turn tail-recursion into iteration. */
|
|||
|
repeat:
|
|||
|
|
|||
|
if (x == 0)
|
|||
|
return;
|
|||
|
|
|||
|
code = GET_CODE (x);
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case REG:
|
|||
|
{
|
|||
|
reg_set *r;
|
|||
|
int regno = REGNO (x);
|
|||
|
|
|||
|
if (set_p)
|
|||
|
{
|
|||
|
if (regno < FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
if (TEST_BIT (reg_set_in_block[bb], regno))
|
|||
|
SET_BIT (bmap[bb], indx);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
for (r = reg_set_table[regno]; r != NULL; r = r->next)
|
|||
|
{
|
|||
|
bb = BLOCK_NUM (r->insn);
|
|||
|
SET_BIT (bmap[bb], indx);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
if (regno < FIRST_PSEUDO_REGISTER)
|
|||
|
{
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
if (TEST_BIT (reg_set_in_block[bb], regno))
|
|||
|
RESET_BIT (bmap[bb], indx);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
for (r = reg_set_table[regno]; r != NULL; r = r->next)
|
|||
|
{
|
|||
|
bb = BLOCK_NUM (r->insn);
|
|||
|
RESET_BIT (bmap[bb], indx);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
case MEM:
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
rtx list_entry = modify_mem_list[bb];
|
|||
|
|
|||
|
while (list_entry)
|
|||
|
{
|
|||
|
rtx mem;
|
|||
|
if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
|
|||
|
{
|
|||
|
if (set_p)
|
|||
|
SET_BIT (bmap[bb], indx);
|
|||
|
else
|
|||
|
RESET_BIT (bmap[bb], indx);
|
|||
|
break;
|
|||
|
}
|
|||
|
if (GET_CODE (PATTERN (XEXP (list_entry, 0))) == CLOBBER)
|
|||
|
mem = PATTERN (XEXP (list_entry, 0));
|
|||
|
else
|
|||
|
mem = SET_DEST (PATTERN (XEXP (list_entry, 0)));
|
|||
|
if (true_dependence (mem, GET_MODE (mem), x, rtx_addr_varies_p))
|
|||
|
{
|
|||
|
if (set_p)
|
|||
|
SET_BIT (bmap[bb], indx);
|
|||
|
else
|
|||
|
RESET_BIT (bmap[bb], indx);
|
|||
|
break;
|
|||
|
}
|
|||
|
list_entry = XEXP (list_entry, 1);
|
|||
|
}
|
|||
|
}
|
|||
|
x = XEXP (x, 0);
|
|||
|
goto repeat;
|
|||
|
|
|||
|
case PC:
|
|||
|
case CC0: /*FIXME*/
|
|||
|
case CONST:
|
|||
|
case CONST_INT:
|
|||
|
case CONST_DOUBLE:
|
|||
|
case SYMBOL_REF:
|
|||
|
case LABEL_REF:
|
|||
|
case ADDR_VEC:
|
|||
|
case ADDR_DIFF_VEC:
|
|||
|
return;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
i = GET_RTX_LENGTH (code) - 1;
|
|||
|
fmt = GET_RTX_FORMAT (code);
|
|||
|
for (; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
{
|
|||
|
rtx tem = XEXP (x, i);
|
|||
|
|
|||
|
/* If we are about to do the last recursive call
|
|||
|
needed at this level, change it into iteration.
|
|||
|
This function is called enough to be worth it. */
|
|||
|
if (i == 0)
|
|||
|
{
|
|||
|
x = tem;
|
|||
|
goto repeat;
|
|||
|
}
|
|||
|
compute_transp (tem, indx, bmap, set_p);
|
|||
|
}
|
|||
|
else if (fmt[i] == 'E')
|
|||
|
{
|
|||
|
int j;
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Compute the available expressions at the start and end of each
|
|||
|
basic block for cprop. This particular dataflow equation is
|
|||
|
used often enough that we might want to generalize it and make
|
|||
|
as a subroutine for other global optimizations that need available
|
|||
|
in/out information. */
|
|||
|
static void
|
|||
|
compute_cprop_avinout ()
|
|||
|
{
|
|||
|
int bb, changed, passes;
|
|||
|
|
|||
|
sbitmap_zero (cprop_avin[0]);
|
|||
|
sbitmap_vector_ones (cprop_avout, n_basic_blocks);
|
|||
|
|
|||
|
passes = 0;
|
|||
|
changed = 1;
|
|||
|
while (changed)
|
|||
|
{
|
|||
|
changed = 0;
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
if (bb != 0)
|
|||
|
sbitmap_intersect_of_predecessors (cprop_avin[bb],
|
|||
|
cprop_avout, bb, s_preds);
|
|||
|
changed |= sbitmap_union_of_diff (cprop_avout[bb],
|
|||
|
cprop_pavloc[bb],
|
|||
|
cprop_avin[bb],
|
|||
|
cprop_absaltered[bb]);
|
|||
|
}
|
|||
|
passes++;
|
|||
|
}
|
|||
|
|
|||
|
if (gcse_file)
|
|||
|
fprintf (gcse_file, "cprop avail expr computation: %d passes\n", passes);
|
|||
|
}
|
|||
|
|
|||
|
/* Top level routine to do the dataflow analysis needed by copy/const
|
|||
|
propagation. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_cprop_data ()
|
|||
|
{
|
|||
|
compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
|
|||
|
compute_cprop_avinout ();
|
|||
|
}
|
|||
|
|
|||
|
/* Copy/constant propagation. */
|
|||
|
|
|||
|
struct reg_use {
|
|||
|
rtx reg_rtx;
|
|||
|
};
|
|||
|
|
|||
|
/* Maximum number of register uses in an insn that we handle. */
|
|||
|
#define MAX_USES 8
|
|||
|
|
|||
|
/* Table of uses found in an insn.
|
|||
|
Allocated statically to avoid alloc/free complexity and overhead. */
|
|||
|
static struct reg_use reg_use_table[MAX_USES];
|
|||
|
|
|||
|
/* Index into `reg_use_table' while building it. */
|
|||
|
static int reg_use_count;
|
|||
|
|
|||
|
/* Set up a list of register numbers used in INSN.
|
|||
|
The found uses are stored in `reg_use_table'.
|
|||
|
`reg_use_count' is initialized to zero before entry, and
|
|||
|
contains the number of uses in the table upon exit.
|
|||
|
|
|||
|
??? If a register appears multiple times we will record it multiple
|
|||
|
times. This doesn't hurt anything but it will slow things down. */
|
|||
|
|
|||
|
static void
|
|||
|
find_used_regs (x)
|
|||
|
rtx x;
|
|||
|
{
|
|||
|
int i;
|
|||
|
enum rtx_code code;
|
|||
|
char *fmt;
|
|||
|
|
|||
|
/* repeat is used to turn tail-recursion into iteration. */
|
|||
|
repeat:
|
|||
|
|
|||
|
if (x == 0)
|
|||
|
return;
|
|||
|
|
|||
|
code = GET_CODE (x);
|
|||
|
switch (code)
|
|||
|
{
|
|||
|
case REG:
|
|||
|
if (reg_use_count == MAX_USES)
|
|||
|
return;
|
|||
|
reg_use_table[reg_use_count].reg_rtx = x;
|
|||
|
reg_use_count++;
|
|||
|
return;
|
|||
|
|
|||
|
case MEM:
|
|||
|
x = XEXP (x, 0);
|
|||
|
goto repeat;
|
|||
|
|
|||
|
case PC:
|
|||
|
case CC0:
|
|||
|
case CONST:
|
|||
|
case CONST_INT:
|
|||
|
case CONST_DOUBLE:
|
|||
|
case SYMBOL_REF:
|
|||
|
case LABEL_REF:
|
|||
|
case CLOBBER:
|
|||
|
case ADDR_VEC:
|
|||
|
case ADDR_DIFF_VEC:
|
|||
|
case ASM_INPUT: /*FIXME*/
|
|||
|
return;
|
|||
|
|
|||
|
case SET:
|
|||
|
if (GET_CODE (SET_DEST (x)) == MEM)
|
|||
|
find_used_regs (SET_DEST (x));
|
|||
|
x = SET_SRC (x);
|
|||
|
goto repeat;
|
|||
|
|
|||
|
default:
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* Recursively scan the operands of this expression. */
|
|||
|
|
|||
|
fmt = GET_RTX_FORMAT (code);
|
|||
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
{
|
|||
|
/* If we are about to do the last recursive call
|
|||
|
needed at this level, change it into iteration.
|
|||
|
This function is called enough to be worth it. */
|
|||
|
if (i == 0)
|
|||
|
{
|
|||
|
x = XEXP (x, 0);
|
|||
|
goto repeat;
|
|||
|
}
|
|||
|
find_used_regs (XEXP (x, i));
|
|||
|
}
|
|||
|
else if (fmt[i] == 'E')
|
|||
|
{
|
|||
|
int j;
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
find_used_regs (XVECEXP (x, i, j));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
|
|||
|
Returns non-zero is successful. */
|
|||
|
|
|||
|
static int
|
|||
|
try_replace_reg (from, to, insn)
|
|||
|
rtx from, to, insn;
|
|||
|
{
|
|||
|
/* If this fails we could try to simplify the result of the
|
|||
|
replacement and attempt to recognize the simplified insn.
