resistance was useless, wilson is now part of the collective (as intel)
This commit is contained in:
parent
f7f0eee31a
commit
f0ad11bf8c
88
lib/intel/address.rb
Normal file
88
lib/intel/address.rb
Normal file
@ -0,0 +1,88 @@
|
||||
require 'intel/operand'
|
||||
|
||||
module Intel
|
||||
##
|
||||
# Address is a memory address in one of the following example forms:
|
||||
#
|
||||
# eax, ebx + ecx, eax + 5, 23545, edx + eax + 2312
|
||||
|
||||
class Address < Operand
|
||||
attr_accessor :id, :index
|
||||
attr_reader :offset
|
||||
attr_writer :isAssemblerOffset # FIX
|
||||
|
||||
def initialize isAssemblerOffset = nil, bits = nil, id = nil
|
||||
super(nil,bits)
|
||||
|
||||
self.isAssemblerOffset = isAssemblerOffset
|
||||
self.id = id
|
||||
|
||||
self.index = self.offset = nil
|
||||
end
|
||||
|
||||
def bits
|
||||
super || self.machine.bits
|
||||
end
|
||||
|
||||
def offset= obj
|
||||
if obj.is_a?(Register) then
|
||||
@offset = 0
|
||||
self.index = obj
|
||||
else
|
||||
@offset = obj
|
||||
end
|
||||
end
|
||||
|
||||
def + o # TODO: this seems totally and completely wrong
|
||||
if o.is_a?(Register) then
|
||||
self.index = o
|
||||
else
|
||||
self.offset = o
|
||||
end
|
||||
self
|
||||
end
|
||||
|
||||
def address?
|
||||
true
|
||||
end
|
||||
|
||||
def offset?
|
||||
@isAssemblerOffset.nil? ? id.nil? : @isAssemblerOffset
|
||||
end
|
||||
|
||||
def push_mod_rm_on spareRegister, stream
|
||||
if id.nil? then
|
||||
stream << (0b00000101 + (spareRegister.id << 3))
|
||||
return stream.push_D(offset)
|
||||
end
|
||||
|
||||
modrm = case offset
|
||||
when 0 then
|
||||
0b00000000
|
||||
when 1..255 then
|
||||
0b01000000
|
||||
else
|
||||
0b10000000
|
||||
end
|
||||
|
||||
if index.nil? then
|
||||
modrm += (spareRegister.id << 3)
|
||||
else
|
||||
stream << (0b00000100 + (spareRegister.id << 3))
|
||||
modrm += (index.id << 3)
|
||||
end
|
||||
|
||||
stream << modrm + id
|
||||
|
||||
return self if offset == 0
|
||||
return stream.push_B(offset) if offset < 256
|
||||
|
||||
stream.push_D offset
|
||||
end
|
||||
|
||||
def m
|
||||
self
|
||||
end
|
||||
end
|
||||
|
||||
end
|
10
lib/intel/all.rb
Normal file
10
lib/intel/all.rb
Normal file
@ -0,0 +1,10 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
require_relative 'versions'
|
||||
require_relative 'immediate'
|
||||
require_relative 'command'
|
||||
require_relative 'assembler'
|
||||
require_relative 'machine_code_x86'
|
||||
require_relative 'core_extensions'
|
||||
require_relative 'label'
|
||||
require_relative "register"
|
147
lib/intel/assembler.rb
Normal file
147
lib/intel/assembler.rb
Normal file
@ -0,0 +1,147 @@
|
||||
require 'intel/register'
|
||||
require 'intel/address'
|
||||
|
||||
module Intel
|
||||
|
||||
##
|
||||
# Assembler parses the NASM documentation and creates Command
|
||||
# objects for it
|
||||
|
||||
class Assembler
|
||||
attr_accessor :commands , :raw_commands
|
||||
|
||||
def self.nasm_fixes
|
||||
# TODO: extend parser to split /[,:]/ and remove some of these
|
||||
'
|
||||
CALL imm,imm16 ; o16 9A iw iw [8086]
|
||||
CALL imm,imm32 ; o32 9A id iw [386]
|
||||
CALLFAR mem16 ; o16 FF /3 [8086]
|
||||
CALLFAR mem32 ; o32 FF /3 [386]
|
||||
|
||||
Jcc imm ; 0F 80+cc rw/rd [386]
|
||||
|
||||
JMP imm,imm16 ; o16 EA iw iw [8086]
|
||||
JMP imm,imm32 ; o32 EA id iw [386]
|
||||
JMP imm16 ; E9 rw/rd [8086]
|
||||
JMP imm32 ; E9 rw/rd [8086]
|
||||
JMP imm8 ; EB rb [8086]
|
||||
JMPFAR mem16 ; o16 FF /5 [8086]
|
||||
JMPFAR mem32 ; o32 FF /5 [386]
|
||||
|
||||
FADDTO fpureg ; DC C0+r [8086,FPU]
|
||||
FDIVTO fpureg ; DC F8+r [8086,FPU]
|
||||
FDIVRTO fpureg ; DC F0+r [8086,FPU]
|
||||
FMULTO fpureg ; DC C8+r [8086,FPU]
|
||||
FSUBTO fpureg ; DC E8+r [8086,FPU]
|
||||
FSUBRTO fpureg ; DC E0+r [8086,FPU]
|
||||
|
||||
CMP r/m16,imm8 ; o16 83 /7 ib [8086]
|
||||
CMP r/m32,imm8 ; o32 83 /7 ib [386]
|
||||
SAR r/m16,1 ; o16 D1 /7 [8086]
|
||||
SAR r/m32,1 ; o32 D1 /7 [386]
|
||||
'
|
||||
end
|
||||
|
||||
def self.nasm
|
||||
File.read(__FILE__.sub(".rb",".txt"))
|
||||
end
|
||||
|
||||
@@default = nil
|
||||
|
||||
def self.default
|
||||
@@default ||= self.new.parse
|
||||
end
|
||||
|
||||
def self.commands
|
||||
self.default.commands
|
||||
end
|
||||
|
||||
def initialize
|
||||
self.commands = []
|
||||
self.raw_commands = []
|
||||
end
|
||||
|
||||
def expand_parameters command
|
||||
command.parameters.each_with_index do |parameter, index|
|
||||
if String === parameter && parameter =~ /^r\/m(\d+)/ then
|
||||
bits = $1.to_i
|
||||
newCommand = command.dup
|
||||
commands << newCommand
|
||||
case bits
|
||||
when 8, 16, 32 then
|
||||
command.parameters[index] = MemoryRegister.new bits
|
||||
newCommand.parameters[index] = Address.new false, bits
|
||||
when 64 then
|
||||
command.parameters[index] = MMXRegister.new nil,nil,bits
|
||||
newCommand.parameters[index] = Address.new false, bits
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
def add_conditional_commands prototype
|
||||
prototype.opcode = prototype.opcode[0..-3]
|
||||
|
||||
self.conditionals.each do |conditional, value|
|
||||
command = prototype.dup
|
||||
command.opcode += conditional
|
||||
|
||||
command.opcodes.each_with_index do |op, index|
|
||||
command.opcodes[index] = ($1.hex+value).to_s(16) if op =~ /(.*)\+cc$/
|
||||
end
|
||||
|
||||
self.add_command command
|
||||
end
|
||||
end
|
||||
|
||||
def process_line line # TODO: remove
|
||||
return if line.empty?
|
||||
return unless line =~ /^[A-Z].+;.*\[/
|
||||
|
||||
self.parse_command line
|
||||
end
|
||||
|
||||
def add_raw_command raw
|
||||
@raw_commands << raw
|
||||
end
|
||||
|
||||
def add_command command
|
||||
return self.add_conditional_commands(command) if command.opcode =~ /cc$/i
|
||||
self.commands << command
|
||||
self.expand_parameters command
|
||||
end
|
||||
|
||||
def conditionals
|
||||
@conditionals ||= {
|
||||
'O' => 0, 'NO' => 1, 'B' => 2, 'C' => 2, 'NAE' => 2,
|
||||
'AE' => 3, 'NB' => 3, 'NC' => 3, 'E' => 4, 'Z' => 4,
|
||||
'NE' => 5, 'NZ' => 5, 'BE' => 6, 'NA' => 6, 'A' => 7,
|
||||
'NBE' => 7, 'S' => 8, 'NS' => 9, 'P' => 10, 'PE' => 10,
|
||||
'NP' => 11, 'PO' => 11, 'L' => 12, 'NGE' => 12, 'GE' => 13,
|
||||
'NL' => 13, 'LE' => 14, 'NG' => 14, 'G' => 15, 'NLE' => 15,
|
||||
}
|
||||
end
|
||||
|
||||
def parse_command line
|
||||
if line =~ /^(\w+)\s+([^;]*)\s+;\s+([^\[]+)\s+\[([\w,]+)\]/ then
|
||||
name, params, ops, procs = $1, $2, $3, $4
|
||||
command = Command.new(name, ops.split , procs.split(/,/) )
|
||||
command.initialize_parameters params.strip
|
||||
self.add_raw_command command
|
||||
else
|
||||
raise "unparsed: #{line}"
|
||||
end
|
||||
end
|
||||
|
||||
def parse
|
||||
(self.class.nasm + self.class.nasm_fixes).each_line do |line|
|
||||
self.process_line line.strip.sub(/^# /, '')
|
||||
end
|
||||
@raw_commands.each do |command|
|
||||
add_command command
|
||||
end
|
||||
self
|
||||
end
|
||||
end
|
||||
|
||||
end
|
3500
lib/intel/assembler.txt
Normal file
3500
lib/intel/assembler.txt
Normal file
@ -0,0 +1,3500 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# The Netwide Assembler: NASM
