tumbledemerald-legacy/agbcc/libgcc/lib1thumb.asm

634 lines
13 KiB
NASM
Raw Normal View History

2022-05-19 19:14:13 +02:00
@ libgcc1 routines for ARM cpu.
@ Division routines, written by Richard Earnshaw, (rearnsha@armltd.co.uk)
/* Copyright (C) 1995, 1996, 1998 Free Software Foundation, Inc.
This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* As a special exception, if you link this library with other files,
some of which are compiled with GCC, to produce an executable,
this library does not by itself cause the resulting executable
to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why
the executable file might be covered by the GNU General Public License. */
.code 16
#define TYPE(x) .type SYM(x),function
#define SIZE(x) .size SYM(x), . - SYM(x)
#define RET mov pc, lr
#define SYM(x) x
work .req r4 @ XXXX is this safe ?
#ifdef L_udivsi3
dividend .req r0
divisor .req r1
result .req r2
curbit .req r3
.text
.globl SYM (__udivsi3)
TYPE (__udivsi3)
.align 2, 0
.thumb_func
SYM (__udivsi3):
cmp divisor, #0
beq Ldiv0
mov curbit, #1
mov result, #0
push { work }
cmp dividend, divisor
bcc Lgot_result
@ Load the constant 0x10000000 into our work register
mov work, #1
lsl work, #28
Loop1:
@ Unless the divisor is very big, shift it up in multiples of
@ four bits, since this is the amount of unwinding in the main
@ division loop. Continue shifting until the divisor is
@ larger than the dividend.
cmp divisor, work
bcs Lbignum
cmp divisor, dividend
bcs Lbignum
lsl divisor, #4
lsl curbit, #4
b Loop1
Lbignum:
@ Set work to 0x80000000
lsl work, #3
Loop2:
@ For very big divisors, we must shift it a bit at a time, or
@ we will be in danger of overflowing.
cmp divisor, work
bcs Loop3
cmp divisor, dividend
bcs Loop3
lsl divisor, #1
lsl curbit, #1
b Loop2
Loop3:
@ Test for possible subtractions, and note which bits
@ are done in the result. On the final pass, this may subtract
@ too much from the dividend, but the result will be ok, since the
@ "bit" will have been shifted out at the bottom.
cmp dividend, divisor
bcc Over1
sub dividend, dividend, divisor
orr result, result, curbit
Over1:
lsr work, divisor, #1
cmp dividend, work
bcc Over2
sub dividend, dividend, work
lsr work, curbit, #1
orr result, work
Over2:
lsr work, divisor, #2
cmp dividend, work
bcc Over3
sub dividend, dividend, work
lsr work, curbit, #2
orr result, work
Over3:
lsr work, divisor, #3
cmp dividend, work
bcc Over4
sub dividend, dividend, work
lsr work, curbit, #3
orr result, work
Over4:
cmp dividend, #0 @ Early termination?
beq Lgot_result
lsr curbit, #4 @ No, any more bits to do?
beq Lgot_result
lsr divisor, #4
b Loop3
Lgot_result:
mov r0, result
pop { work }
RET
Ldiv0:
push { lr }
bl SYM (__div0)
mov r0, #0 @ about as wrong as it could be
pop { pc }
SIZE (__udivsi3)
#endif /* L_udivsi3 */
#ifdef L_umodsi3
dividend .req r0
divisor .req r1
overdone .req r2
curbit .req r3
.text
.globl SYM (__umodsi3)
TYPE (__umodsi3)
.align 2, 0
.thumb_func
SYM (__umodsi3):
cmp divisor, #0
beq Ldiv0
mov curbit, #1
cmp dividend, divisor
bcs Over1
RET
Over1:
@ Load the constant 0x10000000 into our work register
push { work }
mov work, #1
lsl work, #28
Loop1:
@ Unless the divisor is very big, shift it up in multiples of
@ four bits, since this is the amount of unwinding in the main
@ division loop. Continue shifting until the divisor is
@ larger than the dividend.
cmp divisor, work
bcs Lbignum
cmp divisor, dividend
bcs Lbignum
lsl divisor, #4
lsl curbit, #4
b Loop1
Lbignum:
@ Set work to 0x80000000
lsl work, #3
Loop2:
@ For very big divisors, we must shift it a bit at a time, or
@ we will be in danger of overflowing.
cmp divisor, work
bcs Loop3
cmp divisor, dividend
bcs Loop3
lsl divisor, #1
lsl curbit, #1
b Loop2
Loop3:
@ Test for possible subtractions. On the final pass, this may
@ subtract too much from the dividend, so keep track of which
@ subtractions are done, we can fix them up afterwards...