|
|||
|
|
|||
|
But we need a general simplify_rtx that doesn't have pass
|
|||
|
specific state variables. I'm not aware of one at the moment. */
|
|||
|
return validate_replace_src (from, to, insn);
|
|||
|
}
|
|||
|
|
|||
|
/* Find a set of REGNO that is available on entry to INSN's block.
|
|||
|
Returns NULL if not found. */
|
|||
|
|
|||
|
static struct expr *
|
|||
|
find_avail_set (regno, insn)
|
|||
|
int regno;
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
struct expr *set = lookup_set (regno, NULL_RTX);
|
|||
|
|
|||
|
while (set)
|
|||
|
{
|
|||
|
if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
|
|||
|
break;
|
|||
|
set = next_set (regno, set);
|
|||
|
}
|
|||
|
|
|||
|
return set;
|
|||
|
}
|
|||
|
|
|||
|
/* Perform constant and copy propagation on INSN.
|
|||
|
The result is non-zero if a change was made. */
|
|||
|
|
|||
|
static int
|
|||
|
cprop_insn (insn, alter_jumps)
|
|||
|
rtx insn;
|
|||
|
int alter_jumps;
|
|||
|
{
|
|||
|
struct reg_use *reg_used;
|
|||
|
int changed = 0;
|
|||
|
|
|||
|
/* Only propagate into SETs. Note that a conditional jump is a
|
|||
|
SET with pc_rtx as the destination. */
|
|||
|
if ((GET_CODE (insn) != INSN
|
|||
|
&& GET_CODE (insn) != JUMP_INSN)
|
|||
|
|| GET_CODE (PATTERN (insn)) != SET)
|
|||
|
return 0;
|
|||
|
|
|||
|
reg_use_count = 0;
|
|||
|
find_used_regs (PATTERN (insn));
|
|||
|
|
|||
|
reg_used = ®_use_table[0];
|
|||
|
for ( ; reg_use_count > 0; reg_used++, reg_use_count--)
|
|||
|
{
|
|||
|
rtx pat, src;
|
|||
|
struct expr *set;
|
|||
|
int regno = REGNO (reg_used->reg_rtx);
|
|||
|
|
|||
|
/* Ignore registers created by GCSE.
|
|||
|
We do this because ... */
|
|||
|
if (regno >= max_gcse_regno)
|
|||
|
continue;
|
|||
|
|
|||
|
/* If the register has already been set in this block, there's
|
|||
|
nothing we can do. */
|
|||
|
if (! oprs_not_set_p (reg_used->reg_rtx, insn))
|
|||
|
continue;
|
|||
|
|
|||
|
/* Find an assignment that sets reg_used and is available
|
|||
|
at the start of the block. */
|
|||
|
set = find_avail_set (regno, insn);
|
|||
|
if (! set)
|
|||
|
continue;
|
|||
|
|
|||
|
pat = set->expr;
|
|||
|
/* ??? We might be able to handle PARALLELs. Later. */
|
|||
|
if (GET_CODE (pat) != SET)
|
|||
|
abort ();
|
|||
|
src = SET_SRC (pat);
|
|||
|
|
|||
|
/* Constant propagation. */
|
|||
|
if (GET_CODE (src) == CONST_INT)
|
|||
|
{
|
|||
|
/* Handle normal insns first. */
|
|||
|
if (GET_CODE (insn) == INSN
|
|||
|
&& try_replace_reg (reg_used->reg_rtx, src, insn))
|
|||
|
{
|
|||
|
changed = 1;
|
|||
|
const_prop_count++;
|
|||
|
if (gcse_file != NULL)
|
|||
|
{
|
|||
|
fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ",
|
|||
|
regno, INSN_UID (insn));
|
|||
|
fprintf (gcse_file, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
|
|||
|
fprintf (gcse_file, "\n");
|
|||
|
}
|
|||
|
|
|||
|
/* The original insn setting reg_used may or may not now be
|
|||
|
deletable. We leave the deletion to flow. */
|
|||
|
}
|
|||
|
|
|||
|
/* CYGNUS LOCAL gcse/law */
|
|||
|
/* Try to propagate a CONST_INT into a conditional jump.
|
|||
|
We're pretty specific about what we will handle in this
|
|||
|
code, we can extend this as necessary over time.
|
|||
|
|
|||
|
Right now the insn in question must look like
|
|||
|
|
|||
|
(set (pc) (if_then_else ...))
|
|||
|
|
|||
|
Note this does not currently handle machines which use cc0. */
|
|||
|
else if (alter_jumps
|
|||
|
&& GET_CODE (insn) == JUMP_INSN && condjump_p (insn))
|
|||
|
{
|
|||
|
/* We want a copy of the JUMP_INSN so we can modify it
|
|||
|
in-place as needed without effecting the original. */
|
|||
|
rtx copy = copy_rtx (insn);
|
|||
|
rtx set = PATTERN (copy);
|
|||
|
rtx temp;
|
|||
|
|
|||
|
/* Replace the register with the appropriate constant. */
|
|||
|
replace_rtx (SET_SRC (set), reg_used->reg_rtx, src);
|
|||
|
|
|||
|
temp = simplify_ternary_operation (GET_CODE (SET_SRC (set)),
|
|||
|
GET_MODE (SET_SRC (set)),
|
|||
|
GET_MODE (XEXP (SET_SRC (set), 0)),
|
|||
|
XEXP (SET_SRC (set), 0),
|
|||
|
XEXP (SET_SRC (set), 1),
|
|||
|
XEXP (SET_SRC (set), 2));
|
|||
|
|
|||
|
/* If no simplification can be made, then try the next
|
|||
|
register. */
|
|||
|
if (temp)
|
|||
|
SET_SRC (set) = temp;
|
|||
|
else
|
|||
|
continue;
|
|||
|
|
|||
|
/* That may have changed the structure of TEMP, so
|
|||
|
force it to be rerecognized if it has not turned
|
|||
|
into a nop or unconditional jump. */
|
|||
|
|
|||
|
INSN_CODE (copy) = -1;
|
|||
|
if ((SET_DEST (set) == pc_rtx
|
|||
|
&& (SET_SRC (set) == pc_rtx
|
|||
|
|| GET_CODE (SET_SRC (set)) == LABEL_REF))
|
|||
|
|| recog (PATTERN (copy), copy, NULL) >= 0)
|
|||
|
{
|
|||
|
/* This has either become an unconditional jump
|
|||
|
or a nop-jump. We'd like to delete nop jumps
|
|||
|
here, but doing so confuses gcse. So we just
|
|||
|
make the replacement and let later passes
|
|||
|
sort things out. */
|
|||
|
PATTERN (insn) = set;
|
|||
|
INSN_CODE (insn) = -1;
|
|||
|
|
|||
|
/* One less use of the label this insn used to jump to
|
|||
|
if we turned this into a NOP jump. */
|
|||
|
if (SET_SRC (set) == pc_rtx && JUMP_LABEL (insn) != 0)
|
|||
|
--LABEL_NUSES (JUMP_LABEL (insn));
|
|||
|
|
|||
|
/* If this has turned into an unconditional jump,
|
|||
|
then put a barrier after it so that the unreachable
|
|||
|
code will be deleted. */
|
|||
|
if (GET_CODE (SET_SRC (set)) == LABEL_REF)
|
|||
|
emit_barrier_after (insn);
|
|||
|
|
|||
|
run_jump_opt_after_gcse = 1;
|
|||
|
|
|||
|
changed = 1;
|
|||
|
const_prop_count++;
|
|||
|
if (gcse_file != NULL)
|
|||
|
{
|
|||
|
fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ",
|
|||
|
regno, INSN_UID (insn));
|
|||
|
fprintf (gcse_file, HOST_WIDE_INT_PRINT_DEC,
|
|||
|
INTVAL (src));
|
|||
|
fprintf (gcse_file, "\n");
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
/* END CYGNUS LOCAL */
|
|||
|
}
|
|||
|
else if (GET_CODE (src) == REG
|
|||
|
&& REGNO (src) >= FIRST_PSEUDO_REGISTER
|
|||
|
&& REGNO (src) != regno)
|
|||
|
{
|
|||
|
/* We know the set is available.
|
|||
|
Now check that SET_SRC is ANTLOC (i.e. none of the source operands
|
|||
|
have changed since the start of the block). */
|
|||
|
if (oprs_not_set_p (src, insn))
|
|||
|
{
|
|||
|
if (try_replace_reg (reg_used->reg_rtx, src, insn))
|
|||
|
{
|
|||
|
changed = 1;
|
|||
|
copy_prop_count++;
|
|||
|
if (gcse_file != NULL)
|
|||
|
{
|
|||
|
fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d with reg %d\n",
|
|||
|
regno, INSN_UID (insn), REGNO (src));
|
|||
|
}
|
|||
|
|
|||
|
/* The original insn setting reg_used may or may not now be
|
|||
|
deletable. We leave the deletion to flow. */
|
|||
|
/* FIXME: If it turns out that the insn isn't deletable,
|
|||
|
then we may have unnecessarily extended register lifetimes
|
|||
|
and made things worse. */
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return changed;
|
|||
|
}
|
|||
|
|
|||
|
/* Forward propagate copies.
|
|||
|
This includes copies and constants.