|
||||
|
||||
# Previous Chapter <nasmdo10.html> | Contents <nasmdoc0.html> | Index
|
||||
# <nasmdoci.html>
|
||||
|
||||
|
||||
# Appendix A: Intel x86 Instruction Reference
|
||||
|
||||
# This appendix provides a complete list of the machine instructions which
|
||||
# NASM will assemble, and a short description of the function of each one.
|
||||
|
||||
# It is not intended to be exhaustive documentation on the fine details of
|
||||
# the instructions' function, such as which exceptions they can trigger:
|
||||
# for such documentation, you should go to Intel's Web site,
|
||||
# |http://www.intel.com/|.
|
||||
|
||||
# Instead, this appendix is intended primarily to provide documentation on
|
||||
# the way the instructions may be used within NASM. For example, looking
|
||||
# up |LOOP| will tell you that NASM allows |CX| or |ECX| to be specified
|
||||
# as an optional second argument to the |LOOP| instruction, to enforce
|
||||
# which of the two possible counter registers should be used if the
|
||||
# default is not the one desired.
|
||||
|
||||
# The instructions are not quite listed in alphabetical order, since
|
||||
# groups of instructions with similar functions are lumped together in the
|
||||
# same entry. Most of them don't move very far from their alphabetic
|
||||
# position because of this.
|
||||
|
||||
|
||||
# A.1 Key to Operand Specifications
|
||||
|
||||
# The instruction descriptions in this appendix specify their operands
|
||||
# using the following notation:
|
||||
|
||||
# * Registers: |reg8| denotes an 8-bit general purpose register,
|
||||
# |reg16| denotes a 16-bit general purpose register, and |reg32| a
|
||||
# 32-bit one. |fpureg| denotes one of the eight FPU stack registers,
|
||||
# |mmxreg| denotes one of the eight 64-bit MMX registers, and
|
||||
# |segreg| denotes a segment register. In addition, some registers
|
||||
# (such as |AL|, |DX| or |ECX|) may be specified explicitly.
|
||||
# * Immediate operands: |imm| denotes a generic immediate operand.
|
||||
# |imm8|, |imm16| and |imm32| are used when the operand is intended
|
||||
# to be a specific size. For some of these instructions, NASM needs
|
||||
# an explicit specifier: for example, |ADD ESP,16| could be
|
||||
# interpreted as either |ADD r/m32,imm32| or |ADD r/m32,imm8|. NASM
|
||||
# chooses the former by default, and so you must specify |ADD
|
||||
# ESP,BYTE 16| for the latter.
|
||||
# * Memory references: |mem| denotes a generic memory reference;
|
||||
# |mem8|, |mem16|, |mem32|, |mem64| and |mem80| are used when the
|
||||
# operand needs to be a specific size. Again, a specifier is needed
|
||||
# in some cases: |DEC [address]| is ambiguous and will be rejected
|
||||
# by NASM. You must specify |DEC BYTE [address]|, |DEC WORD
|
||||
# [address]| or |DEC DWORD [address]| instead.
|
||||
# * Restricted memory references: one form of the |MOV| instruction
|
||||
# allows a memory address to be specified /without/ allowing the
|
||||
# normal range of register combinations and effective address
|
||||
# processing. This is denoted by |memoffs8|, |memoffs16| and
|
||||
# |memoffs32|.
|
||||
# * Register or memory choices: many instructions can accept either a
|
||||
# register /or/ a memory reference as an operand. |r/m8| is a
|
||||
# shorthand for |reg8/mem8|; similarly |r/m16| and |r/m32|. |r/m64|
|
||||
# is MMX-related, and is a shorthand for |mmxreg/mem64|.
|
||||
|
||||
|
||||
# A.2 Key to Opcode Descriptions
|
||||
|
||||
# This appendix also provides the opcodes which NASM will generate for
|
||||
# each form of each instruction. The opcodes are listed in the following way:
|
||||
|
||||
# * A hex number, such as |3F|, indicates a fixed byte containing that
|
||||
# number.
|
||||
# * A hex number followed by |+r|, such as |C8+r|, indicates that one
|
||||
# of the operands to the instruction is a register, and the
|
||||
# `register value' of that register should be added to the hex
|
||||
# number to produce the generated byte. For example, EDX has
|
||||
# register value 2, so the code |C8+r|, when the register operand is
|
||||
# EDX, generates the hex byte |CA|. Register values for specific
|
||||
# registers are given in section A.2.1 <#section-A.2.1>.
|
||||
# * A hex number followed by |+cc|, such as |40+cc|, indicates that
|
||||
# the instruction name has a condition code suffix, and the numeric
|
||||
# representation of the condition code should be added to the hex
|
||||
# number to produce the generated byte. For example, the code
|
||||
# |40+cc|, when the instruction contains the |NE| condition,
|
||||
# generates the hex byte |45|. Condition codes and their numeric
|
||||
# representations are given in section A.2.2 <#section-A.2.2>.
|
||||
# * A slash followed by a digit, such as |/2|, indicates that one of
|
||||
# the operands to the instruction is a memory address or register
|
||||
# (denoted |mem| or |r/m|, with an optional size). This is to be
|
||||
# encoded as an effective address, with a ModR/M byte, an optional
|
||||
# SIB byte, and an optional displacement, and the spare (register)
|
||||
# field of the ModR/M byte should be the digit given (which will be
|
||||
# from 0 to 7, so it fits in three bits). The encoding of effective
|
||||
# addresses is given in section A.2.3 <#section-A.2.3>.
|
||||
# * The code |/r| combines the above two: it indicates that one of the
|
||||
# operands is a memory address or |r/m|, and another is a register,
|
||||
# and that an effective address should be generated with the spare
|
||||
# (register) field in the ModR/M byte being equal to the `register
|
||||
# value' of the register operand. The encoding of effective
|
||||
# addresses is given in section A.2.3 <#section-A.2.3>; register
|
||||
# values are given in section A.2.1 <#section-A.2.1>.
|
||||
# * The codes |ib|, |iw| and |id| indicate that one of the operands to
|
||||
# the instruction is an immediate value, and that this is to be
|
||||
# encoded as a byte, little-endian word or little-endian doubleword
|
||||
# respectively.
|
||||
# * The codes |rb|, |rw| and |rd| indicate that one of the operands to
|
||||
# the instruction is an immediate value, and that the /difference/
|
||||
# between this value and the address of the end of the instruction
|
||||
# is to be encoded as a byte, word or doubleword respectively. Where
|
||||
# the form |rw/rd| appears, it indicates that either |rw| or |rd|
|
||||
# should be used according to whether assembly is being performed in
|
||||
# |BITS 16| or |BITS 32| state respectively.
|
||||
# * The codes |ow| and |od| indicate that one of the operands to the
|
||||
# instruction is a reference to the contents of a memory address
|
||||
# specified as an immediate value: this encoding is used in some
|
||||
# forms of the |MOV| instruction in place of the standard
|
||||
# effective-address mechanism. The displacement is encoded as a word
|
||||
# or doubleword. Again, |ow/od| denotes that |ow| or |od| should be
|
||||
# chosen according to the |BITS| setting.
|
||||
# * The codes |o16| and |o32| indicate that the given form of the
|
||||
# instruction should be assembled with operand size 16 or 32 bits.
|
||||
# In other words, |o16| indicates a |66| prefix in |BITS 32| state,
|
||||
# but generates no code in |BITS 16| state; and |o32| indicates a
|
||||
# |66| prefix in |BITS 16| state but generates nothing in |BITS 32|.
|
||||
# * The codes |a16| and |a32|, similarly to |o16| and |o32|, indicate
|
||||
# the address size of the given form of the instruction. Where this
|
||||
# does not match the |BITS| setting, a |67| prefix is required.
|
||||
|
||||
|
||||
# A.2.1 Register Values
|
||||
|
||||
# Where an instruction requires a register value, it is already implicit
|
||||
# in the encoding of the rest of the instruction what type of register is
|
||||
# intended: an 8-bit general-purpose register, a segment register, a debug
|
||||
# register, an MMX register, or whatever. Therefore there is no problem
|
||||
# with registers of different types sharing an encoding value.
|
||||
|
||||
# The encodings for the various classes of register are:
|
||||
|
||||
# * 8-bit general registers: |AL| is 0, |CL| is 1, |DL| is 2, |BL| is
|
||||
# 3, |AH| is 4, |CH| is 5, |DH| is 6, and |BH| is 7.
|
||||
# * 16-bit general registers: |AX| is 0, |CX| is 1, |DX| is 2, |BX| is
|
||||
# 3, |SP| is 4, |BP| is 5, |SI| is 6, and |DI| is 7.
|
||||
# * 32-bit general registers: |EAX| is 0, |ECX| is 1, |EDX| is 2,
|
||||
# |EBX| is 3, |ESP| is 4, |EBP| is 5, |ESI| is 6, and |EDI| is 7.
|
||||
# * Segment registers: |ES| is 0, |CS| is 1, |SS| is 2, |DS| is 3,
|
||||
# |FS| is 4, and |GS| is 5.
|
||||
# * {Floating-point registers}: |ST0| is 0, |ST1| is 1, |ST2| is 2,
|
||||
# |ST3| is 3, |ST4| is 4, |ST5| is 5, |ST6| is 6, and |ST7| is 7.
|
||||
# * 64-bit MMX registers: |MM0| is 0, |MM1| is 1, |MM2| is 2, |MM3| is
|
||||
# 3, |MM4| is 4, |MM5| is 5, |MM6| is 6, and |MM7| is 7.
|
||||
# * Control registers: |CR0| is 0, |CR2| is 2, |CR3| is 3, and |CR4|
|
||||
# is 4.
|
||||
# * Debug registers: |DR0| is 0, |DR1| is 1, |DR2| is 2, |DR3| is 3,
|
||||
# |DR6| is 6, and |DR7| is 7.
|
||||
# * Test registers: |TR3| is 3, |TR4| is 4, |TR5| is 5, |TR6| is 6,
|
||||
# and |TR7| is 7.
|
||||
|
||||
# (Note that wherever a register name contains a number, that number is
|
||||
# also the register value for that register.)
|
||||
|
||||
|
||||
# A.2.2 Condition Codes
|
||||
|
||||
# The available condition codes are given here, along with their numeric
|
||||
# representations as part of opcodes. Many of these condition codes have
|
||||
# synonyms, so several will be listed at a time.
|
||||
|
||||
# In the following descriptions, the word `either', when applied to two
|
||||
# possible trigger conditions, is used to mean `either or both'. If
|
||||
# `either but not both' is meant, the phrase `exactly one of' is used.
|
||||
|
||||
# * |O| is 0 (trigger if the overflow flag is set); |NO| is 1.
|
||||
# * |B|, |C| and |NAE| are 2 (trigger if the carry flag is set); |AE|,
|
||||
# |NB| and |NC| are 3.
|
||||
# * |E| and |Z| are 4 (trigger if the zero flag is set); |NE| and |NZ|
|
||||
# are 5.
|
||||
# * |BE| and |NA| are 6 (trigger if either of the carry or zero flags
|
||||
# is set); |A| and |NBE| are 7.
|
||||
# * |S| is 8 (trigger if the sign flag is set); |NS| is 9.
|
||||
# * |P| and |PE| are 10 (trigger if the parity flag is set); |NP| and
|
||||
# |PO| are 11.
|
||||
# * |L| and |NGE| are 12 (trigger if exactly one of the sign and
|
||||
# overflow flags is set); |GE| and |NL| are 13.
|
||||
# * |LE| and |NG| are 14 (trigger if either the zero flag is set, or
|
||||
# exactly one of the sign and overflow flags is set); |G| and |NLE|
|
||||
# are 15.
|
||||
|
||||
# Note that in all cases, the sense of a condition code may be reversed by
|
||||
# changing the low bit of the numeric representation.
|
||||
|
||||
|
||||
# A.2.3 Effective Address Encoding: ModR/M and SIB
|
||||
|
||||
# An effective address is encoded in up to three parts: a ModR/M byte, an
|
||||
# optional SIB byte, and an optional byte, word or doubleword displacement
|
||||
# field.
|
||||
|
||||
# The ModR/M byte consists of three fields: the |mod| field, ranging from
|
||||
# 0 to 3, in the upper two bits of the byte, the |r/m| field, ranging from
|
||||
# 0 to 7, in the lower three bits, and the spare (register) field in the
|
||||
# middle (bit 3 to bit 5). The spare field is not relevant to the
|
||||
# effective address being encoded, and either contains an extension to the
|
||||
# instruction opcode or the register value of another operand.
|
||||
|
||||
# The ModR/M system can be used to encode a direct register reference
|
||||
# rather than a memory access. This is always done by setting the |mod|
|
||||
# field to 3 and the |r/m| field to the register value of the register in
|
||||
# question (it must be a general-purpose register, and the size of the
|
||||
# register must already be implicit in the encoding of the rest of the
|
||||
# instruction). In this case, the SIB byte and displacement field are both
|
||||
# absent.
|
||||
|
||||
# In 16-bit addressing mode (either |BITS 16| with no |67| prefix, or
|
||||
# |BITS 32| with a |67| prefix), the SIB byte is never used. The general
|
||||
# rules for |mod| and |r/m| (there is an exception, given below) are:
|
||||
|
||||
# * The |mod| field gives the length of the displacement field: 0
|
||||
# means no displacement, 1 means one byte, and 2 means two bytes.
|
||||
# * The |r/m| field encodes the combination of registers to be added
|
||||
# to the displacement to give the accessed address: 0 means |BX+SI|,
|
||||
# 1 means |BX+DI|, 2 means |BP+SI|, 3 means |BP+DI|, 4 means |SI|
|
||||
# only, 5 means |DI| only, 6 means |BP| only, and 7 means |BX| only.
|
||||
|
||||
# However, there is a special case:
|
||||
|
||||
# * If |mod| is 0 and |r/m| is 6, the effective address encoded is not
|
||||