mov overdone, #0
cmp dividend, divisor
bcc Over2
sub dividend, dividend, divisor
Over2:
lsr work, divisor, #1
cmp dividend, work
bcc Over3
sub dividend, dividend, work
mov ip, curbit
mov work, #1
ror curbit, work
orr overdone, curbit
mov curbit, ip
Over3:
lsr work, divisor, #2
cmp dividend, work
bcc Over4
sub dividend, dividend, work
mov ip, curbit
mov work, #2
ror curbit, work
orr overdone, curbit
mov curbit, ip
Over4:
lsr work, divisor, #3
cmp dividend, work
bcc Over5
sub dividend, dividend, work
mov ip, curbit
mov work, #3
ror curbit, work
orr overdone, curbit
mov curbit, ip
Over5:
mov ip, curbit
cmp dividend, #0 @ Early termination?
beq Over6
lsr curbit, #4 @ No, any more bits to do?
beq Over6
lsr divisor, #4
b Loop3
Over6:
@ Any subtractions that we should not have done will be recorded in
@ the top three bits of "overdone". Exactly which were not needed
@ are governed by the position of the bit, stored in ip.
@ If we terminated early, because dividend became zero,
@ then none of the below will match, since the bit in ip will not be
@ in the bottom nibble.
mov work, #0xe
lsl work, #28
and overdone, work
bne Over7
pop { work }
RET @ No fixups needed
Over7:
mov curbit, ip
mov work, #3
ror curbit, work
tst overdone, curbit
beq Over8
lsr work, divisor, #3
add dividend, dividend, work
Over8:
mov curbit, ip
mov work, #2
ror curbit, work
tst overdone, curbit
beq Over9
lsr work, divisor, #2
add dividend, dividend, work
Over9:
mov curbit, ip
mov work, #1
ror curbit, work
tst overdone, curbit
beq Over10
lsr work, divisor, #1
add dividend, dividend, work
Over10:
pop { work }
RET
Ldiv0:
push { lr }
bl SYM (__div0)
mov r0, #0 @ about as wrong as it could be
pop { pc }
SIZE (__umodsi3)
#endif /* L_umodsi3 */
#ifdef L_divsi3
dividend .req r0
divisor .req r1
result .req r2
curbit .req r3
.text
.globl SYM (__divsi3)
TYPE (__divsi3)
.align 2, 0
.thumb_func
SYM (__divsi3):
cmp divisor, #0
beq Ldiv0
push { work }
mov work, dividend
eor work, divisor @ Save the sign of the result.
mov ip, work
mov curbit, #1
mov result, #0
cmp divisor, #0
bpl Over1
neg divisor, divisor @ Loops below use unsigned.
Over1:
cmp dividend, #0
bpl Over2
neg dividend, dividend
Over2:
cmp dividend, divisor
bcc Lgot_result
mov work, #1
lsl work, #28
Loop1:
@ Unless the divisor is very big, shift it up in multiples of
@ four bits, since this is the amount of unwinding in the main
@ division loop. Continue shifting until the divisor is
@ larger than the dividend.
cmp divisor, work
Bcs Lbignum
cmp divisor, dividend
Bcs Lbignum
lsl divisor, #4
lsl curbit, #4
b Loop1
Lbignum:
@ For very big divisors, we must shift it a bit at a time, or
@ we will be in danger of overflowing.
lsl work, #3
Loop2:
cmp divisor, work
Bcs Loop3
cmp divisor, dividend
Bcs Loop3
lsl divisor, #1
lsl curbit, #1
b Loop2
Loop3:
@ Test for possible subtractions, and note which bits
@ are done in the result. On the final pass, this may subtract
@ too much from the dividend, but the result will be ok, since the
@ "bit" will have been shifted out at the bottom.
cmp dividend, divisor
Bcc Over3
sub dividend, dividend, divisor
orr result, result, curbit
Over3:
lsr work, divisor, #1
cmp dividend, work
Bcc Over4
sub dividend, dividend, work
lsr work, curbit, #1
orr result, work
Over4:
lsr work, divisor, #2
cmp dividend, work
Bcc Over5
sub dividend, dividend, work
lsr work, curbit, #2
orr result, result, work
Over5:
lsr work, divisor, #3
cmp dividend, work
Bcc Over6
sub dividend, dividend, work
lsr work, curbit, #3
orr result, result, work
Over6:
cmp dividend, #0 @ Early termination?
Beq Lgot_result
lsr curbit, #4 @ No, any more bits to do?
Beq Lgot_result
lsr divisor, #4
b Loop3
Lgot_result:
mov r0, result
mov work, ip
cmp work, #0
Bpl Over7
neg r0, r0
Over7:
pop { work }
RET
Ldiv0:
push { lr }
bl SYM (__div0)
mov r0, #0 @ about as wrong as it could be
pop { pc }
SIZE (__divsi3)
#endif /* L_divsi3 */
#ifdef L_modsi3
dividend .req r0
divisor .req r1
overdone .req r2
curbit .req r3
.text
.globl SYM (__modsi3)
TYPE (__modsi3)
.align 2, 0
.thumb_func
SYM (__modsi3):
mov curbit, #1
cmp divisor, #0
beq Ldiv0
Bpl Over1
neg divisor, divisor @ Loops below use unsigned.