|
|||
|
Return non-zero if a change was made. */
|
|||
|
|
|||
|
static int
|
|||
|
cprop (alter_jumps)
|
|||
|
int alter_jumps;
|
|||
|
{
|
|||
|
int bb, changed;
|
|||
|
rtx insn;
|
|||
|
|
|||
|
/* Note we start at block 1. */
|
|||
|
|
|||
|
changed = 0;
|
|||
|
for (bb = 1; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
/* Reset tables used to keep track of what's still valid [since the
|
|||
|
start of the block]. */
|
|||
|
reset_opr_set_tables ();
|
|||
|
|
|||
|
for (insn = BLOCK_HEAD (bb);
|
|||
|
insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
|
|||
|
insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
|||
|
{
|
|||
|
changed |= cprop_insn (insn, alter_jumps);
|
|||
|
|
|||
|
/* Keep track of everything modified by this insn. */
|
|||
|
/* ??? Need to be careful w.r.t. mods done to INSN. */
|
|||
|
mark_oprs_set (insn);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (gcse_file != NULL)
|
|||
|
fprintf (gcse_file, "\n");
|
|||
|
|
|||
|
return changed;
|
|||
|
}
|
|||
|
|
|||
|
/* Perform one copy/constant propagation pass.
|
|||
|
F is the first insn in the function.
|
|||
|
PASS is the pass count. */
|
|||
|
|
|||
|
static int
|
|||
|
one_cprop_pass (pass, alter_jumps)
|
|||
|
int pass;
|
|||
|
int alter_jumps;
|
|||
|
{
|
|||
|
int changed = 0;
|
|||
|
|
|||
|
const_prop_count = 0;
|
|||
|
copy_prop_count = 0;
|
|||
|
|
|||
|
alloc_set_hash_table (max_cuid);
|
|||
|
compute_set_hash_table ();
|
|||
|
if (gcse_file)
|
|||
|
dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
|
|||
|
n_sets);
|
|||
|
if (n_sets > 0)
|
|||
|
{
|
|||
|
alloc_cprop_mem (n_basic_blocks, n_sets);
|
|||
|
compute_cprop_data ();
|
|||
|
changed = cprop (alter_jumps);
|
|||
|
free_cprop_mem ();
|
|||
|
}
|
|||
|
free_set_hash_table ();
|
|||
|
|
|||
|
if (gcse_file)
|
|||
|
{
|
|||
|
fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, %d const props, %d copy props\n",
|
|||
|
current_function_name, pass,
|
|||
|
bytes_used, const_prop_count, copy_prop_count);
|
|||
|
fprintf (gcse_file, "\n");
|
|||
|
}
|
|||
|
|
|||
|
return changed;
|
|||
|
}
|
|||
|
|
|||
|
/* Compute PRE+LCM working variables. */
|
|||
|
|
|||
|
/* Local properties of expressions. */
|
|||
|
/* Nonzero for expressions that are transparent in the block. */
|
|||
|
static sbitmap *transp;
|
|||
|
|
|||
|
/* Nonzero for expressions that are transparent at the end of the block.
|
|||
|
This is only zero for expressions killed by abnormal critical edge
|
|||
|
created by a calls. */
|
|||
|
static sbitmap *transpout;
|
|||
|
|
|||
|
/* Nonzero for expressions that are computed (available) in the block. */
|
|||
|
static sbitmap *comp;
|
|||
|
|
|||
|
/* Nonzero for expressions that are locally anticipatable in the block. */
|
|||
|
static sbitmap *antloc;
|
|||
|
|
|||
|
/* Nonzero for expressions where this block is an optimal computation
|
|||
|
point. */
|
|||
|
static sbitmap *pre_optimal;
|
|||
|
|
|||
|
/* Nonzero for expressions which are redundant in a particular block. */
|
|||
|
static sbitmap *pre_redundant;
|
|||
|
|
|||
|
static sbitmap *temp_bitmap;
|
|||
|
|
|||
|
/* Redundant insns. */
|
|||
|
static sbitmap pre_redundant_insns;
|
|||
|
|
|||
|
/* Allocate vars used for PRE analysis. */
|
|||
|
|
|||
|
static void
|
|||
|
alloc_pre_mem (n_blocks, n_exprs)
|
|||
|
int n_blocks, n_exprs;
|
|||
|
{
|
|||
|
transp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
comp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
|
|||
|
temp_bitmap = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
pre_optimal = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
pre_redundant = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
}
|
|||
|
|
|||
|
/* Free vars used for PRE analysis. */
|
|||
|
|
|||
|
static void
|
|||
|
free_pre_mem ()
|
|||
|
{
|
|||
|
free (transp);
|
|||
|
free (comp);
|
|||
|
free (antloc);
|
|||
|
|
|||
|
free (pre_optimal);
|
|||
|
free (pre_redundant);
|
|||
|
free (transpout);
|
|||
|
}
|
|||
|
|
|||
|
/* Top level routine to do the dataflow analysis needed by PRE. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_pre_data ()
|
|||
|
{
|
|||
|
compute_local_properties (transp, comp, antloc, 0);
|
|||
|
compute_transpout ();
|
|||
|
pre_lcm (n_basic_blocks, n_exprs, s_preds, s_succs, transp,
|
|||
|
antloc, pre_redundant, pre_optimal);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* PRE utilities */
|
|||
|
|
|||
|
/* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
|
|||
|
block BB.
|
|||
|
|
|||
|
VISITED is a pointer to a working buffer for tracking which BB's have
|
|||
|
been visited. It is NULL for the top-level call.
|
|||
|
|
|||
|
CHECK_PRE_COMP controls whether or not we check for a computation of
|
|||
|
EXPR in OCCR_BB.
|
|||
|
|
|||
|
We treat reaching expressions that go through blocks containing the same
|
|||
|
reaching expression as "not reaching". E.g. if EXPR is generated in blocks
|
|||
|
2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
|
|||
|
2 as not reaching. The intent is to improve the probability of finding
|
|||
|
only one reaching expression and to reduce register lifetimes by picking
|
|||
|
the closest such expression. */
|
|||
|
|
|||
|
static int
|
|||
|
pre_expr_reaches_here_p (occr_bb, expr, bb, check_pre_comp, visited)
|
|||
|
int occr_bb;
|
|||
|
struct expr *expr;
|
|||
|
int bb;
|
|||
|
int check_pre_comp;
|
|||
|
char *visited;
|
|||
|
{
|
|||
|
int_list_ptr pred;
|
|||
|
|
|||
|
if (visited == NULL)
|
|||
|
{
|
|||
|
visited = (char *) alloca (n_basic_blocks);
|
|||
|
bzero (visited, n_basic_blocks);
|
|||
|
}
|
|||
|
|
|||
|
for (pred = s_preds[bb]; pred != NULL; pred = pred->next)
|
|||
|
{
|
|||
|
int pred_bb = INT_LIST_VAL (pred);
|
|||
|
|
|||
|
if (pred_bb == ENTRY_BLOCK
|
|||
|
/* Has predecessor has already been visited? */
|
|||
|
|| visited[pred_bb])
|
|||
|
{
|
|||
|
/* Nothing to do. */
|
|||
|
}
|
|||
|
/* Does this predecessor generate this expression? */
|
|||
|
else if ((!check_pre_comp && occr_bb == pred_bb)
|
|||
|
|| TEST_BIT (comp[pred_bb], expr->bitmap_index))
|
|||
|
{
|
|||
|
/* Is this the occurrence we're looking for?
|
|||
|
Note that there's only one generating occurrence per block
|
|||
|
so we just need to check the block number. */
|
|||
|
if (occr_bb == pred_bb)
|
|||
|
return 1;
|
|||
|
visited[pred_bb] = 1;
|
|||
|
}
|
|||
|
/* Ignore this predecessor if it kills the expression. */
|
|||
|
else if (! TEST_BIT (transp[pred_bb], expr->bitmap_index))
|
|||
|
visited[pred_bb] = 1;
|
|||
|
/* Neither gen nor kill. */
|
|||
|
else
|
|||
|
{
|
|||
|
visited[pred_bb] = 1;
|
|||
|
if (pre_expr_reaches_here_p (occr_bb, expr, pred_bb,
|
|||
|
check_pre_comp, visited))
|
|||
|
return 1;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* All paths have been checked. */
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Add EXPR to the end of basic block BB.
|
|||
|
|
|||
|
This is used by both the PRE and code hoisting.