# |[BP]| as the above rules would suggest, but instead |[disp16]|:
|
||||
# the displacement field is present and is two bytes long, and no
|
||||
# registers are added to the displacement.
|
||||
|
||||
# Therefore the effective address |[BP]| cannot be encoded as efficiently
|
||||
# as |[BX]|; so if you code |[BP]| in a program, NASM adds a notional
|
||||
# 8-bit zero displacement, and sets |mod| to 1, |r/m| to 6, and the
|
||||
# one-byte displacement field to 0.
|
||||
|
||||
# In 32-bit addressing mode (either |BITS 16| with a |67| prefix, or |BITS
|
||||
# 32| with no |67| prefix) the general rules (again, there are exceptions)
|
||||
# for |mod| and |r/m| are:
|
||||
|
||||
# * The |mod| field gives the length of the displacement field: 0
|
||||
# means no displacement, 1 means one byte, and 2 means four bytes.
|
||||
# * If only one register is to be added to the displacement, and it is
|
||||
# not |ESP|, the |r/m| field gives its register value, and the SIB
|
||||
# byte is absent. If the |r/m| field is 4 (which would encode
|
||||
# |ESP|), the SIB byte is present and gives the combination and
|
||||
# scaling of registers to be added to the displacement.
|
||||
|
||||
# If the SIB byte is present, it describes the combination of registers
|
||||
# (an optional base register, and an optional index register scaled by
|
||||
# multiplication by 1, 2, 4 or 8) to be added to the displacement. The SIB
|
||||
# byte is divided into the |scale| field, in the top two bits, the |index|
|
||||
# field in the next three, and the |base| field in the bottom three. The
|
||||
# general rules are:
|
||||
|
||||
# * The |base| field encodes the register value of the base register.
|
||||
# * The |index| field encodes the register value of the index
|
||||
# register, unless it is 4, in which case no index register is used
|
||||
# (so |ESP| cannot be used as an index register).
|
||||
# * The |scale| field encodes the multiplier by which the index
|
||||
# register is scaled before adding it to the base and displacement:
|
||||
# 0 encodes a multiplier of 1, 1 encodes 2, 2 encodes 4 and 3
|
||||
# encodes 8.
|
||||
|
||||
# The exceptions to the 32-bit encoding rules are:
|
||||
|
||||
# * If |mod| is 0 and |r/m| is 5, the effective address encoded is not
|
||||
# |[EBP]| as the above rules would suggest, but instead |[disp32]|:
|
||||
# the displacement field is present and is four bytes long, and no
|
||||
# registers are added to the displacement.
|
||||
# * If |mod| is 0, |r/m| is 4 (meaning the SIB byte is present) and
|
||||
# |base| is 4, the effective address encoded is not |[EBP+index]| as
|
||||
# the above rules would suggest, but instead |[disp32+index]|: the
|
||||
# displacement field is present and is four bytes long, and there is
|
||||
# no base register (but the index register is still processed in the
|
||||
# normal way).
|
||||
|
||||
|
||||
# A.3 Key to Instruction Flags
|
||||
|
||||
# Given along with each instruction in this appendix is a set of flags,
|
||||
# denoting the type of the instruction. The types are as follows:
|
||||
|
||||
# * |8086|, |186|, |286|, |386|, |486|, |PENT| and |P6| denote the
|
||||
# lowest processor type that supports the instruction. Most
|
||||
# instructions run on all processors above the given type; those
|
||||
# that do not are documented. The Pentium II contains no additional
|
||||
# instructions beyond the P6 (Pentium Pro); from the point of view
|
||||
# of its instruction set, it can be thought of as a P6 with MMX
|
||||
# capability.
|
||||
# * |CYRIX| indicates that the instruction is specific to Cyrix
|
||||
# processors, for example the extra MMX instructions in the Cyrix
|
||||
# extended MMX instruction set.
|
||||
# * |FPU| indicates that the instruction is a floating-point one, and
|
||||
# will only run on machines with a coprocessor (automatically
|
||||
# including 486DX, Pentium and above).
|
||||
# * |MMX| indicates that the instruction is an MMX one, and will run
|
||||
# on MMX-capable Pentium processors and the Pentium II.
|
||||
# * |PRIV| indicates that the instruction is a protected-mode
|
||||
# management instruction. Many of these may only be used in
|
||||
# protected mode, or only at privilege level zero.
|
||||
# * |UNDOC| indicates that the instruction is an undocumented one, and
|
||||
# not part of the official Intel Architecture; it may or may not be
|
||||
# supported on any given machine.
|
||||
|
||||
|
||||
# A.4 |AAA|, |AAS|, |AAM|, |AAD|: ASCII Adjustments
|
||||
|
||||
# AAA ; 37 [8086]
|
||||
|
||||
# AAS ; 3F [8086]
|
||||
|
||||
# AAD ; D5 0A [8086]
|
||||
# AAD imm ; D5 ib [8086]
|
||||
|
||||
# AAM ; D4 0A [8086]
|
||||
# AAM imm ; D4 ib [8086]
|
||||
|
||||
# These instructions are used in conjunction with the add, subtract,
|
||||
# multiply and divide instructions to perform binary-coded decimal
|
||||
# arithmetic in /unpacked/ (one BCD digit per byte - easy to translate to
|
||||
# and from ASCII, hence the instruction names) form. There are also packed
|
||||
# BCD instructions |DAA| and |DAS|: see section A.23 <#section-A.23>.
|
||||
|
||||
# |AAA| should be used after a one-byte |ADD| instruction whose
|
||||
# destination was the |AL| register: by means of examining the value in
|
||||
# the low nibble of |AL| and also the auxiliary carry flag |AF|, it
|
||||
# determines whether the addition has overflowed, and adjusts it (and sets
|
||||
# the carry flag) if so. You can add long BCD strings together by doing
|
||||
# |ADD|/|AAA| on the low digits, then doing |ADC|/|AAA| on each subsequent
|
||||
# digit.
|
||||
|
||||
# |AAS| works similarly to |AAA|, but is for use after |SUB| instructions
|
||||
# rather than |ADD|.
|
||||
|
||||
# |AAM| is for use after you have multiplied two decimal digits together
|
||||
# and left the result in |AL|: it divides |AL| by ten and stores the
|
||||
# quotient in |AH|, leaving the remainder in |AL|. The divisor 10 can be
|
||||
# changed by specifying an operand to the instruction: a particularly
|
||||
# handy use of this is |AAM 16|, causing the two nibbles in |AL| to be
|
||||
# separated into |AH| and |AL|.
|
||||
|
||||
# |AAD| performs the inverse operation to |AAM|: it multiplies |AH| by
|
||||
# ten, adds it to |AL|, and sets |AH| to zero. Again, the multiplier 10
|
||||
# can be changed.
|
||||
|
||||
|
||||
# A.5 |ADC|: Add with Carry
|
||||
|
||||
# ADC r/m8,reg8 ; 10 /r [8086]
|
||||
# ADC r/m16,reg16 ; o16 11 /r [8086]
|
||||
# ADC r/m32,reg32 ; o32 11 /r [386]
|
||||
|
||||
# ADC reg8,r/m8 ; 12 /r [8086]
|
||||
# ADC reg16,r/m16 ; o16 13 /r [8086]
|
||||
# ADC reg32,r/m32 ; o32 13 /r [386]
|
||||
|
||||
# ADC r/m8,imm8 ; 80 /2 ib [8086]
|
||||
# ADC r/m16,imm16 ; o16 81 /2 iw [8086]
|
||||
# ADC r/m32,imm32 ; o32 81 /2 id [386]
|
||||
|
||||
# ADC r/m16,imm8 ; o16 83 /2 ib [8086]
|
||||
# ADC r/m32,imm8 ; o32 83 /2 ib [386]
|
||||
|
||||
# ADC AL,imm8 ; 14 ib [8086]
|
||||
# ADC AX,imm16 ; o16 15 iw [8086]
|
||||
# ADC EAX,imm32 ; o32 15 id [386]
|
||||
|
||||
# |ADC| performs integer addition: it adds its two operands together, plus
|
||||
# the value of the carry flag, and leaves the result in its destination
|
||||
# (first) operand. The flags are set according to the result of the
|
||||
# operation: in particular, the carry flag is affected and can be used by
|
||||
# a subsequent |ADC| instruction.
|
||||
|
||||
# In the forms with an 8-bit immediate second operand and a longer first
|
||||
# operand, the second operand is considered to be signed, and is
|
||||
# sign-extended to the length of the first operand. In these cases, the
|
||||
# |BYTE| qualifier is necessary to force NASM to generate this form of the
|
||||
# instruction.
|
||||
|
||||
# To add two numbers without also adding the contents of the carry flag,
|
||||
# use |ADD| (section A.6 <#section-A.6>).
|
||||
|
||||
|
||||
# A.6 |ADD|: Add Integers
|
||||
|
||||
# ADD r/m8,reg8 ; 00 /r [8086]
|
||||
# ADD r/m16,reg16 ; o16 01 /r [8086]
|
||||
# ADD r/m32,reg32 ; o32 01 /r [386]
|
||||
|
||||
# ADD reg8,r/m8 ; 02 /r [8086]
|
||||
# ADD reg16,r/m16 ; o16 03 /r [8086]
|
||||
# ADD reg32,r/m32 ; o32 03 /r [386]
|
||||
|
||||
# ADD r/m8,imm8 ; 80 /0 ib [8086]
|
||||
# ADD r/m16,imm16 ; o16 81 /0 iw [8086]
|
||||
# ADD r/m32,imm32 ; o32 81 /0 id [386]
|
||||
|
||||
# ADD r/m16,imm8 ; o16 83 /0 ib [8086]
|
||||
# ADD r/m32,imm8 ; o32 83 /0 ib [386]
|
||||
|
||||
# ADD AL,imm8 ; 04 ib [8086]
|
||||
# ADD AX,imm16 ; o16 05 iw [8086]
|
||||
# ADD EAX,imm32 ; o32 05 id [386]
|
||||
|
||||
# |ADD| performs integer addition: it adds its two operands together, and
|
||||
# leaves the result in its destination (first) operand. The flags are set
|
||||
# according to the result of the operation: in particular, the carry flag
|
||||
# is affected and can be used by a subsequent |ADC| instruction (section
|
||||
# A.5 <#section-A.5>).
|
||||
|
||||
# In the forms with an 8-bit immediate second operand and a longer first
|
||||
# operand, the second operand is considered to be signed, and is
|
||||
# sign-extended to the length of the first operand. In these cases, the
|
||||
# |BYTE| qualifier is necessary to force NASM to generate this form of the
|
||||
# instruction.
|
||||
|
||||
|
||||
# A.7 |AND|: Bitwise AND
|
||||
|
||||
# AND r/m8,reg8 ; 20 /r [8086]
|
||||
# AND r/m16,reg16 ; o16 21 /r [8086]
|
||||
# AND r/m32,reg32 ; o32 21 /r [386]
|
||||
|
||||
# AND reg8,r/m8 ; 22 /r [8086]
|
||||
# AND reg16,r/m16 ; o16 23 /r [8086]
|
||||
# AND reg32,r/m32 ; o32 23 /r [386]
|
||||
|
||||
# AND r/m8,imm8 ; 80 /4 ib [8086]
|
||||
# AND r/m16,imm16 ; o16 81 /4 iw [8086]
|
||||
# AND r/m32,imm32 ; o32 81 /4 id [386]
|
||||
|
||||
# AND r/m16,imm8 ; o16 83 /4 ib [8086]
|
||||
# AND r/m32,imm8 ; o32 83 /4 ib [386]
|
||||
|
||||
# AND AL,imm8 ; 24 ib [8086]
|
||||
# AND AX,imm16 ; o16 25 iw [8086]
|
||||
# AND EAX,imm32 ; o32 25 id [386]
|
||||
|
||||
# |AND| performs a bitwise AND operation between its two operands (i.e.
|
||||
# each bit of the result is 1 if and only if the corresponding bits of the
|
||||
# two inputs were both 1), and stores the result in the destination
|
||||
# (first) operand.
|
||||
|
||||
# In the forms with an 8-bit immediate second operand and a longer first
|
||||
# operand, the second operand is considered to be signed, and is
|
||||
# sign-extended to the length of the first operand. In these cases, the
|
||||
# |BYTE| qualifier is necessary to force NASM to generate this form of the
|
||||
# instruction.
|
||||
|
||||
# The MMX instruction |PAND| (see section A.116 <#section-A.116>) performs
|
||||
# the same operation on the 64-bit MMX registers.
|
||||
|
||||
|
||||
# A.8 |ARPL|: Adjust RPL Field of Selector
|
||||
|
||||
# ARPL r/m16,reg16 ; 63 /r [286,PRIV]
|
||||
|
||||
# |ARPL| expects its two word operands to be segment selectors. It adjusts
|
||||
# the RPL (requested privilege level - stored in the bottom two bits of
|
||||
# the selector) field of the destination (first) operand to ensure that it
|
||||
# is no less (i.e. no more privileged than) the RPL field of the source
|
||||
# operand. The zero flag is set if and only if a change had to be made.
|
||||
|
||||
|
||||
# A.9 |BOUND|: Check Array Index against Bounds
|
||||
|
||||
# BOUND reg16,mem ; o16 62 /r [186]
|
||||
# BOUND reg32,mem ; o32 62 /r [386]
|
||||
|
||||
# |BOUND| expects its second operand to point to an area of memory
|
||||
# containing two signed values of the same size as its first operand (i.e.
|
||||
# two words for the 16-bit form; two doublewords for the 32-bit form). It
|
||||
# performs two signed comparisons: if the value in the register passed as
|
||||
# its first operand is less than the first of the in-memory values, or is
|
||||
# greater than or equal to the second, it throws a BR exception.
|
||||
# Otherwise, it does nothing.
|
||||
|
||||
|
||||
# A.10 |BSF|, |BSR|: Bit Scan
|
||||
|
||||
# BSF reg16,r/m16 ; o16 0F BC /r [386]
|
||||
# BSF reg32,r/m32 ; o32 0F BC /r [386]
|
||||
|
||||
# BSR reg16,r/m16 ; o16 0F BD /r [386]
|
||||
# BSR reg32,r/m32 ; o32 0F BD /r [386]
|
||||
|
||||
# |BSF| searches for a set bit in its source (second) operand, starting
|
||||
# from the bottom, and if it finds one, stores the index in its
|
||||
# destination (first) operand. If no set bit is found, the contents of the
|
||||
# destination operand are undefined.
|
||||
|
||||
# |BSR| performs the same function, but searches from the top instead, so
|
||||
# it finds the most significant set bit.
|
||||
|
||||
# Bit indices are from 0 (least significant) to 15 or 31 (most significant).
|
||||
|
||||
|
||||
# A.11 |BSWAP|: Byte Swap
|
||||
|
||||
# BSWAP reg32 ; o32 0F C8+r [486]
|
||||
|
||||
# |BSWAP| swaps the order of the four bytes of a 32-bit register: bits 0-7
|
||||
# exchange places with bits 24-31, and bits 8-15 swap with bits 16-23.
|
||||
# There is no explicit 16-bit equivalent: to byte-swap |AX|, |BX|, |CX| or
|
||||
# |DX|, |XCHG| can be used.
|
||||
|
||||
|
||||