Over1:
push { work }
@ Need to save the sign of the dividend, unfortunately, we need
@ ip later on. Must do this after saving the original value of
@ the work register, because we will pop this value off first.
push { dividend }
cmp dividend, #0
Bpl Over2
neg dividend, dividend
Over2:
cmp dividend, divisor
bcc Lgot_result
mov work, #1
lsl work, #28
Loop1:
@ Unless the divisor is very big, shift it up in multiples of
@ four bits, since this is the amount of unwinding in the main
@ division loop. Continue shifting until the divisor is
@ larger than the dividend.
cmp divisor, work
bcs Lbignum
cmp divisor, dividend
bcs Lbignum
lsl divisor, #4
lsl curbit, #4
b Loop1
Lbignum:
@ Set work to 0x80000000
lsl work, #3
Loop2:
@ For very big divisors, we must shift it a bit at a time, or
@ we will be in danger of overflowing.
cmp divisor, work
bcs Loop3
cmp divisor, dividend
bcs Loop3
lsl divisor, #1
lsl curbit, #1
b Loop2
Loop3:
@ Test for possible subtractions. On the final pass, this may
@ subtract too much from the dividend, so keep track of which
@ subtractions are done, we can fix them up afterwards...
mov overdone, #0
cmp dividend, divisor
bcc Over3
sub dividend, dividend, divisor
Over3:
lsr work, divisor, #1
cmp dividend, work
bcc Over4
sub dividend, dividend, work
mov ip, curbit
mov work, #1
ror curbit, work
orr overdone, curbit
mov curbit, ip
Over4:
lsr work, divisor, #2
cmp dividend, work
bcc Over5
sub dividend, dividend, work
mov ip, curbit
mov work, #2
ror curbit, work
orr overdone, curbit
mov curbit, ip
Over5:
lsr work, divisor, #3
cmp dividend, work
bcc Over6
sub dividend, dividend, work
mov ip, curbit
mov work, #3
ror curbit, work
orr overdone, curbit
mov curbit, ip
Over6:
mov ip, curbit
cmp dividend, #0 @ Early termination?
beq Over7
lsr curbit, #4 @ No, any more bits to do?
beq Over7
lsr divisor, #4
b Loop3
Over7:
@ Any subtractions that we should not have done will be recorded in
@ the top three bits of "overdone". Exactly which were not needed
@ are governed by the position of the bit, stored in ip.
@ If we terminated early, because dividend became zero,
@ then none of the below will match, since the bit in ip will not be
@ in the bottom nibble.
mov work, #0xe
lsl work, #28
and overdone, work
beq Lgot_result
mov curbit, ip
mov work, #3
ror curbit, work
tst overdone, curbit
beq Over8
lsr work, divisor, #3
add dividend, dividend, work
Over8:
mov curbit, ip
mov work, #2
ror curbit, work
tst overdone, curbit
beq Over9
lsr work, divisor, #2
add dividend, dividend, work
Over9:
mov curbit, ip
mov work, #1
ror curbit, work
tst overdone, curbit
beq Lgot_result
lsr work, divisor, #1
add dividend, dividend, work
Lgot_result:
pop { work }
cmp work, #0
bpl Over10
neg dividend, dividend
Over10:
pop { work }
RET
Ldiv0:
push { lr }
bl SYM (__div0)
mov r0, #0 @ about as wrong as it could be
pop { pc }
SIZE (__modsi3)
#endif /* L_modsi3 */
#ifdef L_dvmd_tls
.globl SYM (__div0)
TYPE (__div0)
.align 2, 0
.thumb_func
SYM (__div0):
RET
SIZE (__div0)
#endif /* L_divmodsi_tools */
#ifdef L_call_via_rX
/* These labels & instructions are used by the Arm/Thumb interworking code.
The address of function to be called is loaded into a register and then
one of these labels is called via a BL instruction. This puts the
return address into the link register with the bottom bit set, and the
code here switches to the correct mode before executing the function. */
.text
.align 2, 0
.macro call_via register
.globl SYM (_call_via_\register)
TYPE (_call_via_\register)
.thumb_func
SYM (_call_via_\register):
bx \register
nop
SIZE (_call_via_\register)
.endm
call_via r0
call_via r1
call_via r2
call_via r3
call_via r4
call_via r5
call_via r6
call_via r7
call_via r8
call_via r9
call_via sl
call_via fp
call_via ip
call_via sp
call_via lr
#endif /* L_call_via_rX */