|
|||
|
|
|||
|
For PRE, we want to verify that the expr is either transparent
|
|||
|
or locally anticipatable in the target block. This check makes
|
|||
|
no sense for code hoisting. */
|
|||
|
|
|||
|
static void
|
|||
|
insert_insn_end_bb (expr, bb, pre)
|
|||
|
struct expr *expr;
|
|||
|
int bb;
|
|||
|
int pre;
|
|||
|
{
|
|||
|
rtx insn = BLOCK_END (bb);
|
|||
|
rtx new_insn;
|
|||
|
rtx reg = expr->reaching_reg;
|
|||
|
int regno = REGNO (reg);
|
|||
|
rtx pat;
|
|||
|
|
|||
|
pat = gen_rtx (SET, VOIDmode, reg, copy_rtx (expr->expr));
|
|||
|
|
|||
|
/* If the last insn is a jump, insert EXPR in front [taking care to
|
|||
|
handle cc0, etc. properly]. */
|
|||
|
|
|||
|
if (GET_CODE (insn) == JUMP_INSN)
|
|||
|
{
|
|||
|
#ifdef HAVE_cc0
|
|||
|
rtx note;
|
|||
|
#endif
|
|||
|
/* If this is a jump table, then we can't insert stuff here. Since
|
|||
|
we know the previous real insn must be the tablejump, we insert
|
|||
|
the new instruction just before the tablejump. */
|
|||
|
if (GET_CODE (PATTERN (insn)) == ADDR_VEC
|
|||
|
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
|
|||
|
insn = prev_real_insn (insn);
|
|||
|
|
|||
|
#ifdef HAVE_cc0
|
|||
|
/* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
|
|||
|
if cc0 isn't set. */
|
|||
|
note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
|
|||
|
if (note)
|
|||
|
insn = XEXP (note, 0);
|
|||
|
else
|
|||
|
{
|
|||
|
rtx maybe_cc0_setter = prev_nonnote_insn (insn);
|
|||
|
if (maybe_cc0_setter
|
|||
|
&& GET_RTX_CLASS (GET_CODE (maybe_cc0_setter)) == 'i'
|
|||
|
&& sets_cc0_p (PATTERN (maybe_cc0_setter)))
|
|||
|
insn = maybe_cc0_setter;
|
|||
|
}
|
|||
|
#endif
|
|||
|
/* FIXME: What if something in cc0/jump uses value set in new insn? */
|
|||
|
new_insn = emit_insn_before (pat, insn);
|
|||
|
if (BLOCK_HEAD (bb) == insn)
|
|||
|
BLOCK_HEAD (bb) = new_insn;
|
|||
|
}
|
|||
|
/* Likewise if the last insn is a call, as will happen in the presence
|
|||
|
of exception handling. */
|
|||
|
else if (GET_CODE (insn) == CALL_INSN)
|
|||
|
{
|
|||
|
HARD_REG_SET parm_regs;
|
|||
|
int nparm_regs;
|
|||
|
rtx p;
|
|||
|
|
|||
|
/* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
|
|||
|
we search backward and place the instructions before the first
|
|||
|
parameter is loaded. Do this for everyone for consistency and a
|
|||
|
presumtion that we'll get better code elsewhere as well. */
|
|||
|
|
|||
|
/* It should always be the case that we can put these instructions
|
|||
|
anywhere in the basic block with performing PRE optimizations.
|
|||
|
Check this. */
|
|||
|
if (pre
|
|||
|
&& !TEST_BIT (antloc[bb], expr->bitmap_index)
|
|||
|
&& !TEST_BIT (transp[bb], expr->bitmap_index))
|
|||
|
abort ();
|
|||
|
|
|||
|
/* Since different machines initialize their parameter registers
|
|||
|
in different orders, assume nothing. Collect the set of all
|
|||
|
parameter registers. */
|
|||
|
CLEAR_HARD_REG_SET (parm_regs);
|
|||
|
nparm_regs = 0;
|
|||
|
for (p = CALL_INSN_FUNCTION_USAGE (insn); p ; p = XEXP (p, 1))
|
|||
|
if (GET_CODE (XEXP (p, 0)) == USE
|
|||
|
&& GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
|
|||
|
{
|
|||
|
int regno = REGNO (XEXP (XEXP (p, 0), 0));
|
|||
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
|||
|
abort();
|
|||
|
SET_HARD_REG_BIT (parm_regs, regno);
|
|||
|
nparm_regs++;
|
|||
|
}
|
|||
|
|
|||
|
/* Search backward for the first set of a register in this set. */
|
|||
|
while (nparm_regs && BLOCK_HEAD (bb) != insn)
|
|||
|
{
|
|||
|
insn = PREV_INSN (insn);
|
|||
|
p = single_set (insn);
|
|||
|
if (p && GET_CODE (SET_DEST (p)) == REG
|
|||
|
&& REGNO (SET_DEST (p)) < FIRST_PSEUDO_REGISTER
|
|||
|
&& TEST_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p))))
|
|||
|
{
|
|||
|
CLEAR_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p)));
|
|||
|
nparm_regs--;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
new_insn = emit_insn_before (pat, insn);
|
|||
|
if (BLOCK_HEAD (bb) == insn)
|
|||
|
BLOCK_HEAD (bb) = new_insn;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
new_insn = emit_insn_after (pat, insn);
|
|||
|
BLOCK_END (bb) = new_insn;
|
|||
|
}
|
|||
|
|
|||
|
/* Keep block number table up to date. */
|
|||
|
set_block_num (new_insn, bb);
|
|||
|
/* Keep register set table up to date. */
|
|||
|
record_one_set (regno, new_insn);
|
|||
|
|
|||
|
gcse_create_count++;
|
|||
|
|
|||
|
if (gcse_file)
|
|||
|
{
|
|||
|
fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, copying expression %d to reg %d\n",
|
|||
|
bb, INSN_UID (new_insn), expr->bitmap_index, regno);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Insert partially redundant expressions at the ends of appropriate basic
|
|||
|
blocks making them fully redundant. */
|
|||
|
|
|||
|
static void
|
|||
|
pre_insert (index_map)
|
|||
|
struct expr **index_map;
|
|||
|
{
|
|||
|
int bb, i, set_size;
|
|||
|
sbitmap *inserted;
|
|||
|
|
|||
|
/* Compute INSERT = PRE_OPTIMAL & ~PRE_REDUNDANT.
|
|||
|
Where INSERT is nonzero, we add the expression at the end of the basic
|
|||
|
block if it reaches any of the deleted expressions. */
|
|||
|
|
|||
|
set_size = pre_optimal[0]->size;
|
|||
|
inserted = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
|
|||
|
sbitmap_vector_zero (inserted, n_basic_blocks);
|
|||
|
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
int indx;
|
|||
|
|
|||
|
/* This computes the number of potential insertions we need. */
|
|||
|
sbitmap_not (temp_bitmap[bb], pre_redundant[bb]);
|
|||
|
sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_optimal[bb]);
|
|||
|
|
|||
|
/* TEMP_BITMAP[bb] now contains a bitmap of the expressions that we need
|
|||
|
to insert at the end of this basic block. */
|
|||
|
for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
|
|||
|
{
|
|||
|
SBITMAP_ELT_TYPE insert = temp_bitmap[bb]->elms[i];
|
|||
|
int j;
|
|||
|
|
|||
|
for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
|
|||
|
{
|
|||
|
if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
|
|||
|
{
|
|||
|
struct expr *expr = index_map[j];
|
|||
|
struct occr *occr;
|
|||
|
|
|||
|
/* Now look at each deleted occurence of this expression. */
|
|||
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
|||
|
{
|
|||
|
if (! occr->deleted_p)
|
|||
|
continue;
|
|||
|
|
|||
|
/* Insert this expression at the end of BB if it would
|
|||
|
reach the deleted occurence. */
|
|||
|
if (!TEST_BIT (inserted[bb], j)
|
|||
|
&& pre_expr_reaches_here_p (bb, expr,
|
|||
|
BLOCK_NUM (occr->insn), 0,
|
|||
|
NULL))
|
|||
|
{
|
|||
|
SET_BIT (inserted[bb], j);
|
|||
|
insert_insn_end_bb (index_map[j], bb, 1);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Copy the result of INSN to REG.
|
|||
|
INDX is the expression number. */
|
|||
|
|
|||
|
static void
|
|||
|
pre_insert_copy_insn (expr, insn)
|
|||
|
struct expr *expr;
|
|||
|
rtx insn;
|
|||
|
{
|
|||
|
rtx reg = expr->reaching_reg;
|
|||
|
int regno = REGNO (reg);
|
|||
|
int indx = expr->bitmap_index;
|
|||
|
rtx set = single_set (insn);
|
|||
|
rtx new_insn;
|
|||
|
|
|||
|
if (!set)
|
|||
|
abort ();
|
|||
|
new_insn = emit_insn_after (gen_rtx (SET, VOIDmode, reg, SET_DEST (set)),
|
|||
|
insn);
|
|||
|
/* Keep block number table up to date. */
|
|||
|
set_block_num (new_insn, BLOCK_NUM (insn));
|
|||
|
/* Keep register set table up to date. */
|
|||
|
record_one_set (regno, new_insn);
|
|||
|
|
|||
|
gcse_create_count++;
|
|||
|
|
|||
|
if (gcse_file)
|
|||
|
{
|
|||
|
fprintf (gcse_file, "PRE: bb %d, insn %d, copying expression %d in insn %d to reg %d\n",
|
|||
|
BLOCK_NUM (insn), INSN_UID (new_insn), indx, INSN_UID (insn), regno);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Copy available expressions that reach the redundant expression
|
|||
|
to `reaching_reg'. */
|
|||
|
|
|||
|
static void
|
|||
|
pre_insert_copies ()
|
|||
|
{
|
|||
|
int i, bb;
|
|||
|
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
sbitmap_a_and_b (temp_bitmap[bb], pre_optimal[bb], pre_redundant[bb]);
|
|||
|
}
|
|||
|
|
|||
|
/* For each available expression in the table, copy the result to
|
|||
|
`reaching_reg' if the expression reaches a deleted one.