# A.12 |BT|, |BTC|, |BTR|, |BTS|: Bit Test
|
||||
|
||||
# BT r/m16,reg16 ; o16 0F A3 /r [386]
|
||||
# BT r/m32,reg32 ; o32 0F A3 /r [386]
|
||||
# BT r/m16,imm8 ; o16 0F BA /4 ib [386]
|
||||
# BT r/m32,imm8 ; o32 0F BA /4 ib [386]
|
||||
|
||||
# BTC r/m16,reg16 ; o16 0F BB /r [386]
|
||||
# BTC r/m32,reg32 ; o32 0F BB /r [386]
|
||||
# BTC r/m16,imm8 ; o16 0F BA /7 ib [386]
|
||||
# BTC r/m32,imm8 ; o32 0F BA /7 ib [386]
|
||||
|
||||
# BTR r/m16,reg16 ; o16 0F B3 /r [386]
|
||||
# BTR r/m32,reg32 ; o32 0F B3 /r [386]
|
||||
# BTR r/m16,imm8 ; o16 0F BA /6 ib [386]
|
||||
# BTR r/m32,imm8 ; o32 0F BA /6 ib [386]
|
||||
|
||||
# BTS r/m16,reg16 ; o16 0F AB /r [386]
|
||||
# BTS r/m32,reg32 ; o32 0F AB /r [386]
|
||||
# BTS r/m16,imm ; o16 0F BA /5 ib [386]
|
||||
# BTS r/m32,imm ; o32 0F BA /5 ib [386]
|
||||
|
||||
# These instructions all test one bit of their first operand, whose index
|
||||
# is given by the second operand, and store the value of that bit into the
|
||||
# carry flag. Bit indices are from 0 (least significant) to 15 or 31 (most
|
||||
# significant).
|
||||
|
||||
# In addition to storing the original value of the bit into the carry
|
||||
# flag, |BTR| also resets (clears) the bit in the operand itself. |BTS|
|
||||
# sets the bit, and |BTC| complements the bit. |BT| does not modify its
|
||||
# operands.
|
||||
|
||||
# The bit offset should be no greater than the size of the operand.
|
||||
|
||||
|
||||
# A.13 |CALL|: Call Subroutine
|
||||
|
||||
# CALL imm ; E8 rw/rd [8086]
|
||||
# CALL imm:imm16 ; o16 9A iw iw [8086]
|
||||
# CALL imm:imm32 ; o32 9A id iw [386]
|
||||
# CALL FAR mem16 ; o16 FF /3 [8086]
|
||||
# CALL FAR mem32 ; o32 FF /3 [386]
|
||||
# CALL r/m16 ; o16 FF /2 [8086]
|
||||
# CALL r/m32 ; o32 FF /2 [386]
|
||||
|
||||
# |CALL| calls a subroutine, by means of pushing the current instruction
|
||||
# pointer (|IP|) and optionally |CS| as well on the stack, and then
|
||||
# jumping to a given address.
|
||||
|
||||
# |CS| is pushed as well as |IP| if and only if the call is a far call,
|
||||
# i.e. a destination segment address is specified in the instruction. The
|
||||
# forms involving two colon-separated arguments are far calls; so are the
|
||||
# |CALL FAR mem| forms.
|
||||
|
||||
# You can choose between the two immediate far call forms (|CALL imm:imm|)
|
||||
# by the use of the |WORD| and |DWORD| keywords: |CALL WORD
|
||||
# 0x1234:0x5678|) or |CALL DWORD 0x1234:0x56789abc|.
|
||||
|
||||
# The |CALL FAR mem| forms execute a far call by loading the destination
|
||||
# address out of memory. The address loaded consists of 16 or 32 bits of
|
||||
# offset (depending on the operand size), and 16 bits of segment. The
|
||||
# operand size may be overridden using |CALL WORD FAR mem| or |CALL DWORD
|
||||
# FAR mem|.
|
||||
|
||||
# The |CALL r/m| forms execute a near call (within the same segment),
|
||||
# loading the destination address out of memory or out of a register. The
|
||||
# keyword |NEAR| may be specified, for clarity, in these forms, but is not
|
||||
# necessary. Again, operand size can be overridden using |CALL WORD mem|
|
||||
# or |CALL DWORD mem|.
|
||||
|
||||
# As a convenience, NASM does not require you to call a far procedure
|
||||
# symbol by coding the cumbersome |CALL SEG routine:routine|, but instead
|
||||
# allows the easier synonym |CALL FAR routine|.
|
||||
|
||||
# The |CALL r/m| forms given above are near calls; NASM will accept the
|
||||
# |NEAR| keyword (e.g. |CALL NEAR [address]|), even though it is not
|
||||
# strictly necessary.
|
||||
|
||||
|
||||
# A.14 |CBW|, |CWD|, |CDQ|, |CWDE|: Sign Extensions
|
||||
|
||||
# CBW ; o16 98 [8086]
|
||||
# CWD ; o16 99 [8086]
|
||||
# CDQ ; o32 99 [386]
|
||||
# CWDE ; o32 98 [386]
|
||||
|
||||
# All these instructions sign-extend a short value into a longer one, by
|
||||
# replicating the top bit of the original value to fill the extended one.
|
||||
|
||||
# |CBW| extends |AL| into |AX| by repeating the top bit of |AL| in every
|
||||
# bit of |AH|. |CWD| extends |AX| into |DX:AX| by repeating the top bit of
|
||||
# |AX| throughout |DX|. |CWDE| extends |AX| into |EAX|, and |CDQ| extends
|
||||
# |EAX| into |EDX:EAX|.
|
||||
|
||||
|
||||
# A.15 |CLC|, |CLD|, |CLI|, |CLTS|: Clear Flags
|
||||
|
||||
# CLC ; F8 [8086]
|
||||
# CLD ; FC [8086]
|
||||
# CLI ; FA [8086]
|
||||
# CLTS ; 0F 06 [286,PRIV]
|
||||
|
||||
# These instructions clear various flags. |CLC| clears the carry flag;
|
||||
# |CLD| clears the direction flag; |CLI| clears the interrupt flag (thus
|
||||
# disabling interrupts); and |CLTS| clears the task-switched (|TS|) flag
|
||||
# in |CR0|.
|
||||
|
||||
# To set the carry, direction, or interrupt flags, use the |STC|, |STD|
|
||||
# and |STI| instructions (section A.156 <#section-A.156>). To invert the
|
||||
# carry flag, use |CMC| (section A.16 <#section-A.16>).
|
||||
|
||||
|
||||
# A.16 |CMC|: Complement Carry Flag
|
||||
|
||||
# CMC ; F5 [8086]
|
||||
|
||||
# |CMC| changes the value of the carry flag: if it was 0, it sets it to 1,
|
||||
# and vice versa.
|
||||
|
||||
|
||||
# A.17 |CMOVcc|: Conditional Move
|
||||
|
||||
# CMOVcc reg16,r/m16 ; o16 0F 40+cc /r [P6]
|
||||
# CMOVcc reg32,r/m32 ; o32 0F 40+cc /r [P6]
|
||||
|
||||
# |CMOV| moves its source (second) operand into its destination (first)
|
||||
# operand if the given condition code is satisfied; otherwise it does
|
||||
# nothing.
|
||||
|
||||
# For a list of condition codes, see section A.2.2 <#section-A.2.2>.
|
||||
|
||||
# Although the |CMOV| instructions are flagged |P6| above, they may not be
|
||||
# supported by all Pentium Pro processors; the |CPUID| instruction
|
||||
# (section A.22 <#section-A.22>) will return a bit which indicates whether
|
||||
# conditional moves are supported.
|
||||
|
||||
|
||||
# A.18 |CMP|: Compare Integers
|
||||
|
||||
# CMP r/m8,reg8 ; 38 /r [8086]
|
||||
# CMP r/m16,reg16 ; o16 39 /r [8086]
|
||||
# CMP r/m32,reg32 ; o32 39 /r [386]
|
||||
|
||||
# CMP reg8,r/m8 ; 3A /r [8086]
|
||||
# CMP reg16,r/m16 ; o16 3B /r [8086]
|
||||
# CMP reg32,r/m32 ; o32 3B /r [386]
|
||||
|
||||
# CMP r/m8,imm8 ; 80 /0 ib [8086]
|
||||
# CMP r/m16,imm16 ; o16 81 /0 iw [8086]
|
||||
# CMP r/m32,imm32 ; o32 81 /0 id [386]
|
||||
|
||||
# DEADCMP r/m16,imm8 ; o16 83 /0 ib [8086]
|
||||
# DEADCMP r/m32,imm8 ; o32 83 /0 ib [386]
|
||||
|
||||
# CMP AL,imm8 ; 3C ib [8086]
|
||||
# CMP AX,imm16 ; o16 3D iw [8086]
|
||||
# CMP EAX,imm32 ; o32 3D id [386]
|
||||
|
||||
# |CMP| performs a `mental' subtraction of its second operand from its
|
||||
# first operand, and affects the flags as if the subtraction had taken
|
||||
# place, but does not store the result of the subtraction anywhere.
|
||||
|
||||
# In the forms with an 8-bit immediate second operand and a longer first
|
||||
# operand, the second operand is considered to be signed, and is
|
||||
# sign-extended to the length of the first operand. In these cases, the
|
||||
# |BYTE| qualifier is necessary to force NASM to generate this form of the
|
||||
# instruction.
|
||||
|
||||
|
||||
# A.19 |CMPSB|, |CMPSW|, |CMPSD|: Compare Strings
|
||||
|
||||
# CMPSB ; A6 [8086]
|
||||
# CMPSW ; o16 A7 [8086]
|
||||
# CMPSD ; o32 A7 [386]
|
||||
|
||||
# |CMPSB| compares the byte at |[DS:SI]| or |[DS:ESI]| with the byte at
|
||||
# |[ES:DI]| or |[ES:EDI]|, and sets the flags accordingly. It then
|
||||
# increments or decrements (depending on the direction flag: increments if
|
||||
# the flag is clear, decrements if it is set) |SI| and |DI| (or |ESI| and
|
||||
# |EDI|).
|
||||
|
||||
# The registers used are |SI| and |DI| if the address size is 16 bits, and
|
||||
# |ESI| and |EDI| if it is 32 bits. If you need to use an address size not
|
||||
# equal to the current |BITS| setting, you can use an explicit |a16| or
|
||||
# |a32| prefix.
|
||||
|
||||
# The segment register used to load from |[SI]| or |[ESI]| can be
|
||||
# overridden by using a segment register name as a prefix (for example,
|
||||
# |es cmpsb|). The use of |ES| for the load from |[DI]| or |[EDI]| cannot
|
||||
# be overridden.
|
||||
|
||||
# |CMPSW| and |CMPSD| work in the same way, but they compare a word or a
|
||||
# doubleword instead of a byte, and increment or decrement the addressing
|
||||
# registers by 2 or 4 instead of 1.
|
||||
|
||||
# The |REPE| and |REPNE| prefixes (equivalently, |REPZ| and |REPNZ|) may
|
||||
# be used to repeat the instruction up to |CX| (or |ECX| - again, the
|
||||
# address size chooses which) times until the first unequal or equal byte
|
||||
# is found.
|
||||
|
||||
|
||||
# A.20 |CMPXCHG|, |CMPXCHG486|: Compare and Exchange
|
||||
|
||||
# CMPXCHG r/m8,reg8 ; 0F B0 /r [PENT]
|
||||
# CMPXCHG r/m16,reg16 ; o16 0F B1 /r [PENT]
|
||||
# CMPXCHG r/m32,reg32 ; o32 0F B1 /r [PENT]
|
||||
|
||||
# CMPXCHG486 r/m8,reg8 ; 0F A6 /r [486,UNDOC]
|
||||
# CMPXCHG486 r/m16,reg16 ; o16 0F A7 /r [486,UNDOC]
|
||||
# CMPXCHG486 r/m32,reg32 ; o32 0F A7 /r [486,UNDOC]
|
||||
|
||||
# These two instructions perform exactly the same operation; however,
|
||||
# apparently some (not all) 486 processors support it under a non-standard
|
||||
# opcode, so NASM provides the undocumented |CMPXCHG486| form to generate
|
||||
# the non-standard opcode.
|
||||
|
||||
# |CMPXCHG| compares its destination (first) operand to the value in |AL|,
|
||||
# |AX| or |EAX| (depending on the size of the instruction). If they are
|
||||
# equal, it copies its source (second) operand into the destination and
|
||||
# sets the zero flag. Otherwise, it clears the zero flag and leaves the
|
||||
# destination alone.
|
||||
|
||||
# |CMPXCHG| is intended to be used for atomic operations in multitasking
|
||||
# or multiprocessor environments. To safely update a value in shared
|
||||
# memory, for example, you might load the value into |EAX|, load the
|
||||
# updated value into |EBX|, and then execute the instruction |lock cmpxchg
|
||||
# [value],ebx|. If |value| has not changed since being loaded, it is
|
||||
# updated with your desired new value, and the zero flag is set to let you
|
||||
# know it has worked. (The |LOCK| prefix prevents another processor doing
|
||||
# anything in the middle of this operation: it guarantees atomicity.)
|
||||
# However, if another processor has modified the value in between your
|
||||
# load and your attempted store, the store does not happen, and you are
|
||||
# notified of the failure by a cleared zero flag, so you can go round and
|
||||
# try again.
|
||||
|
||||
|
||||
# A.21 |CMPXCHG8B|: Compare and Exchange Eight Bytes
|
||||
|
||||
# CMPXCHG8B mem ; 0F C7 /1 [PENT]
|
||||
|
||||
# This is a larger and more unwieldy version of |CMPXCHG|: it compares the
|
||||
# 64-bit (eight-byte) value stored at |[mem]| with the value in |EDX:EAX|.
|
||||
# If they are equal, it sets the zero flag and stores |ECX:EBX| into the
|
||||
# memory area. If they are unequal, it clears the zero flag and leaves the
|
||||
# memory area untouched.
|
||||
|
||||
|
||||
# A.22 |CPUID|: Get CPU Identification Code
|
||||
|
||||
# CPUID ; 0F A2 [PENT]
|
||||
|
||||
# |CPUID| returns various information about the processor it is being
|
||||
# executed on. It fills the four registers |EAX|, |EBX|, |ECX| and |EDX|
|
||||
# with information, which varies depending on the input contents of |EAX|.
|
||||
|
||||
# |CPUID| also acts as a barrier to serialise instruction execution:
|
||||
# executing the |CPUID| instruction guarantees that all the effects
|
||||
# (memory modification, flag modification, register modification) of
|
||||
# previous instructions have been completed before the next instruction
|
||||
# gets fetched.
|
||||
|
||||
# The information returned is as follows:
|
||||
|
||||
# * If |EAX| is zero on input, |EAX| on output holds the maximum
|
||||
# acceptable input value of |EAX|, and |EBX:EDX:ECX| contain the
|
||||
# string |"GenuineIntel"| (or not, if you have a clone processor).
|
||||
# That is to say, |EBX| contains |"Genu"| (in NASM's own sense of
|
||||
# character constants, described in section 3.4.2
|
||||
# <nasmdoc3.html#section-3.4.2>), |EDX| contains |"ineI"| and |ECX|
|
||||
# contains |"ntel"|.
|
||||
# * If |EAX| is one on input, |EAX| on output contains version
|
||||
# information about the processor, and |EDX| contains a set of
|
||||
# feature flags, showing the presence and absence of various
|
||||
# features. For example, bit 8 is set if the |CMPXCHG8B| instruction
|
||||
# (section A.21 <#section-A.21>) is supported, bit 15 is set if the
|
||||
# conditional move instructions (section A.17 <#section-A.17> and
|
||||
# section A.34 <#section-A.34>) are supported, and bit 23 is set if
|
||||
# MMX instructions are supported.
|
||||
# * If |EAX| is two on input, |EAX|, |EBX|, |ECX| and |EDX| all
|
||||
# contain information about caches and TLBs (Translation Lookahead
|
||||
# Buffers).
|
||||
|
||||
# For more information on the data returned from |CPUID|, see the
|
||||
# documentation on Intel's web site.
|
