rubyx/lib/arm/arm_machine.rb
2014-06-14 11:12:53 +03:00

103 lines
3.5 KiB
Ruby

require "vm/register_machine"
require_relative "stack_instruction"
require_relative "logic_instruction"
require_relative "move_instruction"
require_relative "compare_instruction"
require_relative "memory_instruction"
require_relative "call_instruction"
require_relative "constants"
module Arm
class ArmMachine < Vm::RegisterMachine
# The constants are here for readablility, the code uses access functions below
RETURN_REG = :r0
TYPE_REG = :r1
RECEIVER_REG = :r2
def return_register
RETURN_REG
end
def type_register
TYPE_REG
end
def receiver_register
RECEIVER_REG
end
def function_call into , call
raise "Not CallSite #{call.inspect}" unless call.is_a? Vm::CallSite
raise "Not linked #{call.inspect}" unless call.function
into.add_code call( call.function )
raise "No return type for #{call.function.name}" unless call.function.return_type
call.function.return_type
end
def main_start context
entry = Vm::Block.new("main_entry",nil,nil)
entry.do_add mov( :fp , 0 )
entry.do_add call( context.function )
entry
end
def main_exit context
exit = Vm::Block.new("main_exit",nil,nil)
syscall(exit , 1)
exit
end
def function_entry block, f_name
block.do_add push( [:lr] )
block
end
def function_exit entry , f_name
entry.do_add pop( [:pc] )
entry
end
# assumes string in standard receiver reg (r2) and moves them down for the syscall
def write_stdout function #, string
# TODO save and restore r0
function.mov( :r0 , 1 ) # 1 == stdout
function.mov( :r1 , receiver_register )
function.mov( receiver_register , :r3 )
syscall( function.insertion_point , 4 ) # 4 == write
end
# stop, do not return
def exit function #, string
syscall( function.insertion_point , 1 ) # 1 == exit
end
# the number (a Vm::integer) is (itself) divided by 10, ie overwritten by the result
# and the remainder is overwritten (ie an out argument)
# not really a function, more a macro,
def div10 function, number , remainder
# Note about division: devision is MUCH more expensive than one would have thought
# And coding it is a bit of a mind leap: it's all about finding a a result that gets the
# remainder smaller than an int. i'll post some links sometime. This is from the arm manual
tmp = function.new_local
function.instance_eval do
sub( remainder , number , 10 )
sub( number , number , number , shift_lsr: 2)
add( number , number , number , shift_lsr: 4)
add( number , number , number , shift_lsr: 8)
add( number , number , number , shift_lsr: 16)
mov( number , number , shift_lsr: 3)
add( tmp , number , number , shift_lsl: 2)
sub( remainder , remainder , tmp , shift_lsl: 1 , update_status: 1)
add( number , number, 1 , condition_code: :pl )
add( remainder , remainder , 10 , condition_code: :mi )
end
end
def syscall block , num
# This is very arm specific, syscall number is passed in r7, other arguments like a c call ie 0 and up
sys = Vm::Integer.new( Vm::RegisterReference.new(:r7) )
ret = Vm::Integer.new( Vm::RegisterReference.new(RETURN_REG) )
block.do_add mov( sys , num )
block.do_add swi( 0 )
#todo should write type into r1 according to syscall
ret
end
end
end