|
|||
|
|
|||
|
??? The current algorithm is rather brute force.
|
|||
|
Need to do some profiling. */
|
|||
|
|
|||
|
for (i = 0; i < expr_hash_table_size; i++)
|
|||
|
{
|
|||
|
struct expr *expr;
|
|||
|
|
|||
|
for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
|
|||
|
{
|
|||
|
struct occr *occr;
|
|||
|
|
|||
|
/* If the basic block isn't reachable, PPOUT will be TRUE.
|
|||
|
However, we don't want to insert a copy here because the
|
|||
|
expression may not really be redundant. So only insert
|
|||
|
an insn if the expression was deleted.
|
|||
|
This test also avoids further processing if the expression
|
|||
|
wasn't deleted anywhere. */
|
|||
|
if (expr->reaching_reg == NULL)
|
|||
|
continue;
|
|||
|
|
|||
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
|||
|
{
|
|||
|
struct occr *avail;
|
|||
|
|
|||
|
if (! occr->deleted_p)
|
|||
|
continue;
|
|||
|
|
|||
|
for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
|
|||
|
{
|
|||
|
rtx insn = avail->insn;
|
|||
|
int bb = BLOCK_NUM (insn);
|
|||
|
|
|||
|
if (!TEST_BIT (temp_bitmap[bb], expr->bitmap_index))
|
|||
|
continue;
|
|||
|
|
|||
|
/* No need to handle this one if handled already. */
|
|||
|
if (avail->copied_p)
|
|||
|
continue;
|
|||
|
/* Don't handle this one if it's a redundant one. */
|
|||
|
if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
|
|||
|
continue;
|
|||
|
/* Or if the expression doesn't reach the deleted one. */
|
|||
|
if (! pre_expr_reaches_here_p (BLOCK_NUM (avail->insn), expr,
|
|||
|
BLOCK_NUM (occr->insn),
|
|||
|
1, NULL))
|
|||
|
continue;
|
|||
|
|
|||
|
/* Copy the result of avail to reaching_reg. */
|
|||
|
pre_insert_copy_insn (expr, insn);
|
|||
|
avail->copied_p = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Delete redundant computations.
|
|||
|
Deletion is done by changing the insn to copy the `reaching_reg' of
|
|||
|
the expression into the result of the SET. It is left to later passes
|
|||
|
(cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
|
|||
|
|
|||
|
Returns non-zero if a change is made. */
|
|||
|
|
|||
|
static int
|
|||
|
pre_delete ()
|
|||
|
{
|
|||
|
int i, bb, changed;
|
|||
|
|
|||
|
/* Compute the expressions which are redundant and need to be replaced by
|
|||
|
copies from the reaching reg to the target reg. */
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
sbitmap_not (temp_bitmap[bb], pre_optimal[bb]);
|
|||
|
sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_redundant[bb]);
|
|||
|
}
|
|||
|
|
|||
|
changed = 0;
|
|||
|
for (i = 0; i < expr_hash_table_size; i++)
|
|||
|
{
|
|||
|
struct expr *expr;
|
|||
|
|
|||
|
for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
|
|||
|
{
|
|||
|
struct occr *occr;
|
|||
|
int indx = expr->bitmap_index;
|
|||
|
|
|||
|
/* We only need to search antic_occr since we require
|
|||
|
ANTLOC != 0. */
|
|||
|
|
|||
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
|||
|
{
|
|||
|
rtx insn = occr->insn;
|
|||
|
rtx set;
|
|||
|
int bb = BLOCK_NUM (insn);
|
|||
|
|
|||
|
if (TEST_BIT (temp_bitmap[bb], indx))
|
|||
|
{
|
|||
|
set = single_set (insn);
|
|||
|
if (! set)
|
|||
|
abort ();
|
|||
|
|
|||
|
/* Create a pseudo-reg to store the result of reaching
|
|||
|
expressions into. Get the mode for the new pseudo
|
|||
|
from the mode of the original destination pseudo. */
|
|||
|
if (expr->reaching_reg == NULL)
|
|||
|
expr->reaching_reg
|
|||
|
= gen_reg_rtx (GET_MODE (SET_DEST (set)));
|
|||
|
|
|||
|
/* In theory this should never fail since we're creating
|
|||
|
a reg->reg copy.
|
|||
|
|
|||
|
However, on the x86 some of the movXX patterns actually
|
|||
|
contain clobbers of scratch regs. This may cause the
|
|||
|
insn created by validate_change to not patch any pattern
|
|||
|
and thus cause validate_change to fail. */
|
|||
|
if (TEST_BIT (temp_bitmap[bb], indx)
|
|||
|
&& validate_change (insn, &SET_SRC (set),
|
|||
|
expr->reaching_reg, 0))
|
|||
|
{
|
|||
|
occr->deleted_p = 1;
|
|||
|
SET_BIT (pre_redundant_insns, INSN_CUID (insn));
|
|||
|
changed = 1;
|
|||
|
gcse_subst_count++;
|
|||
|
if (gcse_file)
|
|||
|
{
|
|||
|
fprintf (gcse_file,
|
|||
|
"PRE: redundant insn %d (expression %d) in bb %d, reaching reg is %d\n",
|
|||
|
INSN_UID (insn), indx, bb, REGNO (expr->reaching_reg));
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return changed;
|
|||
|
}
|
|||
|
|
|||
|
/* Perform GCSE optimizations using PRE.
|
|||
|
This is called by one_pre_gcse_pass after all the dataflow analysis
|
|||
|
has been done.
|
|||
|
|
|||
|
This is based on the original Morel-Renvoise paper Fred Chow's thesis,
|
|||
|
and lazy code motion from Knoop, Ruthing and Steffen as described in
|
|||
|
Advanced Compiler Design and Implementation.
|
|||
|
|
|||
|
??? A new pseudo reg is created to hold the reaching expression.
|
|||
|
The nice thing about the classical approach is that it would try to
|
|||
|
use an existing reg. If the register can't be adequately optimized
|
|||
|
[i.e. we introduce reload problems], one could add a pass here to
|
|||
|
propagate the new register through the block.
|
|||
|
|
|||
|
??? We don't handle single sets in PARALLELs because we're [currently]
|
|||
|
not able to copy the rest of the parallel when we insert copies to create
|
|||
|
full redundancies from partial redundancies. However, there's no reason
|
|||
|
why we can't handle PARALLELs in the cases where there are no partial
|
|||
|
redundancies. */
|
|||
|
|
|||
|
static int
|
|||
|
pre_gcse ()
|
|||
|
{
|
|||
|
int i;
|
|||
|
int changed;
|
|||
|
struct expr **index_map;
|
|||
|
|
|||
|
/* Compute a mapping from expression number (`bitmap_index') to
|
|||
|
hash table entry. */
|
|||
|
|
|||
|
index_map = (struct expr **) alloca (n_exprs * sizeof (struct expr *));
|
|||
|
bzero ((char *) index_map, n_exprs * sizeof (struct expr *));
|
|||
|
for (i = 0; i < expr_hash_table_size; i++)
|
|||
|
{
|
|||
|
struct expr *expr;
|
|||
|
|
|||
|
for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
|
|||
|
index_map[expr->bitmap_index] = expr;
|
|||
|
}
|
|||
|
|
|||
|
pre_redundant_insns = sbitmap_alloc (max_cuid);
|
|||
|
sbitmap_zero (pre_redundant_insns);
|
|||
|
|
|||
|
/* Delete the redundant insns first so that
|
|||
|
- we know what register to use for the new insns and for the other
|
|||
|
ones with reaching expressions
|
|||
|
- we know which insns are redundant when we go to create copies */
|
|||
|
changed = pre_delete ();
|
|||
|
|
|||
|
/* Insert insns in places that make partially redundant expressions
|
|||
|
fully redundant. */
|
|||
|
pre_insert (index_map);
|
|||
|
|
|||
|
/* In other places with reaching expressions, copy the expression to the
|
|||
|
specially allocated pseudo-reg that reaches the redundant expression. */
|
|||
|
pre_insert_copies ();
|
|||
|
|
|||
|
free (pre_redundant_insns);
|
|||
|
|
|||
|
return changed;
|
|||
|
}
|
|||
|
|
|||
|
/* Top level routine to perform one PRE GCSE pass.
|
|||
|
|
|||
|
Return non-zero if a change was made. */
|
|||
|
|
|||
|
static int
|
|||
|
one_pre_gcse_pass (pass)
|
|||
|
int pass;
|
|||
|
{
|
|||
|
int changed = 0;
|
|||
|
|
|||
|
gcse_subst_count = 0;
|
|||
|
gcse_create_count = 0;
|
|||
|
|
|||
|
alloc_expr_hash_table (max_cuid);
|
|||
|
compute_expr_hash_table ();
|
|||
|
if (gcse_file)
|
|||
|
dump_hash_table (gcse_file, "Expression", expr_hash_table,
|
|||
|
expr_hash_table_size, n_exprs);
|
|||
|
if (n_exprs > 0)
|
|||
|
{
|
|||
|
alloc_pre_mem (n_basic_blocks, n_exprs);
|
|||
|
compute_pre_data ();
|
|||
|
changed |= pre_gcse ();
|
|||
|
free_pre_mem ();
|
|||
|
}
|
|||
|
free_expr_hash_table ();
|
|||
|
|
|||
|
if (gcse_file)
|
|||
|
{
|
|||
|
fprintf (gcse_file, "\n");
|
|||
|
fprintf (gcse_file, "PRE GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
|
|||
|
current_function_name, pass,
|
|||
|
bytes_used, gcse_subst_count, gcse_create_count);
|
|||
|
}
|
|||
|
|
|||
|
return changed;
|
|||
|
}
|
|||
|
|
|||
|
/* Compute transparent outgoing information for each block.