||||
|
||||
|
||||
# A.23 |DAA|, |DAS|: Decimal Adjustments
|
||||
|
||||
# DAA ; 27 [8086]
|
||||
# DAS ; 2F [8086]
|
||||
|
||||
# These instructions are used in conjunction with the add and subtract
|
||||
# instructions to perform binary-coded decimal arithmetic in /packed/ (one
|
||||
# BCD digit per nibble) form. For the unpacked equivalents, see section
|
||||
# A.4 <#section-A.4>.
|
||||
|
||||
# |DAA| should be used after a one-byte |ADD| instruction whose
|
||||
# destination was the |AL| register: by means of examining the value in
|
||||
# the |AL| and also the auxiliary carry flag |AF|, it determines whether
|
||||
# either digit of the addition has overflowed, and adjusts it (and sets
|
||||
# the carry and auxiliary-carry flags) if so. You can add long BCD strings
|
||||
# together by doing |ADD|/|DAA| on the low two digits, then doing
|
||||
# |ADC|/|DAA| on each subsequent pair of digits.
|
||||
|
||||
# |DAS| works similarly to |DAA|, but is for use after |SUB| instructions
|
||||
# rather than |ADD|.
|
||||
|
||||
|
||||
# A.24 |DEC|: Decrement Integer
|
||||
|
||||
# DEC reg16 ; o16 48+r [8086]
|
||||
# DEC reg32 ; o32 48+r [386]
|
||||
# DEC r/m8 ; FE /1 [8086]
|
||||
# DEC r/m16 ; o16 FF /1 [8086]
|
||||
# DEC r/m32 ; o32 FF /1 [386]
|
||||
|
||||
# |DEC| subtracts 1 from its operand. It does /not/ affect the carry flag:
|
||||
# to affect the carry flag, use |SUB something,1| (see section A.159
|
||||
# <#section-A.159>). See also |INC| (section A.79 <#section-A.79>).
|
||||
|
||||
|
||||
# A.25 |DIV|: Unsigned Integer Divide
|
||||
|
||||
# DIV r/m8 ; F6 /6 [8086]
|
||||
# DIV r/m16 ; o16 F7 /6 [8086]
|
||||
# DIV r/m32 ; o32 F7 /6 [386]
|
||||
|
||||
# |DIV| performs unsigned integer division. The explicit operand provided
|
||||
# is the divisor; the dividend and destination operands are implicit, in
|
||||
# the following way:
|
||||
|
||||
# * For |DIV r/m8|, |AX| is divided by the given operand; the quotient
|
||||
# is stored in |AL| and the remainder in |AH|.
|
||||
# * For |DIV r/m16|, |DX:AX| is divided by the given operand; the
|
||||
# quotient is stored in |AX| and the remainder in |DX|.
|
||||
# * For |DIV r/m32|, |EDX:EAX| is divided by the given operand; the
|
||||
# quotient is stored in |EAX| and the remainder in |EDX|.
|
||||
|
||||
# Signed integer division is performed by the |IDIV| instruction: see
|
||||
# section A.76 <#section-A.76>.
|
||||
|
||||
|
||||
# A.26 |EMMS|: Empty MMX State
|
||||
|
||||
# MMS ; 0F 77 [PENT,MMX]
|
||||
|
||||
# |EMMS| sets the FPU tag word (marking which floating-point registers are
|
||||
# available) to all ones, meaning all registers are available for the FPU
|
||||
# to use. It should be used after executing MMX instructions and before
|
||||
# executing any subsequent floating-point operations.
|
||||
|
||||
|
||||
# A.27 |ENTER|: Create Stack Frame
|
||||
|
||||
# ENTER imm,imm ; C8 iw ib [186]
|
||||
|
||||
# |ENTER| constructs a stack frame for a high-level language procedure
|
||||
# call. The first operand (the |iw| in the opcode definition above refers
|
||||
# to the first operand) gives the amount of stack space to allocate for
|
||||
# local variables; the second (the |ib| above) gives the nesting level of
|
||||
# the procedure (for languages like Pascal, with nested procedures).
|
||||
|
||||
# The function of |ENTER|, with a nesting level of zero, is equivalent to
|
||||
|
||||
# PUSH EBP ; or PUSH BP in 16 bits
|
||||
# MOV EBP,ESP ; or MOV BP,SP in 16 bits
|
||||
# SUB ESP,operand1 ; or SUB SP,operand1 in 16 bits
|
||||
|
||||
# This creates a stack frame with the procedure parameters accessible
|
||||
# upwards from |EBP|, and local variables accessible downwards from |EBP|.
|
||||
|
||||
# With a nesting level of one, the stack frame created is 4 (or 2) bytes
|
||||
# bigger, and the value of the final frame pointer |EBP| is accessible in
|
||||
# memory at |[EBP-4]|.
|
||||
|
||||
# This allows |ENTER|, when called with a nesting level of two, to look at
|
||||
# the stack frame described by the /previous/ value of |EBP|, find the
|
||||
# frame pointer at offset -4 from that, and push it along with its new
|
||||
# frame pointer, so that when a level-two procedure is called from within
|
||||
# a level-one procedure, |[EBP-4]| holds the frame pointer of the most
|
||||
# recent level-one procedure call and |[EBP-8]| holds that of the most
|
||||
# recent level-two call. And so on, for nesting levels up to 31.
|
||||
|
||||
# Stack frames created by |ENTER| can be destroyed by the |LEAVE|
|
||||
# instruction: see section A.94 <#section-A.94>.
|
||||
|
||||
|
||||
# A.28 |F2XM1|: Calculate 2**X-1
|
||||
|
||||
# F2XM1 ; D9 F0 [8086,FPU]
|
||||
|
||||
# |F2XM1| raises 2 to the power of |ST0|, subtracts one, and stores the
|
||||
# result back into |ST0|. The initial contents of |ST0| must be a number
|
||||
# in the range -1 to +1.
|
||||
|
||||
|
||||
# A.29 |FABS|: Floating-Point Absolute Value
|
||||
|
||||
# FABS ; D9 E1 [8086,FPU]
|
||||
|
||||
# |FABS| computes the absolute value of |ST0|, storing the result back in
|
||||
# |ST0|.
|
||||
|
||||
|
||||
# A.30 |FADD|, |FADDP|: Floating-Point Addition
|
||||
|
||||
# FADD mem32 ; D8 /0 [8086,FPU]
|
||||
# FADD mem64 ; DC /0 [8086,FPU]
|
||||
|
||||
# FADD fpureg ; D8 C0+r [8086,FPU]
|
||||
# FADD ST0,fpureg ; D8 C0+r [8086,FPU]
|
||||
|
||||
# FADD TO fpureg ; DC C0+r [8086,FPU]
|
||||
# FADD fpureg,ST0 ; DC C0+r [8086,FPU]
|
||||
|
||||
# FADDP fpureg ; DE C0+r [8086,FPU]
|
||||
# FADDP fpureg,ST0 ; DE C0+r [8086,FPU]
|
||||
|
||||
# |FADD|, given one operand, adds the operand to |ST0| and stores the
|
||||
# result back in |ST0|. If the operand has the |TO| modifier, the result
|
||||
# is stored in the register given rather than in |ST0|.
|
||||
|
||||
# |FADDP| performs the same function as |FADD TO|, but pops the register
|
||||
# stack after storing the result.
|
||||
|
||||
# The given two-operand forms are synonyms for the one-operand forms.
|
||||
|
||||
|
||||
# A.31 |FBLD|, |FBSTP|: BCD Floating-Point Load and Store
|
||||
|
||||
# FBLD mem80 ; DF /4 [8086,FPU]
|
||||
# FBSTP mem80 ; DF /6 [8086,FPU]
|
||||
|
||||
# |FBLD| loads an 80-bit (ten-byte) packed binary-coded decimal number
|
||||
# from the given memory address, converts it to a real, and pushes it on
|
||||
# the register stack. |FBSTP| stores the value of |ST0|, in packed BCD, at
|
||||
# the given address and then pops the register stack.
|
||||
|
||||
|
||||
# A.32 |FCHS|: Floating-Point Change Sign
|
||||
|
||||
# FCHS ; D9 E0 [8086,FPU]
|
||||
|
||||
# |FCHS| negates the number in |ST0|: negative numbers become positive,
|
||||
# and vice versa.
|
||||
|
||||
|
||||
# A.33 |FCLEX|, {FNCLEX}: Clear Floating-Point Exceptions
|
||||
|
||||
# FCLEX ; 9B DB E2 [8086,FPU]
|
||||
# FNCLEX ; DB E2 [8086,FPU]
|
||||
|
||||
# |FCLEX| clears any floating-point exceptions which may be pending.
|
||||
# |FNCLEX| does the same thing but doesn't wait for previous
|
||||
# floating-point operations (including the /handling/ of pending
|
||||
# exceptions) to finish first.
|
||||
|
||||
|
||||
# A.34 |FCMOVcc|: Floating-Point Conditional Move
|
||||
|
||||
# FCMOVB fpureg ; DA C0+r [P6,FPU]
|
||||
# FCMOVB ST0,fpureg ; DA C0+r [P6,FPU]
|
||||
|
||||
# FCMOVBE fpureg ; DA D0+r [P6,FPU]
|
||||
# FCMOVBE ST0,fpureg ; DA D0+r [P6,FPU]
|
||||
|
||||
# FCMOVE fpureg ; DA C8+r [P6,FPU]
|
||||
# FCMOVE ST0,fpureg ; DA C8+r [P6,FPU]
|
||||
|
||||
# FCMOVNB fpureg ; DB C0+r [P6,FPU]
|
||||
# FCMOVNB ST0,fpureg ; DB C0+r [P6,FPU]
|
||||
|
||||
# FCMOVNBE fpureg ; DB D0+r [P6,FPU]
|
||||
# FCMOVNBE ST0,fpureg ; DB D0+r [P6,FPU]
|
||||
|
||||
# FCMOVNE fpureg ; DB C8+r [P6,FPU]
|
||||
# FCMOVNE ST0,fpureg ; DB C8+r [P6,FPU]
|
||||
|
||||
# FCMOVNU fpureg ; DB D8+r [P6,FPU]
|
||||
# FCMOVNU ST0,fpureg ; DB D8+r [P6,FPU]
|
||||
|
||||
# FCMOVU fpureg ; DA D8+r [P6,FPU]
|
||||
# FCMOVU ST0,fpureg ; DA D8+r [P6,FPU]
|
||||
|
||||
# The |FCMOV| instructions perform conditional move operations: each of
|
||||
# them moves the contents of the given register into |ST0| if its
|
||||
# condition is satisfied, and does nothing if not.
|
||||
|
||||
# The conditions are not the same as the standard condition codes used
|
||||
# with conditional jump instructions. The conditions |B|, |BE|, |NB|,
|
||||
# |NBE|, |E| and |NE| are exactly as normal, but none of the other
|
||||
# standard ones are supported. Instead, the condition |U| and its
|
||||
# counterpart |NU| are provided; the |U| condition is satisfied if the
|
||||
# last two floating-point numbers compared were /unordered/, i.e. they
|
||||
# were not equal but neither one could be said to be greater than the
|
||||
# other, for example if they were NaNs. (The flag state which signals this
|
||||
# is the setting of the parity flag: so the |U| condition is notionally
|
||||
# equivalent to |PE|, and |NU| is equivalent to |PO|.)
|
||||
|
||||
# The |FCMOV| conditions test the main processor's status flags, not the
|
||||
# FPU status flags, so using |FCMOV| directly after |FCOM| will not work.
|
||||
# Instead, you should either use |FCOMI| which writes directly to the main
|
||||
# CPU flags word, or use |FSTSW| to extract the FPU flags.
|
||||
|
||||
# Although the |FCMOV| instructions are flagged |P6| above, they may not
|
||||
# be supported by all Pentium Pro processors; the |CPUID| instruction
|
||||
# (section A.22 <#section-A.22>) will return a bit which indicates whether
|
||||
# conditional moves are supported.
|
||||
|
||||
|
||||
# A.35 |FCOM|, |FCOMP|, |FCOMPP|, |FCOMI|, |FCOMIP|: Floating-Point
|
||||
# Compare
|
||||
|
||||
# FCOM mem32 ; D8 /2 [8086,FPU]
|
||||
# FCOM mem64 ; DC /2 [8086,FPU]
|
||||
# FCOM fpureg ; D8 D0+r [8086,FPU]
|
||||
# FCOM ST0,fpureg ; D8 D0+r [8086,FPU]
|
||||
|
||||
# FCOMP mem32 ; D8 /3 [8086,FPU]
|
||||
# FCOMP mem64 ; DC /3 [8086,FPU]
|
||||
# FCOMP fpureg ; D8 D8+r [8086,FPU]
|
||||
# FCOMP ST0,fpureg ; D8 D8+r [8086,FPU]
|
||||
|
||||
# FCOMPP ; DE D9 [8086,FPU]
|
||||
|
||||
# FCOMI fpureg ; DB F0+r [P6,FPU]
|
||||
# FCOMI ST0,fpureg ; DB F0+r [P6,FPU]
|
||||
|
||||
# FCOMIP fpureg ; DF F0+r [P6,FPU]
|
||||
# FCOMIP ST0,fpureg ; DF F0+r [P6,FPU]
|
||||
|
||||
# |FCOM| compares |ST0| with the given operand, and sets the FPU flags
|
||||
# accordingly. |ST0| is treated as the left-hand side of the comparison,
|
||||
# so that the carry flag is set (for a `less-than' result) if |ST0| is
|
||||
# less than the given operand.
|
||||
|
||||
# |FCOMP| does the same as |FCOM|, but pops the register stack afterwards.
|
||||
# |FCOMPP| compares |ST0| with |ST1| and then pops the register stack twice.
|
||||
|
||||
# |FCOMI| and |FCOMIP| work like the corresponding forms of |FCOM| and
|
||||
# |FCOMP|, but write their results directly to the CPU flags register
|
||||
# rather than the FPU status word, so they can be immediately followed by
|
||||
# conditional jump or conditional move instructions.
|
||||
|
||||
# The |FCOM| instructions differ from the |FUCOM| instructions (section
|
||||
# A.69 <#section-A.69>) only in the way they handle quiet NaNs: |FUCOM|
|
||||
# will handle them silently and set the condition code flags to an
|
||||
# `unordered' result, whereas |FCOM| will generate an exception.
|
||||
|
||||
|
||||
# A.36 |FCOS|: Cosine
|
||||
|
||||
# FCOS ; D9 FF [386,FPU]
|
||||
|
||||
# |FCOS| computes the cosine of |ST0| (in radians), and stores the result
|
||||
# in |ST0|. See also |FSINCOS| (section A.61 <#section-A.61>).
|
||||
|
||||
|
||||
# A.37 |FDECSTP|: Decrement Floating-Point Stack Pointer
|
||||
|
||||
# FDECSTP ; D9 F6 [8086,FPU]
|
||||
|
||||
# |FDECSTP| decrements the `top' field in the floating-point status word.
|
||||
# This has the effect of rotating the FPU register stack by one, as if the
|
||||
# contents of |ST7| had been pushed on the stack. See also |FINCSTP|
|
||||
# (section A.46 <#section-A.46>).
|
||||
|
||||
|
||||
# A.38 |FxDISI|, |FxENI|: Disable and Enable Floating-Point Interrupts
|
||||
|
||||
# FDISI ; 9B DB E1 [8086,FPU]
|
||||
# FNDISI ; DB E1 [8086,FPU]
|
||||
|
||||
# FENI ; 9B DB E0 [8086,FPU]
|
||||
# FNENI ; DB E0 [8086,FPU]
|
||||
|
||||
# |FDISI| and |FENI| disable and enable floating-point interrupts. These
|
||||
# instructions are only meaningful on original 8087 processors: the 287
|
||||
# and above treat them as no-operation instructions.
|
||||
|
||||
# |FNDISI| and |FNENI| do the same thing as |FDISI| and |FENI|
|
||||
# respectively, but without waiting for the floating-point processor to
|
||||
# finish what it was doing first.
|
||||
|
||||
|
||||
# A.39 |FDIV|, |FDIVP|, |FDIVR|, |FDIVRP|: Floating-Point Division
|
||||
|
||||
# FDIV mem32 ; D8 /6 [8086,FPU]
|
||||
# FDIV mem64 ; DC /6 [8086,FPU]
|
||||
|
||||
# FDIV fpureg ; D8 F0+r [8086,FPU]
|
||||
# FDIV ST0,fpureg ; D8 F0+r [8086,FPU]
|
||||
|
||||
# FDIV TO fpureg ; DC F8+r [8086,FPU]
|
||||
# FDIV fpureg,ST0 ; DC F8+r [8086,FPU]
|
||||
|
||||
# FDIVR mem32 ; D8 /0 [8086,FPU]
|
||||