|
|||
|
|
|||
|
An expression is transparent to an edge unless it is killed by
|
|||
|
the edge itself. This can only happen with abnormal control flow,
|
|||
|
when the edge is traversed through a call. This happens with
|
|||
|
non-local labels and exceptions.
|
|||
|
|
|||
|
This would not be necessary if we split the edge. While this is
|
|||
|
normally impossible for abnormal critical edges, with some effort
|
|||
|
it should be possible with exception handling, since we still have
|
|||
|
control over which handler should be invoked. But due to increased
|
|||
|
EH table sizes, this may not be worthwhile. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_transpout ()
|
|||
|
{
|
|||
|
int bb;
|
|||
|
|
|||
|
sbitmap_vector_ones (transpout, n_basic_blocks);
|
|||
|
|
|||
|
for (bb = 0; bb < n_basic_blocks; ++bb)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
/* Note that flow inserted a nop a the end of basic blocks that
|
|||
|
end in call instructions for reasons other than abnormal
|
|||
|
control flow. */
|
|||
|
if (GET_CODE (BLOCK_END (bb)) != CALL_INSN)
|
|||
|
continue;
|
|||
|
|
|||
|
for (i = 0; i < expr_hash_table_size; i++)
|
|||
|
{
|
|||
|
struct expr *expr;
|
|||
|
for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
|
|||
|
if (GET_CODE (expr->expr) == MEM)
|
|||
|
{
|
|||
|
rtx addr = XEXP (expr->expr, 0);
|
|||
|
|
|||
|
if (GET_CODE (addr) == SYMBOL_REF
|
|||
|
&& CONSTANT_POOL_ADDRESS_P (addr))
|
|||
|
continue;
|
|||
|
|
|||
|
/* ??? Optimally, we would use interprocedural alias
|
|||
|
analysis to determine if this mem is actually killed
|
|||
|
by this call. */
|
|||
|
RESET_BIT (transpout[bb], expr->bitmap_index);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* CYGNUS LOCAL code hoisting/law */
|
|||
|
/* Code Hoisting variables and subroutines. */
|
|||
|
|
|||
|
/* Very busy expressions. */
|
|||
|
static sbitmap *hoist_vbein;
|
|||
|
static sbitmap *hoist_vbeout;
|
|||
|
|
|||
|
/* Hoistable expressions. */
|
|||
|
static sbitmap *hoist_exprs;
|
|||
|
|
|||
|
/* Dominator bitmaps. */
|
|||
|
static sbitmap *dominators;
|
|||
|
static sbitmap *post_dominators;
|
|||
|
|
|||
|
/* ??? We could compute post dominators and run this algorithm in
|
|||
|
reverse to to perform tail merging, doing so would probably be
|
|||
|
more effective than the tail merging code in jump.c.
|
|||
|
|
|||
|
It's unclear if tail merging could be run in parallel with
|
|||
|
code hoisting. It would be nice. */
|
|||
|
|
|||
|
/* Allocate vars used for code hoisting analysis. */
|
|||
|
|
|||
|
static void
|
|||
|
alloc_code_hoist_mem (n_blocks, n_exprs)
|
|||
|
int n_blocks, n_exprs;
|
|||
|
{
|
|||
|
antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
transp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
comp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
|
|||
|
hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
|||
|
|
|||
|
dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
|
|||
|
post_dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
|
|||
|
}
|
|||
|
|
|||
|
/* Free vars used for code hoisting analysis. */
|
|||
|
|
|||
|
static void
|
|||
|
free_code_hoist_mem ()
|
|||
|
{
|
|||
|
free (antloc);
|
|||
|
free (transp);
|
|||
|
free (comp);
|
|||
|
|
|||
|
free (hoist_vbein);
|
|||
|
free (hoist_vbeout);
|
|||
|
free (hoist_exprs);
|
|||
|
free (transpout);
|
|||
|
|
|||
|
free (dominators);
|
|||
|
free (post_dominators);
|
|||
|
}
|
|||
|
|
|||
|
/* Compute the very busy expressions at entry/exit from each block.
|
|||
|
|
|||
|
An expression is very busy if all paths from a given point
|
|||
|
compute the expression. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_code_hoist_vbeinout ()
|
|||
|
{
|
|||
|
int bb, changed, passes;
|
|||
|
|
|||
|
sbitmap_vector_zero (hoist_vbeout, n_basic_blocks);
|
|||
|
sbitmap_vector_zero (hoist_vbein, n_basic_blocks);
|
|||
|
|
|||
|
passes = 0;
|
|||
|
changed = 1;
|
|||
|
while (changed)
|
|||
|
{
|
|||
|
changed = 0;
|
|||
|
/* We scan the blocks in the reverse order to speed up
|
|||
|
the convergence. */
|
|||
|
for (bb = n_basic_blocks - 1; bb >= 0; bb--)
|
|||
|
{
|
|||
|
changed |= sbitmap_a_or_b_and_c (hoist_vbein[bb], antloc[bb],
|
|||
|
hoist_vbeout[bb], transp[bb]);
|
|||
|
if (bb != n_basic_blocks - 1)
|
|||
|
sbitmap_intersect_of_successors (hoist_vbeout[bb], hoist_vbein,
|
|||
|
bb, s_succs);
|
|||
|
}
|
|||
|
passes++;
|
|||
|
}
|
|||
|
|
|||
|
if (gcse_file)
|
|||
|
fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
|
|||
|
}
|
|||
|
|
|||
|
/* Top level routine to do the dataflow analysis needed by code hoisting. */
|
|||
|
|
|||
|
static void
|
|||
|
compute_code_hoist_data ()
|
|||
|
{
|
|||
|
compute_local_properties (transp, comp, antloc, 0);
|
|||
|
compute_transpout ();
|
|||
|
compute_code_hoist_vbeinout ();
|
|||
|
compute_dominators (dominators, post_dominators, s_preds, s_succs);
|
|||
|
if (gcse_file)
|
|||
|
fprintf (gcse_file, "\n");
|
|||
|
}
|
|||
|
|
|||
|
/* Determine if the expression identified by EXPR_INDEX would
|
|||
|
reach BB unimpared if it was placed at the end of EXPR_BB.
|
|||
|
|
|||
|
It's unclear exactly what Muchnick meant by "unimpared". It seems
|
|||
|
to me that the expression must either be computed or transparent in
|
|||
|
*every* block in the path(s) from EXPR_BB to BB. Any other definition
|
|||
|
would allow the expression to be hoisted out of loops, even if
|
|||
|
the expression wasn't a loop invariant.
|
|||
|
|
|||
|
Contrast this to reachability for PRE where an expression is
|
|||
|
considered reachable if *any* path reaches instead of *all*
|
|||
|
paths. */
|
|||
|
|
|||
|
static int
|
|||
|
hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
|
|||
|
int expr_bb;
|
|||
|
int expr_index;
|
|||
|
int bb;
|
|||
|
char *visited;
|
|||
|
{
|
|||
|
int_list_ptr pred;
|
|||
|
|
|||
|
if (visited == NULL)
|
|||
|
{
|
|||
|
visited = (char *) alloca (n_basic_blocks);
|
|||
|
bzero (visited, n_basic_blocks);
|
|||
|
}
|
|||
|
|
|||
|
visited[expr_bb] = 1;
|
|||
|
for (pred = s_preds[bb]; pred != NULL; pred = pred->next)
|
|||
|
{
|
|||
|
int pred_bb = INT_LIST_VAL (pred);
|
|||
|
|
|||
|
if (pred_bb == ENTRY_BLOCK)
|
|||
|
break;
|
|||
|
else if (visited[pred_bb])
|
|||
|
continue;
|
|||
|
/* Does this predecessor generate this expression? */
|
|||
|
else if (TEST_BIT (comp[pred_bb], expr_index))
|
|||
|
break;
|
|||
|
else if (! TEST_BIT (transp[pred_bb], expr_index))
|
|||
|
break;
|
|||
|
/* Not killed. */
|
|||
|
else
|
|||
|
{
|
|||
|
visited[pred_bb] = 1;
|
|||
|
if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
|
|||
|
pred_bb, visited))
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return (pred == NULL);
|
|||
|
}
|
|||
|
|
|||
|
/* Actually perform code hoisting. */
|
|||
|
static void
|
|||
|
hoist_code ()
|
|||
|
{
|
|||
|
int bb, dominated, i;
|
|||
|
struct expr **index_map;
|
|||
|
|
|||
|
sbitmap_vector_zero (hoist_exprs, n_basic_blocks);
|
|||
|
|
|||
|
/* Compute a mapping from expression number (`bitmap_index') to
|
|||
|
hash table entry. */
|
|||
|
|
|||
|
index_map = (struct expr **) alloca (n_exprs * sizeof (struct expr *));
|
|||
|
bzero ((char *) index_map, n_exprs * sizeof (struct expr *));
|
|||
|
for (i = 0; i < expr_hash_table_size; i++)
|
|||
|
{
|
|||
|
struct expr *expr;
|
|||
|
|
|||
|
for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
|
|||
|
index_map[expr->bitmap_index] = expr;
|
|||
|
}
|
|||
|
|
|||
|
/* Walk over each basic block looking for potentially hoistable
|
|||
|
expressions, nothing gets hoisted from the entry block. */
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
int found = 0;
|
|||
|
int insn_inserted_p;
|
|||
|
|
|||
|
/* Examine each expression that is very busy at the exit of this
|
|||
|
block. These are the potentially hoistable expressions. */
|
|||
|
for (i = 0; i < hoist_vbeout[bb]->n_bits; i++)
|
|||
|
{
|
|||
|
int hoistable = 0;
|
|||
|
if (TEST_BIT (hoist_vbeout[bb], i)
|
|||
|
&& TEST_BIT (transpout[bb], i))
|
|||
|
{
|
|||
|
/* We've found a potentially hoistable expression, now
|
|||
|
we look at every block BB dominates to see if it
|
|||
|
computes the expression. */
|
|||
|
for (dominated = 0; dominated < n_basic_blocks; dominated++)
|
|||
|
{
|
|||
|
/* Ignore self dominance. */
|
|||
|
if (bb == dominated
|
|||
|
|| ! TEST_BIT (dominators[dominated], bb))
|
|||
|
continue;
|
|||
|
|
|||
|
/* We've found a dominated block, now see if it computes
|
|||
|
the busy expression and whether or not moving that
|
|||
|
expression to the "beginning" of that block is safe. */
|
|||
|
if (!TEST_BIT (antloc[dominated], i))
|
|||
|
continue;
|
|||
|
|
|||
|
/* Note if the expression would reach the dominated block
|
|||
|
unimpared if it was placed at the end of BB.