# FDIVR mem64 ; DC /0 [8086,FPU]
|
||||
|
||||
# FDIVR fpureg ; D8 F8+r [8086,FPU]
|
||||
# FDIVR ST0,fpureg ; D8 F8+r [8086,FPU]
|
||||
|
||||
# FDIVR TO fpureg ; DC F0+r [8086,FPU]
|
||||
# FDIVR fpureg,ST0 ; DC F0+r [8086,FPU]
|
||||
|
||||
# FDIVP fpureg ; DE F8+r [8086,FPU]
|
||||
# FDIVP fpureg,ST0 ; DE F8+r [8086,FPU]
|
||||
|
||||
# FDIVRP fpureg ; DE F0+r [8086,FPU]
|
||||
# FDIVRP fpureg,ST0 ; DE F0+r [8086,FPU]
|
||||
|
||||
# |FDIV| divides |ST0| by the given operand and stores the result back in
|
||||
# |ST0|, unless the |TO| qualifier is given, in which case it divides the
|
||||
# given operand by |ST0| and stores the result in the operand.
|
||||
|
||||
# |FDIVR| does the same thing, but does the division the other way up: so
|
||||
# if |TO| is not given, it divides the given operand by |ST0| and stores
|
||||
# the result in |ST0|, whereas if |TO| is given it divides |ST0| by its
|
||||
# operand and stores the result in the operand.
|
||||
|
||||
# |FDIVP| operates like |FDIV TO|, but pops the register stack once it has
|
||||
# finished. |FDIVRP| operates like |FDIVR TO|, but pops the register stack
|
||||
# once it has finished.
|
||||
|
||||
|
||||
# A.40 |FFREE|: Flag Floating-Point Register as Unused
|
||||
|
||||
# FFREE fpureg ; DD C0+r [8086,FPU]
|
||||
|
||||
# |FFREE| marks the given register as being empty.
|
||||
|
||||
|
||||
# A.41 |FIADD|: Floating-Point/Integer Addition
|
||||
|
||||
# FIADD mem16 ; DE /0 [8086,FPU]
|
||||
# FIADD mem32 ; DA /0 [8086,FPU]
|
||||
|
||||
# |FIADD| adds the 16-bit or 32-bit integer stored in the given memory
|
||||
# location to |ST0|, storing the result in |ST0|.
|
||||
|
||||
|
||||
# A.42 |FICOM|, |FICOMP|: Floating-Point/Integer Compare
|
||||
|
||||
# FICOM mem16 ; DE /2 [8086,FPU]
|
||||
# FICOM mem32 ; DA /2 [8086,FPU]
|
||||
|
||||
# FICOMP mem16 ; DE /3 [8086,FPU]
|
||||
# FICOMP mem32 ; DA /3 [8086,FPU]
|
||||
|
||||
# |FICOM| compares |ST0| with the 16-bit or 32-bit integer stored in the
|
||||
# given memory location, and sets the FPU flags accordingly. |FICOMP| does
|
||||
# the same, but pops the register stack afterwards.
|
||||
|
||||
|
||||
# A.43 |FIDIV|, |FIDIVR|: Floating-Point/Integer Division
|
||||
|
||||
# FIDIV mem16 ; DE /6 [8086,FPU]
|
||||
# FIDIV mem32 ; DA /6 [8086,FPU]
|
||||
|
||||
# FIDIVR mem16 ; DE /0 [8086,FPU]
|
||||
# FIDIVR mem32 ; DA /0 [8086,FPU]
|
||||
|
||||
# |FIDIV| divides |ST0| by the 16-bit or 32-bit integer stored in the
|
||||
# given memory location, and stores the result in |ST0|. |FIDIVR| does the
|
||||
# division the other way up: it divides the integer by |ST0|, but still
|
||||
# stores the result in |ST0|.
|
||||
|
||||
|
||||
# A.44 |FILD|, |FIST|, |FISTP|: Floating-Point/Integer Conversion
|
||||
|
||||
# FILD mem16 ; DF /0 [8086,FPU]
|
||||
# FILD mem32 ; DB /0 [8086,FPU]
|
||||
# FILD mem64 ; DF /5 [8086,FPU]
|
||||
|
||||
# FIST mem16 ; DF /2 [8086,FPU]
|
||||
# FIST mem32 ; DB /2 [8086,FPU]
|
||||
|
||||
# FISTP mem16 ; DF /3 [8086,FPU]
|
||||
# FISTP mem32 ; DB /3 [8086,FPU]
|
||||
# FISTP mem64 ; DF /0 [8086,FPU]
|
||||
|
||||
# |FILD| loads an integer out of a memory location, converts it to a real,
|
||||
# and pushes it on the FPU register stack. |FIST| converts |ST0| to an
|
||||
# integer and stores that in memory; |FISTP| does the same as |FIST|, but
|
||||
# pops the register stack afterwards.
|
||||
|
||||
|
||||
# A.45 |FIMUL|: Floating-Point/Integer Multiplication
|
||||
|
||||
# FIMUL mem16 ; DE /1 [8086,FPU]
|
||||
# FIMUL mem32 ; DA /1 [8086,FPU]
|
||||
|
||||
# |FIMUL| multiplies |ST0| by the 16-bit or 32-bit integer stored in the
|
||||
# given memory location, and stores the result in |ST0|.
|
||||
|
||||
|
||||
# A.46 |FINCSTP|: Increment Floating-Point Stack Pointer
|
||||
|
||||
# FINCSTP ; D9 F7 [8086,FPU]
|
||||
|
||||
# |FINCSTP| increments the `top' field in the floating-point status word.
|
||||
# This has the effect of rotating the FPU register stack by one, as if the
|
||||
# register stack had been popped; however, unlike the popping of the stack
|
||||
# performed by many FPU instructions, it does not flag the new |ST7|
|
||||
# (previously |ST0|) as empty. See also |FDECSTP| (section A.37
|
||||
# <#section-A.37>).
|
||||
|
||||
|
||||
# A.47 |FINIT|, |FNINIT|: Initialise Floating-Point Unit
|
||||
|
||||
# FINIT ; 9B DB E3 [8086,FPU]
|
||||
# FNINIT ; DB E3 [8086,FPU]
|
||||
|
||||
# |FINIT| initialises the FPU to its default state. It flags all registers
|
||||
# as empty, though it does not actually change their values. |FNINIT| does
|
||||
# the same, without first waiting for pending exceptions to clear.
|
||||
|
||||
|
||||
# A.48 |FISUB|: Floating-Point/Integer Subtraction
|
||||
|
||||
# FISUB mem16 ; DE /4 [8086,FPU]
|
||||
# FISUB mem32 ; DA /4 [8086,FPU]
|
||||
|
||||
# FISUBR mem16 ; DE /5 [8086,FPU]
|
||||
# FISUBR mem32 ; DA /5 [8086,FPU]
|
||||
|
||||
# |FISUB| subtracts the 16-bit or 32-bit integer stored in the given
|
||||
# memory location from |ST0|, and stores the result in |ST0|. |FISUBR|
|
||||
# does the subtraction the other way round, i.e. it subtracts |ST0| from
|
||||
# the given integer, but still stores the result in |ST0|.
|
||||
|
||||
|
||||
# A.49 |FLD|: Floating-Point Load
|
||||
|
||||
# FLD mem32 ; D9 /0 [8086,FPU]
|
||||
# FLD mem64 ; DD /0 [8086,FPU]
|
||||
# FLD mem80 ; DB /5 [8086,FPU]
|
||||
# FLD fpureg ; D9 C0+r [8086,FPU]
|
||||
|
||||
# |FLD| loads a floating-point value out of the given register or memory
|
||||
# location, and pushes it on the FPU register stack.
|
||||
|
||||
|
||||
# A.50 |FLDxx|: Floating-Point Load Constants
|
||||
|
||||
# FLD1 ; D9 E8 [8086,FPU]
|
||||
# FLDL2E ; D9 EA [8086,FPU]
|
||||
# FLDL2T ; D9 E9 [8086,FPU]
|
||||
# FLDLG2 ; D9 EC [8086,FPU]
|
||||
# FLDLN2 ; D9 ED [8086,FPU]
|
||||
# FLDPI ; D9 EB [8086,FPU]
|
||||
# FLDZ ; D9 EE [8086,FPU]
|
||||
|
||||
# These instructions push specific standard constants on the FPU register
|
||||
# stack. |FLD1| pushes the value 1; |FLDL2E| pushes the base-2 logarithm
|
||||
# of e; |FLDL2T| pushes the base-2 log of 10; |FLDLG2| pushes the base-10
|
||||
# log of 2; |FLDLN2| pushes the base-e log of 2; |FLDPI| pushes pi; and
|
||||
# |FLDZ| pushes zero.
|
||||
|
||||
|
||||
# A.51 |FLDCW|: Load Floating-Point Control Word
|
||||
|
||||
# FLDCW mem16 ; D9 /5 [8086,FPU]
|
||||
|
||||
# |FLDCW| loads a 16-bit value out of memory and stores it into the FPU
|
||||
# control word (governing things like the rounding mode, the precision,
|
||||
# and the exception masks). See also |FSTCW| (section A.64 <#section-A.64>).
|
||||
|
||||
|
||||
# A.52 |FLDENV|: Load Floating-Point Environment
|
||||
|
||||
# FLDENV mem ; D9 /4 [8086,FPU]
|
||||
|
||||
# |FLDENV| loads the FPU operating environment (control word, status word,
|
||||
# tag word, instruction pointer, data pointer and last opcode) from
|
||||
# memory. The memory area is 14 or 28 bytes long, depending on the CPU
|
||||
# mode at the time. See also |FSTENV| (section A.65 <#section-A.65>).
|
||||
|
||||
|
||||
# A.53 |FMUL|, |FMULP|: Floating-Point Multiply
|
||||
|
||||
# FMUL mem32 ; D8 /1 [8086,FPU]
|
||||
# FMUL mem64 ; DC /1 [8086,FPU]
|
||||
|
||||
# FMUL fpureg ; D8 C8+r [8086,FPU]
|
||||
# FMUL ST0,fpureg ; D8 C8+r [8086,FPU]
|
||||
|
||||
# FMUL TO fpureg ; DC C8+r [8086,FPU]
|
||||
# FMUL fpureg,ST0 ; DC C8+r [8086,FPU]
|
||||
|
||||
# FMULP fpureg ; DE C8+r [8086,FPU]
|
||||
# FMULP fpureg,ST0 ; DE C8+r [8086,FPU]
|
||||
|
||||
# |FMUL| multiplies |ST0| by the given operand, and stores the result in
|
||||
# |ST0|, unless the |TO| qualifier is used in which case it stores the
|
||||
# result in the operand. |FMULP| performs the same operation as |FMUL TO|,
|
||||
# and then pops the register stack.
|
||||
|
||||
|
||||
# A.54 |FNOP|: Floating-Point No Operation
|
||||
|
||||
# FNOP ; D9 D0 [8086,FPU]
|
||||
|
||||
# |FNOP| does nothing.
|
||||
|
||||
|
||||
# A.55 |FPATAN|, |FPTAN|: Arctangent and Tangent
|
||||
|
||||
# FPATAN ; D9 F3 [8086,FPU]
|
||||
# FPTAN ; D9 F2 [8086,FPU]
|
||||
|
||||
# |FPATAN| computes the arctangent, in radians, of the result of dividing
|
||||
# |ST1| by |ST0|, stores the result in |ST1|, and pops the register stack.
|
||||
# It works like the C |atan2| function, in that changing the sign of both
|
||||
# |ST0| and |ST1| changes the output value by pi (so it performs true
|
||||
# rectangular-to-polar coordinate conversion, with |ST1| being the Y
|
||||
# coordinate and |ST0| being the X coordinate, not merely an arctangent).
|
||||
|
||||
# |FPTAN| computes the tangent of the value in |ST0| (in radians), and
|
||||
# stores the result back into |ST0|.
|
||||
|
||||
|
||||
# A.56 |FPREM|, |FPREM1|: Floating-Point Partial Remainder
|
||||
|
||||
# FPREM ; D9 F8 [8086,FPU]
|
||||
# FPREM1 ; D9 F5 [386,FPU]
|
||||
|
||||
# These instructions both produce the remainder obtained by dividing |ST0|
|
||||
# by |ST1|. This is calculated, notionally, by dividing |ST0| by |ST1|,
|
||||
# rounding the result to an integer, multiplying by |ST1| again, and
|
||||
# computing the value which would need to be added back on to the result
|
||||
# to get back to the original value in |ST0|.
|
||||
|
||||
# The two instructions differ in the way the notional round-to-integer
|
||||
# operation is performed. |FPREM| does it by rounding towards zero, so
|
||||
# that the remainder it returns always has the same sign as the original
|
||||
# value in |ST0|; |FPREM1| does it by rounding to the nearest integer, so
|
||||
# that the remainder always has at most half the magnitude of |ST1|.
|
||||
|
||||
# Both instructions calculate /partial/ remainders, meaning that they may
|
||||
# not manage to provide the final result, but might leave intermediate
|
||||
# results in |ST0| instead. If this happens, they will set the C2 flag in
|
||||
# the FPU status word; therefore, to calculate a remainder, you should
|
||||
# repeatedly execute |FPREM| or |FPREM1| until C2 becomes clear.
|
||||
|
||||
|
||||
# A.57 |FRNDINT|: Floating-Point Round to Integer
|
||||
|
||||
# FRNDINT ; D9 FC [8086,FPU]
|
||||
|
||||
# |FRNDINT| rounds the contents of |ST0| to an integer, according to the
|
||||
# current rounding mode set in the FPU control word, and stores the result
|
||||
# back in |ST0|.
|
||||
|
||||
|
||||
# A.58 |FSAVE|, |FRSTOR|: Save/Restore Floating-Point State
|
||||
|
||||
# FSAVE mem ; 9B DD /6 [8086,FPU]
|
||||
# FNSAVE mem ; DD /6 [8086,FPU]
|
||||
|
||||
# FRSTOR mem ; DD /4 [8086,FPU]
|
||||
|
||||
# |FSAVE| saves the entire floating-point unit state, including all the
|
||||
# information saved by |FSTENV| (section A.65 <#section-A.65>) plus the
|
||||
# contents of all the registers, to a 94 or 108 byte area of memory
|
||||
# (depending on the CPU mode). |FRSTOR| restores the floating-point state
|
||||
# from the same area of memory.
|
||||
|
||||
# |FNSAVE| does the same as |FSAVE|, without first waiting for pending
|
||||
# floating-point exceptions to clear.
|
||||
|
||||
|
||||
# A.59 |FSCALE|: Scale Floating-Point Value by Power of Two
|
||||
|
||||
# FSCALE ; D9 FD [8086,FPU]
|
||||
|
||||
# |FSCALE| scales a number by a power of two: it rounds |ST1| towards zero
|
||||
# to obtain an integer, then multiplies |ST0| by two to the power of that
|
||||
# integer, and stores the result in |ST0|.
|
||||
|
||||
|
||||
# A.60 |FSETPM|: Set Protected Mode
|
||||
|
||||
# FSETPM ; DB E4 [286,FPU]
|
||||
|
||||
# This instruction initalises protected mode on the 287 floating-point
|
||||
# coprocessor. It is only meaningful on that processor: the 387 and above
|
||||
# treat the instruction as a no-operation.
|
||||
|
||||
|
||||
# A.61 |FSIN|, |FSINCOS|: Sine and Cosine
|
||||
|
||||
# FSIN ; D9 FE [386,FPU]
|
||||
# FSINCOS ; D9 FB [386,FPU]
|
||||
|
||||
# |FSIN| calculates the sine of |ST0| (in radians) and stores the result
|
||||
# in |ST0|. |FSINCOS| does the same, but then pushes the cosine of the
|
||||
# same value on the register stack, so that the sine ends up in |ST1| and
|
||||
# the cosine in |ST0|. |FSINCOS| is faster than executing |FSIN| and
|
||||
# |FCOS| (see section A.36 <#section-A.36>) in succession.
|
||||
|
||||
|
||||
# A.62 |FSQRT|: Floating-Point Square Root
|
||||
|
||||
# FSQRT ; D9 FA [8086,FPU]
|
||||
|
||||
# |FSQRT| calculates the square root of |ST0| and stores the result in |ST0|.
|
||||
|
||||
|
||||
# A.63 |FST|, |FSTP|: Floating-Point Store
|
||||
|
||||
# FST mem32 ; D9 /2 [8086,FPU]
|
||||
# FST mem64 ; DD /2 [8086,FPU]
|
||||
# FST fpureg ; DD D0+r [8086,FPU]
|
||||
|
||||
# FSTP mem32 ; D9 /3 [8086,FPU]
|
||||
# FSTP mem64 ; DD /3 [8086,FPU]
|
||||
# FSTP mem80 ; DB /0 [8086,FPU]
|
||||
# FSTP fpureg ; DD D8+r [8086,FPU]
|
||||
|
||||
# |FST| stores the value in |ST0| into the given memory location or other
|
||||
# FPU register. |FSTP| does the same, but then pops the register stack.
|
||||
|
||||
|
||||
# A.64 |FSTCW|: Store Floating-Point Control Word
|
||||
|
||||
# FSTCW mem16 ; 9B D9 /0 [8086,FPU]
|
||||
# FNSTCW mem16 ; D9 /0 [8086,FPU]
|
||||
|
||||
# |FSTCW| stores the FPU control word (governing things like the rounding
|
||||
# mode, the precision, and the exception masks) into a 2-byte memory area.
|
||||
# See also |FLDCW| (section A.51 <#section-A.51>).
|
||||
|
||||
# |FNSTCW| does the same thing as |FSTCW|, without first waiting for
|
||||
# pending floating-point exceptions to clear.
|
||||
|
||||
|
||||
# A.65 |FSTENV|: Store Floating-Point Environment
|
||||
|
||||
# FSTENV mem ; 9B D9 /6 [8086,FPU]
|
||||
# FNSTENV mem ; D9 /6 [8086,FPU]
|
||||
|
||||
# |FSTENV| stores the FPU operating environment (control word, status
|
||||
# word, tag word, instruction pointer, data pointer and last opcode) into
|
||||
# memory. The memory area is 14 or 28 bytes long, depending on the CPU
|
||||
# mode at the time. See also |FLDENV| (section A.52 <#section-A.52>).
|
||||
|
||||
# |FNSTENV| does the same thing as |FSTENV|, without first waiting for
|
||||
# pending floating-point exceptions to clear.
|
||||
|
||||
|
||||
# A.66 |FSTSW|: Store Floating-Point Status Word
|
||||
|
||||
# FSTSW mem16 ; 9B DD /0 [8086,FPU]
|
||||
# FSTSW AX ; 9B DF E0 [286,FPU]
|
||||
|
||||
# FNSTSW mem16 ; DD /0 [8086,FPU]
|
||||
# FNSTSW AX ; DF E0 [286,FPU]
|
||||
|
||||
# |FSTSW| stores the FPU status word into |AX| or into a 2-byte memory area.
|
||||
|
||||
# |FNSTSW| does the same thing as |FSTSW|, without first waiting for
|
||||
# pending floating-point exceptions to clear.
|
||||
|
||||
|
||||
# A.67 |FSUB|, |FSUBP|, |FSUBR|, |FSUBRP|: Floating-Point Subtract
|
||||
|
||||
# FSUB mem32 ; D8 /4 [8086,FPU]
|
||||
# FSUB mem64 ; DC /4 [8086,FPU]
|
||||
|
||||
# FSUB fpureg ; D8 E0+r [8086,FPU]
|
||||
# FSUB ST0,fpureg ; D8 E0+r [8086,FPU]
|
||||
|
||||
# FSUB TO fpureg ; DC E8+r [8086,FPU]
|
||||
# FSUB fpureg,ST0 ; DC E8+r [8086,FPU]
|
||||
|
||||
# FSUBR mem32 ; D8 /5 [8086,FPU]
|
||||
# FSUBR mem64 ; DC /5 [8086,FPU]
|
||||
|
||||
# FSUBR fpureg ; D8 E8+r [8086,FPU]
|
||||
# FSUBR ST0,fpureg ; D8 E8+r [8086,FPU]
|
||||
|
||||
# FSUBR TO fpureg ; DC E0+r [8086,FPU]
|
||||
# FSUBR fpureg,ST0 ; DC E0+r [8086,FPU]
|
||||
|
||||
# FSUBP fpureg ; DE E8+r [8086,FPU]
|
||||
# FSUBP fpureg,ST0 ; DE E8+r [8086,FPU]
|
||||
|
||||
# FSUBRP fpureg ; DE E0+r [8086,FPU]
|
||||
# FSUBRP fpureg,ST0 ; DE E0+r [8086,FPU]
|
||||
|
||||
# |FSUB| subtracts the given operand from |ST0| and stores the result back
|
||||
# in |ST0|, unless the |TO| qualifier is given, in which case it subtracts
|
||||
# |ST0| from the given operand and stores the result in the operand.
|
||||
|
||||
# |FSUBR| does the same thing, but does the subtraction the other way up:
|
||||
# so if |TO| is not given, it subtracts |ST0| from the given operand and
|
||||
# stores the result in |ST0|, whereas if |TO| is given it subtracts its
|
||||
# operand from |ST0| and stores the result in the operand.
|
||||
|
||||
# |FSUBP| operates like |FSUB TO|, but pops the register stack once it has
|
||||
# finished. |FSUBRP| operates like |FSUBR TO|, but pops the register stack
|
||||
# once it has finished.
|
||||
|
||||
|
||||
# A.68 |FTST|: Test |ST0| Against Zero
|
||||
|
||||
# FTST ; D9 E4 [8086,FPU]
|
||||
|
||||
# |FTST| compares |ST0| with zero and sets the FPU flags accordingly.
|
||||
# |ST0| is treated as the left-hand side of the comparison, so that a
|
||||
# `less-than' result is generated if |ST0| is negative.
|
||||
|
||||
|
||||
# A.69 |FUCOMxx|: Floating-Point Unordered Compare
|
||||
|
||||
# FUCOM fpureg ; DD E0+r [386,FPU]
|
||||
# FUCOM ST0,fpureg ; DD E0+r [386,FPU]
|
||||
|
||||
# FUCOMP fpureg ; DD E8+r [386,FPU]
|
||||
# FUCOMP ST0,fpureg ; DD E8+r [386,FPU]
|
||||
|
||||
# FUCOMPP ; DA E9 [386,FPU]
|
||||
|
||||
# FUCOMI fpureg ; DB E8+r [P6,FPU]
|
||||
# FUCOMI ST0,fpureg ; DB E8+r [P6,FPU]
|
||||
|
||||
# FUCOMIP fpureg ; DF E8+r [P6,FPU]
|
||||
# FUCOMIP ST0,fpureg ; DF E8+r [P6,FPU]
|
||||
|
||||
# |FUCOM| compares |ST0| with the given operand, and sets the FPU flags
|
||||
# accordingly. |ST0| is treated as the left-hand side of the comparison,
|
||||
# so that the carry flag is set (for a `less-than' result) if |ST0| is
|
||||
# less than the given operand.
|
||||
|
||||
# |FUCOMP| does the same as |FUCOM|, but pops the register stack
|
||||
# afterwards. |FUCOMPP| compares |ST0| with |ST1| and then pops the
|
||||
# register stack twice.
|
||||
|
||||
# |FUCOMI| and |FUCOMIP| work like the corresponding forms of |FUCOM| and
|
||||
# |FUCOMP|, but write their results directly to the CPU flags register
|
||||
# rather than the FPU status word, so they can be immediately followed by
|
||||
# conditional jump or conditional move instructions.
|
||||
|
||||
# The |FUCOM| instructions differ from the |FCOM| instructions (section
|
||||
# A.35 <#section-A.35>) only in the way they handle quiet NaNs: |FUCOM|
|
||||
# will handle them silently and set the condition code flags to an
|
||||
# `unordered' result, whereas |FCOM| will generate an exception.
|
||||
|
||||
|
||||
# A.70 |FXAM|: Examine Class of Value in |ST0|
|
||||
|
||||
# FXAM ; D9 E5 [8086,FPU]
|
||||
|
||||
# |FXAM| sets the FPU flags C3, C2 and C0 depending on the type of value
|
||||
# stored in |ST0|: 000 (respectively) for an unsupported format, 001 for a
|
||||
# NaN, 010 for a normal finite number, 011 for an infinity, 100 for a
|
||||
# zero, 101 for an empty register, and 110 for a denormal. It also sets
|
||||
# the C1 flag to the sign of the number.
|
||||
|
||||
|
||||
# A.71 |FXCH|: Floating-Point Exchange
|
||||
|
||||
# FXCH ; D9 C9 [8086,FPU]
|
||||
# FXCH fpureg ; D9 C8+r [8086,FPU]
|
||||
# FXCH fpureg,ST0 ; D9 C8+r [8086,FPU]
|
||||
# FXCH ST0,fpureg ; D9 C8+r [8086,FPU]
|
||||
|
||||
# |FXCH| exchanges |ST0| with a given FPU register. The no-operand form
|
||||
# exchanges |ST0| with |ST1|.
|
||||
|
||||
|
||||
# A.72 |FXTRACT|: Extract Exponent and Significand
|
||||
|
||||
# FXTRACT ; D9 F4 [8086,FPU]
|
||||
|
||||
# |FXTRACT| separates the number in |ST0| into its exponent and
|
||||
# significand (mantissa), stores the exponent back into |ST0|, and then
|
||||
# pushes the significand on the register stack (so that the significand
|
||||
# ends up in |ST0|, and the exponent in |ST1|).
|
||||
|
||||
|
||||
# A.73 |FYL2X|, |FYL2XP1|: Compute Y times Log2(X) or Log2(X+1)
|
||||
|
||||
# FYL2X ; D9 F1 [8086,FPU]
|
||||
# FYL2XP1 ; D9 F9 [8086,FPU]
|
||||
|
||||
# |FYL2X| multiplies |ST1| by the base-2 logarithm of |ST0|, stores the
|
||||
# result in |ST1|, and pops the register stack (so that the result ends up
|
||||
# in |ST0|). |ST0| must be non-zero and positive.
|
||||
|
||||
# |FYL2XP1| works the same way, but replacing the base-2 log of |ST0| with
|
||||
# that of |ST0| plus one. This time, |ST0| must have magnitude no greater
|
||||
# than 1 minus half the square root of two.
|
||||
|
||||
|
||||
# A.74 |HLT|: Halt Processor
|
||||
|
||||
# HLT ; F4 [8086]
|
||||
|
||||
# |HLT| puts the processor into a halted state, where it will perform no
|
||||
# more operations until restarted by an interrupt or a reset.
|
||||
|
||||
|
||||
# A.75 |IBTS|: Insert Bit String
|
||||
|
||||
# IBTS r/m16,reg16 ; o16 0F A7 /r [386,UNDOC]
|
||||
# IBTS r/m32,reg32 ; o32 0F A7 /r [386,UNDOC]
|
||||
|
||||
# No clear documentation seems to be available for this instruction: the
|
||||
# best I've been able to find reads `Takes a string of bits from the
|
||||
# second operand and puts them in the first operand'. It is present only
|
||||
# in early 386 processors, and conflicts with the opcodes for
|
||||
# |CMPXCHG486|. NASM supports it only for completeness. Its counterpart is
|
||||
# |XBTS| (see section A.167 <#section-A.167>).
|
||||
|
||||
|
||||
# A.76 |IDIV|: Signed Integer Divide
|
||||
|
||||
# IDIV r/m8 ; F6 /7 [8086]
|
||||
# IDIV r/m16 ; o16 F7 /7 [8086]
|
||||
# IDIV r/m32 ; o32 F7 /7 [386]
|
||||
|
||||
# |IDIV| performs signed integer division. The explicit operand provided
|
||||
# is the divisor; the dividend and destination operands are implicit, in
|
||||
# the following way:
|
||||
|
||||
# * For |IDIV r/m8|, |AX| is divided by the given operand; the
|
||||
# quotient is stored in |AL| and the remainder in |AH|.
|
||||
# * For |IDIV r/m16|, |DX:AX| is divided by the given operand; the
|
||||
# quotient is stored in |AX| and the remainder in |DX|.
|
||||
# * For |IDIV r/m32|, |EDX:EAX| is divided by the given operand; the
|
||||
# quotient is stored in |EAX| and the remainder in |EDX|.
|
||||
|
||||
# Unsigned integer division is performed by the |DIV| instruction: see
|
||||
# section A.25 <#section-A.25>.
|
||||
|
||||
|
||||
# A.77 |IMUL|: Signed Integer Multiply
|
||||
|
||||
# IMUL r/m8 ; F6 /5 [8086]
|
||||
# IMUL r/m16 ; o16 F7 /5 [8086]
|
||||
# IMUL r/m32 ; o32 F7 /5 [386]
|
||||
|
||||
# IMUL reg16,r/m16 ; o16 0F AF /r [386]
|
||||
# IMUL reg32,r/m32 ; o32 0F AF /r [386]
|
||||
|
||||
# IMUL reg16,imm8 ; o16 6B /r ib [286]
|
||||
# IMUL reg16,imm16 ; o16 69 /r iw [286]
|
||||
# IMUL reg32,imm8 ; o32 6B /r ib [386]
|
||||
# IMUL reg32,imm32 ; o32 69 /r id [386]
|
||||
|
||||
# IMUL reg16,r/m16,imm8 ; o16 6B /r ib [286]
|
||||
# IMUL reg16,r/m16,imm16 ; o16 69 /r iw [286]
|
||||
# IMUL reg32,r/m32,imm8 ; o32 6B /r ib [386]
|
||||
# IMUL reg32,r/m32,imm32 ; o32 69 /r id [386]
|
||||
|
||||
# |IMUL| performs signed integer multiplication. For the single-operand
|
||||
# form, the other operand and destination are implicit, in the following way:
|
||||
|
||||
# * For |IMUL r/m8|, |AL| is multiplied by the given operand; the
|
||||
# product is stored in |AX|.
|
||||
# * For |IMUL r/m16|, |AX| is multiplied by the given operand; the
|
||||
# product is stored in |DX:AX|.
|
||||
# * For |IMUL r/m32|, |EAX| is multiplied by the given operand; the
|
||||
# product is stored in |EDX:EAX|.
|
||||
|
||||
# The two-operand form multiplies its two operands and stores the result
|
||||
# in the destination (first) operand. The three-operand form multiplies
|
||||
# its last two operands and stores the result in the first operand.
|
||||
|
||||
# The two-operand form is in fact a shorthand for the three-operand form,
|
||||
# as can be seen by examining the opcode descriptions: in the two-operand
|
||||
# form, the code |/r| takes both its register and |r/m| parts from the
|
||||
# same operand (the first one).
|
||||
|
||||
# In the forms with an 8-bit immediate operand and another longer source
|
||||
# operand, the immediate operand is considered to be signed, and is
|
||||
# sign-extended to the length of the other source operand. In these cases,
|
||||
# the |BYTE| qualifier is necessary to force NASM to generate this form of
|
||||
# the instruction.
|
||||
|
||||
# Unsigned integer multiplication is performed by the |MUL| instruction:
|
||||
# see section A.107 <#section-A.107>.
|
||||
|
||||
|
||||
# A.78 |IN|: Input from I/O Port
|
||||
|
||||
# IN AL,imm8 ; E4 ib [8086]
|
||||
# IN AX,imm8 ; o16 E5 ib [8086]
|
||||
# IN EAX,imm8 ; o32 E5 ib [386]
|
||||
# IN AL,DX ; EC [8086]
|
||||
# IN AX,DX ; o16 ED [8086]
|
||||
# IN EAX,DX ; o32 ED [386]
|
||||
|
||||
# |IN| reads a byte, word or doubleword from the specified I/O port, and
|
||||
# stores it in the given destination register. The port number may be
|
||||
# specified as an immediate value if it is between 0 and 255, and
|
||||
# otherwise must be stored in |DX|. See also |OUT| (section A.111
|
||||
# <#section-A.111>).
|
||||
|
||||
|
||||
# A.79 |INC|: Increment Integer
|
||||
|
||||
# INC reg16 ; o16 40+r [8086]
|
||||
# INC reg32 ; o32 40+r [386]
|
||||
# INC r/m8 ; FE /0 [8086]
|
||||
# INC r/m16 ; o16 FF /0 [8086]
|
||||
# INC r/m32 ; o32 FF /0 [386]
|
||||
|
||||
# |INC| adds 1 to its operand. It does /not/ affect the carry flag: to
|
||||
# affect the carry flag, use |ADD something,1| (see section A.6
|
||||
# <#section-A.6>). See also |DEC| (section A.24 <#section-A.24>).
|
||||
|
||||
|
||||
# A.80 |INSB|, |INSW|, |INSD|: Input String from I/O Port
|
||||
|
||||
# INSB ; 6C [186]
|
||||
# INSW ; o16 6D [186]
|
||||
# INSD ; o32 6D [386]
|
||||
|
||||
# |INSB| inputs a byte from the I/O port specified in |DX| and stores it
|
||||
# at |[ES:DI]| or |[ES:EDI]|. It then increments or decrements (depending
|
||||
# on the direction flag: increments if the flag is clear, decrements if it
|
||||
# is set) |DI| or |EDI|.
|
||||
|
||||
# The register used is |DI| if the address size is 16 bits, and |EDI| if
|
||||
# it is 32 bits. If you need to use an address size not equal to the
|
||||
# current |BITS| setting, you can use an explicit |a16| or |a32| prefix.
|
||||
|
||||
# Segment override prefixes have no effect for this instruction: the use
|
||||
# of |ES| for the load from |[DI]| or |[EDI]| cannot be overridden.
|
||||
|
||||
# |INSW| and |INSD| work in the same way, but they input a word or a
|
||||
# doubleword instead of a byte, and increment or decrement the addressing
|
||||
# register by 2 or 4 instead of 1.
|
||||
|
||||
# The |REP| prefix may be used to repeat the instruction |CX| (or |ECX| -
|