|
|||
|
|
|||
|
Keep track of how many times this expression is hoistable
|
|||
|
from a dominated block into BB. */
|
|||
|
if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
|
|||
|
hoistable++;
|
|||
|
}
|
|||
|
|
|||
|
/* If we found more than one hoistable occurence of this
|
|||
|
expression, then note it in the bitmap of expressions to
|
|||
|
hoist. It makes no sense to hoist things which are computed
|
|||
|
in only one BB, and doing so tends to pessimize register
|
|||
|
allocation. One could increase this value to try harder
|
|||
|
to avoid any possible code expansion due to register
|
|||
|
allocation issues; however experiments have shown that
|
|||
|
the vast majority of hoistable expressions are only movable
|
|||
|
from two successors, so raising this threshhold is likely
|
|||
|
to nullify any benefit we get from code hoisting. */
|
|||
|
if (hoistable > 1)
|
|||
|
{
|
|||
|
SET_BIT (hoist_exprs[bb], i);
|
|||
|
found = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If we found nothing to hoist, then quit now. */
|
|||
|
if (! found)
|
|||
|
continue;
|
|||
|
|
|||
|
/* Loop over all the hoistable expressions. */
|
|||
|
for (i = 0; i < hoist_exprs[bb]->n_bits; i++)
|
|||
|
{
|
|||
|
/* We want to insert the expression into BB only once, so
|
|||
|
note when we've inserted it. */
|
|||
|
insn_inserted_p = 0;
|
|||
|
|
|||
|
/* These tests should be the same as the tests above. */
|
|||
|
if (TEST_BIT (hoist_vbeout[bb], i))
|
|||
|
{
|
|||
|
/* We've found a potentially hoistable expression, now
|
|||
|
we look at every block BB dominates to see if it
|
|||
|
computes the expression. */
|
|||
|
for (dominated = 0; dominated < n_basic_blocks; dominated++)
|
|||
|
{
|
|||
|
/* Ignore self dominance. */
|
|||
|
if (bb == dominated
|
|||
|
|| ! TEST_BIT (dominators[dominated], bb))
|
|||
|
continue;
|
|||
|
|
|||
|
/* We've found a dominated block, now see if it computes
|
|||
|
the busy expression and whether or not moving that
|
|||
|
expression to the "beginning" of that block is safe. */
|
|||
|
if (!TEST_BIT (antloc[dominated], i))
|
|||
|
continue;
|
|||
|
|
|||
|
/* The expression is computed in the dominated block and
|
|||
|
it would be safe to compute it at the start of the
|
|||
|
dominated block. Now we have to determine if the
|
|||
|
expresion would reach the dominated block if it was
|
|||
|
placed at the end of BB. */
|
|||
|
if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
|
|||
|
{
|
|||
|
struct expr *expr = index_map[i];
|
|||
|
struct occr *occr = expr->antic_occr;
|
|||
|
rtx insn;
|
|||
|
rtx set;
|
|||
|
|
|||
|
|
|||
|
/* Find the right occurence of this expression. */
|
|||
|
while (BLOCK_NUM (occr->insn) != dominated && occr)
|
|||
|
occr = occr->next;
|
|||
|
|
|||
|
/* Should never happen. */
|
|||
|
if (!occr)
|
|||
|
abort ();
|
|||
|
|
|||
|
insn = occr->insn;
|
|||
|
|
|||
|
set = single_set (insn);
|
|||
|
if (! set)
|
|||
|
abort ();
|
|||
|
|
|||
|
/* Create a pseudo-reg to store the result of reaching
|
|||
|
expressions into. Get the mode for the new pseudo
|
|||
|
from the mode of the original destination pseudo. */
|
|||
|
if (expr->reaching_reg == NULL)
|
|||
|
expr->reaching_reg
|
|||
|
= gen_reg_rtx (GET_MODE (SET_DEST (set)));
|
|||
|
|
|||
|
/* In theory this should never fail since we're creating
|
|||
|
a reg->reg copy.
|
|||
|
|
|||
|
However, on the x86 some of the movXX patterns actually
|
|||
|
contain clobbers of scratch regs. This may cause the
|
|||
|
insn created by validate_change to not patch any
|
|||
|
pattern and thus cause validate_change to fail. */
|
|||
|
if (validate_change (insn, &SET_SRC (set),
|
|||
|
expr->reaching_reg, 0))
|
|||
|
{
|
|||
|
occr->deleted_p = 1;
|
|||
|
if (!insn_inserted_p)
|
|||
|
{
|
|||
|
insert_insn_end_bb (index_map[i], bb, 0);
|
|||
|
insn_inserted_p = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Top level routine to perform one code hoisting (aka unification) pass
|
|||
|
|
|||
|
Return non-zero if a change was made. */
|
|||
|
|
|||
|
static int
|
|||
|
one_code_hoisting_pass ()
|
|||
|
{
|
|||
|
int changed = 0;
|
|||
|
|
|||
|
alloc_expr_hash_table (max_cuid);
|
|||
|
compute_expr_hash_table ();
|
|||
|
if (gcse_file)
|
|||
|
dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
|
|||
|
expr_hash_table_size, n_exprs);
|
|||
|
if (n_exprs > 0)
|
|||
|
{
|
|||
|
alloc_code_hoist_mem (n_basic_blocks, n_exprs);
|
|||
|
compute_code_hoist_data ();
|
|||
|
hoist_code ();
|
|||
|
free_code_hoist_mem ();
|
|||
|
}
|
|||
|
free_expr_hash_table ();
|
|||
|
|
|||
|
return changed;
|
|||
|
}
|
|||
|
|
|||
|
/* These need to be file static for communication between
|
|||
|
invalidate_nonnull_info and delete_null_pointer_checks. */
|
|||
|
static int current_block;
|
|||
|
static sbitmap *nonnull_local;
|
|||
|
static sbitmap *nonnull_killed;
|
|||
|
|
|||
|
/* Called via note_stores. X is set by SETTER. If X is a register we must
|
|||
|
invalidate nonnull_local and set nonnull_killed.
|
|||
|
|
|||
|
We ignore hard registers. */
|
|||
|
void
|
|||
|
invalidate_nonnull_info (x, setter)
|
|||
|
rtx x, setter;
|
|||
|
{
|
|||
|
int offset, regno;
|
|||
|
|
|||
|
offset = 0;
|
|||
|
while (GET_CODE (x) == SUBREG)
|
|||
|
x = SUBREG_REG (x);
|
|||
|
|
|||
|
/* Ignore anything that is not a register or is a hard register. */
|
|||
|
if (GET_CODE (x) != REG
|
|||
|
|| REGNO (x) < FIRST_PSEUDO_REGISTER)
|
|||
|
return;
|
|||
|
|
|||
|
regno = REGNO (x);
|
|||
|
|
|||
|
RESET_BIT (nonnull_local[current_block], regno);
|
|||
|
SET_BIT (nonnull_killed[current_block], regno);
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
/* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
|
|||
|
at compile time.
|
|||
|
|
|||
|
This is conceptually similar to global constant/copy propagation and
|
|||
|
classic global CSE (it even uses the same dataflow equations as cprop).
|
|||
|
|
|||
|
If a register is used as memory address with the form (mem (reg)), then we
|
|||
|
know that REG can not be zero at that point in the program. Any instruction
|
|||
|
which sets REG "kills" this property.
|
|||
|
|
|||
|
So, if every path leading to a conditional branch has an available memory
|
|||
|
reference of that form, then we know the register can not have the value
|
|||
|
zero at the conditional branch.
|
|||
|
|
|||
|
So we merely need to compute the local properies and propagate that data
|
|||
|
around the cfg, then optimize where possible.
|
|||
|
|
|||
|
We run this pass two times. Once before CSE, then again after CSE. This
|
|||
|
has proven to be the most profitable approach. It is rare for new
|
|||
|
optimization opportunities of this nature to appear after the first CSE
|
|||
|
pass.
|
|||
|
|
|||
|
This could probably be integrated with global cprop with a little work. */
|
|||
|
|
|||
|
void
|
|||
|
delete_null_pointer_checks (f)
|
|||
|
rtx f;
|
|||
|
{
|
|||
|
int_list_ptr *s_preds, *s_succs;
|
|||
|
int *num_preds, *num_succs;
|
|||
|
int changed, bb;
|
|||
|
sbitmap *nonnull_avin, *nonnull_avout;
|
|||
|
|
|||
|
/* First break the program into basic blocks. */
|
|||
|
find_basic_blocks (f, max_reg_num (), NULL);
|
|||
|
|
|||
|
/* If we have only a single block, then there's nothing to do. */
|
|||
|
if (n_basic_blocks <= 1)
|
|||
|
{
|
|||
|
/* Free storage allocated by find_basic_blocks. */
|
|||
|
free_basic_block_vars (0);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
/* We need predecessor/successor lists as well as pred/succ counts for
|
|||
|
each basic block. */
|
|||
|
s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
|
|||
|
s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
|
|||
|
num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
|
|||
|
num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
|
|||
|
compute_preds_succs (s_preds, s_succs, num_preds, num_succs, 0);
|
|||
|
|
|||
|
/* Allocate bitmaps to hold local and global properties. */
|
|||
|
nonnull_local = sbitmap_vector_alloc (n_basic_blocks, max_reg_num ());
|
|||
|
nonnull_killed = sbitmap_vector_alloc (n_basic_blocks, max_reg_num ());
|
|||
|
nonnull_avin = sbitmap_vector_alloc (n_basic_blocks, max_reg_num ());
|
|||
|
nonnull_avout = sbitmap_vector_alloc (n_basic_blocks, max_reg_num ());
|
|||
|
|
|||
|
/* Compute local properties, nonnull and killed. A register will have
|
|||
|
the nonnull property if at the end of the current block its value is
|
|||
|
known to be nonnull. The killed property indicates that somewhere in
|
|||
|
the block any information we had about the register is killed.
|
|||
|
|
|||
|
Note that a register can have both properties in a single block. That
|
|||
|
indicates that it's killed, then later in the block a new value is
|
|||
|
computed. */
|
|||
|
sbitmap_vector_zero (nonnull_local, n_basic_blocks);
|
|||
|
sbitmap_vector_zero (nonnull_killed, n_basic_blocks);
|
|||
|
for (current_block = 0; current_block < n_basic_blocks; current_block++)
|
|||
|
{
|
|||
|
rtx insn, stop_insn;
|
|||
|
|
|||
|
/* Scan each insn in the basic block looking for memory references and
|
|||
|
register sets. */
|
|||
|
stop_insn = NEXT_INSN (BLOCK_END (current_block));
|
|||
|
for (insn = BLOCK_HEAD (current_block);
|
|||
|
insn != stop_insn;
|
|||
|
insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
rtx set;
|
|||
|
|
|||
|
/* Ignore anything that is not a normal insn. */
|
|||
|
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
|
|||
|
continue;
|
|||
|
|
|||
|
/* Basically ignore anything that is not a simple SET. We do have
|
|||
|
to make sure to invalidate nonnull_local and set nonnull_killed
|
|||
|
for such insns though. */
|
|||
|
set = single_set (insn);
|
|||
|
if (!set)
|
|||
|
{
|
|||
|
note_stores (PATTERN (insn), invalidate_nonnull_info);
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
/* See if we've got a useable memory load. We handle it first
|
|||
|
in case it uses its address register as a dest (which kills
|
|||
|
the nonnull property). */
|
|||
|
if (GET_CODE (SET_SRC (set)) == MEM
|
|||
|
&& GET_CODE (XEXP (SET_SRC (set), 0)) == REG
|
|||
|
&& REGNO (XEXP (SET_SRC (set), 0)) >= FIRST_PSEUDO_REGISTER)
|
|||
|
SET_BIT (nonnull_local[current_block],
|
|||
|
REGNO (XEXP (SET_SRC (set), 0)));
|
|||
|
|
|||
|
/* Now invalidate stuff clobbered by this insn. */
|
|||
|
note_stores (PATTERN (insn), invalidate_nonnull_info);
|
|||
|
|
|||
|
/* And handle stores, we do these last since any sets in INSN can
|
|||
|
not kill the nonnull property if it is derived from a MEM
|
|||
|
appearing in a SET_DEST. */
|
|||
|
if (GET_CODE (SET_DEST (set)) == MEM
|
|||
|
&& GET_CODE (XEXP (SET_DEST (set), 0)) == REG)
|
|||
|
SET_BIT (nonnull_local[current_block],
|
|||
|
REGNO (XEXP (SET_DEST (set), 0)));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Now compute global properties based on the local properties. This
|
|||
|
is a classic global availablity algorithm. */
|
|||
|
sbitmap_zero (nonnull_avin[0]);
|
|||
|
sbitmap_vector_ones (nonnull_avout, n_basic_blocks);
|
|||
|
changed = 1;
|
|||
|
while (changed)
|
|||
|
{
|
|||
|
changed = 0;
|
|||
|
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
if (bb != 0)
|
|||
|
sbitmap_intersect_of_predecessors (nonnull_avin[bb],
|
|||
|
nonnull_avout, bb, s_preds);
|
|||
|
|
|||
|
changed |= sbitmap_union_of_diff (nonnull_avout[bb],
|
|||
|
nonnull_local[bb],
|
|||
|
nonnull_avin[bb],
|
|||
|
nonnull_killed[bb]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Now look at each bb and see if it ends with a compare of a value
|
|||
|
against zero. */
|
|||
|
for (bb = 0; bb < n_basic_blocks; bb++)
|
|||
|
{
|
|||
|
rtx last_insn = BLOCK_END (bb);
|
|||
|
rtx condition, earliest, reg;
|
|||
|
int compare_and_branch;
|
|||
|
|
|||
|
/* We only want conditional branches. */
|
|||
|
if (GET_CODE (last_insn) != JUMP_INSN
|
|||
|
|| !condjump_p (last_insn)
|
|||
|
|| simplejump_p (last_insn))
|
|||
|
continue;
|
|||
|
|
|||
|
/* LAST_INSN is a conditional jump. Get its condition. */
|
|||
|
condition = get_condition (last_insn, &earliest);
|
|||
|
|
|||
|
/* If we were unable to get the condition, or it is not a equality
|
|||
|
comparison against zero then there's nothing we can do. */
|
|||
|
if (!condition
|
|||
|
|| (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
|
|||
|
|| GET_CODE (XEXP (condition, 1)) != CONST_INT
|
|||
|
|| XEXP (condition, 1) != CONST0_RTX (GET_MODE (XEXP (condition, 0))))
|
|||
|
continue;
|
|||
|
|
|||
|
/* We must be checking a register against zero. */
|
|||
|
reg = XEXP (condition, 0);
|
|||
|
if (GET_CODE (reg) != REG)
|
|||
|
continue;
|
|||
|
|
|||
|
/* Is the register known to have a nonzero value? */
|
|||
|
if (!TEST_BIT (nonnull_avout[bb], REGNO (reg)))
|
|||
|
continue;
|
|||
|
|
|||
|
/* Try to compute whether the compare/branch at the loop end is one or
|
|||
|
two instructions. */
|
|||
|
if (earliest == last_insn)
|
|||
|
compare_and_branch = 1;
|
|||
|
else if (earliest == prev_nonnote_insn (last_insn))
|
|||
|
compare_and_branch = 2;
|
|||
|
else
|
|||
|
continue;
|
|||
|
|
|||
|
/* We know the register in this comparison is nonnull at exit from
|
|||
|
this block. We can optimize this comparison. */
|
|||
|
if (GET_CODE (condition) == NE)
|
|||
|
{
|
|||
|
rtx new_jump;
|
|||
|
|
|||
|
new_jump = emit_jump_insn_before (gen_jump (JUMP_LABEL (last_insn)),
|
|||
|
last_insn);
|
|||
|
JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
|
|||
|
LABEL_NUSES (JUMP_LABEL (new_jump))++;
|
|||
|
emit_barrier_after (new_jump);
|
|||
|
}
|
|||
|
delete_insn (last_insn);
|
|||
|
if (compare_and_branch == 2)
|
|||
|
delete_insn (earliest);
|
|||
|
}
|
|||
|
|
|||
|
/* Free storage allocated by find_basic_blocks. */
|
|||
|
free_basic_block_vars (0);
|
|||
|
|
|||
|
/* Free bitmaps. */
|
|||
|
free (nonnull_local);
|
|||
|
free (nonnull_killed);
|
|||
|
free (nonnull_avin);
|
|||
|
free (nonnull_avout);
|
|||
|
}
|
|||
|
/* END CYGNUS LOCAL */
|