||||
# again, the address size chooses which) times.
|
||||
|
||||
# See also |OUTSB|, |OUTSW| and |OUTSD| (section A.112 <#section-A.112>).
|
||||
|
||||
|
||||
# A.81 |INT|: Software Interrupt
|
||||
|
||||
# INT imm8 ; CD ib [8086]
|
||||
|
||||
# |INT| causes a software interrupt through a specified vector number from
|
||||
# 0 to 255.
|
||||
|
||||
# The code generated by the |INT| instruction is always two bytes long:
|
||||
# although there are short forms for some |INT| instructions, NASM does
|
||||
# not generate them when it sees the |INT| mnemonic. In order to generate
|
||||
# single-byte breakpoint instructions, use the |INT3| or |INT1|
|
||||
# instructions (see section A.82 <#section-A.82>) instead.
|
||||
|
||||
|
||||
# A.82 |INT3|, |INT1|, |ICEBP|, |INT01|: Breakpoints
|
||||
|
||||
# INT1 ; F1 [P6]
|
||||
# ICEBP ; F1 [P6]
|
||||
# INT01 ; F1 [P6]
|
||||
|
||||
# INT3 ; CC [8086]
|
||||
|
||||
# |INT1| and |INT3| are short one-byte forms of the instructions |INT 1|
|
||||
# and |INT 3| (see section A.81 <#section-A.81>). They perform a similar
|
||||
# function to their longer counterparts, but take up less code space. They
|
||||
# are used as breakpoints by debuggers.
|
||||
|
||||
# |INT1|, and its alternative synonyms |INT01| and |ICEBP|, is an
|
||||
# instruction used by in-circuit emulators (ICEs). It is present, though
|
||||
# not documented, on some processors down to the 286, but is only
|
||||
# documented for the Pentium Pro. |INT3| is the instruction normally used
|
||||
# as a breakpoint by debuggers.
|
||||
|
||||
# |INT3| is not precisely equivalent to |INT 3|: the short form, since it
|
||||
# is designed to be used as a breakpoint, bypasses the normal IOPL checks
|
||||
# in virtual-8086 mode, and also does not go through interrupt redirection.
|
||||
|
||||
|
||||
# A.83 |INTO|: Interrupt if Overflow
|
||||
|
||||
# INTO ; CE [8086]
|
||||
|
||||
# |INTO| performs an |INT 4| software interrupt (see section A.81
|
||||
# <#section-A.81>) if and only if the overflow flag is set.
|
||||
|
||||
|
||||
# A.84 |INVD|: Invalidate Internal Caches
|
||||
|
||||
# INVD ; 0F 08 [486]
|
||||
|
||||
# |INVD| invalidates and empties the processor's internal caches, and
|
||||
# causes the processor to instruct external caches to do the same. It does
|
||||
# not write the contents of the caches back to memory first: any modified
|
||||
# data held in the caches will be lost. To write the data back first, use
|
||||
# |WBINVD| (section A.164 <#section-A.164>).
|
||||
|
||||
|
||||
# A.85 |INVLPG|: Invalidate TLB Entry
|
||||
|
||||
# INVLPG mem ; 0F 01 /0 [486]
|
||||
|
||||
# |INVLPG| invalidates the translation lookahead buffer (TLB) entry
|
||||
# associated with the supplied memory address.
|
||||
|
||||
|
||||
# A.86 |IRET|, |IRETW|, |IRETD|: Return from Interrupt
|
||||
|
||||
# IRET ; CF [8086]
|
||||
# IRETW ; o16 CF [8086]
|
||||
# IRETD ; o32 CF [386]
|
||||
|
||||
# |IRET| returns from an interrupt (hardware or software) by means of
|
||||
# popping |IP| (or |EIP|), |CS| and the flags off the stack and then
|
||||
# continuing execution from the new |CS:IP|.
|
||||
|
||||
# |IRETW| pops |IP|, |CS| and the flags as 2 bytes each, taking 6 bytes
|
||||
# off the stack in total. |IRETD| pops |EIP| as 4 bytes, pops a further 4
|
||||
# bytes of which the top two are discarded and the bottom two go into
|
||||
# |CS|, and pops the flags as 4 bytes as well, taking 12 bytes off the stack.
|
||||
|
||||
# |IRET| is a shorthand for either |IRETW| or |IRETD|, depending on the
|
||||
# default |BITS| setting at the time.
|
||||
|
||||
|
||||
# A.87 |JCXZ|, |JECXZ|: Jump if CX/ECX Zero
|
||||
|
||||
# JCXZ imm ; o16 E3 rb [8086]
|
||||
# JECXZ imm ; o32 E3 rb [386]
|
||||
|
||||
# |JCXZ| performs a short jump (with maximum range 128 bytes) if and only
|
||||
# if the contents of the |CX| register is 0. |JECXZ| does the same thing,
|
||||
# but with |ECX|.
|
||||
|
||||
|
||||
# A.88 |JMP|: Jump
|
||||
|
||||
# JMP imm ; E9 rw/rd [8086]
|
||||
|
||||
# JMP SHORT imm ; EB rb [8086]
|
||||
# JMP imm:imm16 ; o16 EA iw iw [8086]
|
||||
# JMP imm:imm32 ; o32 EA id iw [386]
|
||||
|
||||
# JMP FAR mem ; o16 FF /5 [8086]
|
||||
# JMP FAR mem ; o32 FF /5 [386]
|
||||
# JMP r/m16 ; o16 FF /4 [8086]
|
||||
# JMP r/m32 ; o32 FF /4 [386]
|
||||
|
||||
# |JMP| jumps to a given address. The address may be specified as an
|
||||
# absolute segment and offset, or as a relative jump within the current
|
||||
# segment.
|
||||
|
||||
# |JMP SHORT imm| has a maximum range of 128 bytes, since the displacement
|
||||
# is specified as only 8 bits, but takes up less code space. NASM does not
|
||||
# choose when to generate |JMP SHORT| for you: you must explicitly code
|
||||
# |SHORT| every time you want a short jump.
|
||||
|
||||
# You can choose between the two immediate far jump forms (|JMP imm:imm|)
|
||||
# by the use of the |WORD| and |DWORD| keywords: |JMP WORD 0x1234:0x5678|)
|
||||
# or |JMP DWORD 0x1234:0x56789abc|.
|
||||
|
||||
# The |JMP FAR mem| forms execute a far jump by loading the destination
|
||||
# address out of memory. The address loaded consists of 16 or 32 bits of
|
||||
# offset (depending on the operand size), and 16 bits of segment. The
|
||||
# operand size may be overridden using |JMP WORD FAR mem| or |JMP DWORD
|
||||
# FAR mem|.
|
||||
|
||||
# The |JMP r/m| forms execute a near jump (within the same segment),
|
||||
# loading the destination address out of memory or out of a register. The
|
||||
# keyword |NEAR| may be specified, for clarity, in these forms, but is not
|
||||
# necessary. Again, operand size can be overridden using |JMP WORD mem| or
|
||||
# |JMP DWORD mem|.
|
||||
|
||||
# As a convenience, NASM does not require you to jump to a far symbol by
|
||||
# coding the cumbersome |JMP SEG routine:routine|, but instead allows the
|
||||
# easier synonym |JMP FAR routine|.
|
||||
|
||||
# The |CALL r/m| forms given above are near calls; NASM will accept the
|
||||
# |NEAR| keyword (e.g. |CALL NEAR [address]|), even though it is not
|
||||
# strictly necessary.
|
||||
|
||||
|
||||
# A.89 |Jcc|: Conditional Branch
|
||||
|
||||
# Jcc imm ; 70+cc rb [8086]
|
||||
# Jcc NEAR imm ; 0F 80+cc rw/rd [386]
|
||||
|
||||
# The conditional jump instructions execute a near (same segment) jump if
|
||||
# and only if their conditions are satisfied. For example, |JNZ| jumps
|
||||
# only if the zero flag is not set.
|
||||
|
||||
# The ordinary form of the instructions has only a 128-byte range; the
|
||||
# |NEAR| form is a 386 extension to the instruction set, and can span the
|
||||
# full size of a segment. NASM will not override your choice of jump
|
||||
# instruction: if you want |Jcc NEAR|, you have to use the |NEAR| keyword.
|
||||
|
||||
# The |SHORT| keyword is allowed on the first form of the instruction, for
|
||||
# clarity, but is not necessary.
|
||||
|
||||
|
||||
# A.90 |LAHF|: Load AH from Flags
|
||||
|
||||
# LAHF ; 9F [8086]
|
||||
|
||||
# |LAHF| sets the |AH| register according to the contents of the low byte
|
||||
# of the flags word. See also |SAHF| (section A.145 <#section-A.145>).
|
||||
|
||||
|
||||
# A.91 |LAR|: Load Access Rights
|
||||
|
||||
# LAR reg16,r/m16 ; o16 0F 02 /r [286,PRIV]
|
||||
# LAR reg32,r/m32 ; o32 0F 02 /r [286,PRIV]
|
||||
|
||||
# |LAR| takes the segment selector specified by its source (second)
|
||||
# operand, finds the corresponding segment descriptor in the GDT or LDT,
|
||||
# and loads the access-rights byte of the descriptor into its destination
|
||||
# (first) operand.
|
||||
|
||||
|
||||
# A.92 |LDS|, |LES|, |LFS|, |LGS|, |LSS|: Load Far Pointer
|
||||
|
||||
# LDS reg16,mem ; o16 C5 /r [8086]
|
||||
# LDS reg32,mem ; o32 C5 /r [8086]
|
||||
|
||||
# LES reg16,mem ; o16 C4 /r [8086]
|
||||
# LES reg32,mem ; o32 C4 /r [8086]
|
||||
|
||||
# LFS reg16,mem ; o16 0F B4 /r [386]
|
||||
# LFS reg32,mem ; o32 0F B4 /r [386]
|
||||
|
||||
# LGS reg16,mem ; o16 0F B5 /r [386]
|
||||
# LGS reg32,mem ; o32 0F B5 /r [386]
|
||||
|
||||
# LSS reg16,mem ; o16 0F B2 /r [386]
|
||||
# LSS reg32,mem ; o32 0F B2 /r [386]
|
||||
|
||||
# These instructions load an entire far pointer (16 or 32 bits of offset,
|
||||
# plus 16 bits of segment) out of memory in one go. |LDS|, for example,
|
||||
# loads 16 or 32 bits from the given memory address into the given
|
||||
# register (depending on the size of the register), then loads the /next/
|
||||
# 16 bits from memory into |DS|. |LES|, |LFS|, |LGS| and |LSS| work in the
|
||||
# same way but use the other segment registers.
|
||||
|
||||
|
||||
# A.93 |LEA|: Load Effective Address
|
||||
|
||||
# LEA reg16,mem ; o16 8D /r [8086]
|
||||
# LEA reg32,mem ; o32 8D /r [8086]
|
||||
|
||||
# |LEA|, despite its syntax, does not access memory. It calculates the
|
||||
# effective address specified by its second operand as if it were going to
|
||||
# load or store data from it, but instead it stores the calculated address
|
||||
# into the register specified by its first operand. This can be used to
|
||||
# perform quite complex calculations (e.g. |LEA EAX,[EBX+ECX*4+100]|) in
|
||||
# one instruction.
|
||||
|
||||
# |LEA|, despite being a purely arithmetic instruction which accesses no
|
||||
# memory, still requires square brackets around its second operand, as if
|
||||
# it were a memory reference.
|
||||
|
||||
|
||||
# A.94 |LEAVE|: Destroy Stack Frame
|
||||
|
||||
# LEAVE ; C9 [186]
|
||||
|
||||
# |LEAVE| destroys a stack frame of the form created by the |ENTER|
|
||||
# instruction (see section A.27 <#section-A.27>). It is functionally
|
||||
# equivalent to |MOV ESP,EBP| followed by |POP EBP| (or |MOV SP,BP|
|
||||
# followed by |POP BP| in 16-bit mode).
|
||||
|
||||
|
||||
# A.95 |LGDT|, |LIDT|, |LLDT|: Load Descriptor Tables
|
||||
|
||||
# LGDT mem ; 0F 01 /2 [286,PRIV]
|
||||
# LIDT mem ; 0F 01 /3 [286,PRIV]
|
||||
# LLDT r/m16 ; 0F 00 /2 [286,PRIV]
|
||||
|
||||
# |LGDT| and |LIDT| both take a 6-byte memory area as an operand: they
|
||||
# load a 32-bit linear address and a 16-bit size limit from that area (in
|
||||
# the opposite order) into the GDTR (global descriptor table register) or
|
||||
# IDTR (interrupt descriptor table register). These are the only
|
||||
# instructions which directly use /linear/ addresses, rather than
|
||||
# segment/offset pairs.
|
||||
|
||||
# |LLDT| takes a segment selector as an operand. The processor looks up
|
||||
# that selector in the GDT and stores the limit and base address given
|
||||
# there into the LDTR (local descriptor table register).
|
||||
|
||||
# See also |SGDT|, |SIDT| and |SLDT| (section A.151 <#section-A.151>).
|
||||
|
||||
|
||||
# A.96 |LMSW|: Load/Store Machine Status Word
|
||||
|
||||
# LMSW r/m16 ; 0F 01 /6 [286,PRIV]
|
||||
|
||||
# |LMSW| loads the bottom four bits of the source operand into the bottom
|
||||
# four bits of the |CR0| control register (or the Machine Status Word, on
|
||||
# 286 processors). See also |SMSW| (section A.155 <#section-A.155>).
|
||||
|
||||
|
||||
# A.97 |LOADALL|, |LOADALL286|: Load Processor State
|
||||
|
||||
# LOADALL ; 0F 07 [386,UNDOC]
|
||||
# LOADALL286 ; 0F 05 [286,UNDOC]
|
||||
|
||||
# This instruction, in its two different-opcode forms, is apparently
|
||||
# supported on most 286 processors, some 386 and possibly some 486. The
|
||||
# opcode differs between the 286 and the 386.
|
||||
|
||||
# The function of the instruction is to load all information relating to
|
||||
# the state of the processor out of a block of memory: on the 286, this
|
||||
# block is located implicitly at absolute address |0x800|, and on the 386
|
||||
# and 486 it is at |[ES:EDI]|.
|
||||
|
||||
|
||||
# A.98 |LODSB|, |LODSW|, |LODSD|: Load from String
|
||||
|
||||
# LODSB ; AC [8086]
|
||||
# LODSW ; o16 AD [8086]
|
||||
# LODSD ; o32 AD [386]
|
||||
|
||||
# |LODSB| loads a byte from |[DS:SI]| or |[DS:ESI]| into |AL|. It then
|
||||
# increments or decrements (depending on the direction flag: increments if
|
||||
# the flag is clear, decrements if it is set) |SI| or |ESI|.
|
||||
|
||||
# The register used is |SI| if the address size is 16 bits, and |ESI| if
|
||||
# it is 32 bits. If you need to use an address size not equal to the
|
||||
# current |BITS| setting, you can use an explicit |a16| or |a32| prefix.
|
||||
|
||||
# The segment register used to load from |[SI]| or |[ESI]| can be
|
||||
# overridden by using a segment register name as a prefix (for example,
|
||||
# |es lodsb|).
|
||||
|
||||
# |LODSW| and |LODSD| work in the same way, but they load a word or a
|
||||
# doubleword instead of a byte, and increment or decrement the addressing
|
||||
# registers by 2 or 4 instead of 1.
|
||||
|
||||
|
||||
# A.99 |LOOP|, |LOOPE|, |LOOPZ|, |LOOPNE|, |LOOPNZ|: Loop with Counter
|
||||
|
||||
# LOOP imm ; E2 rb [8086]
|
||||
# LOOP imm,CX ; a16 E2 rb [8086]
|
||||
# LOOP imm,ECX ; a32 E2 rb [386]
|
||||
|
||||
# LOOPE imm ; E1 rb [8086]
|
||||
# LOOPE imm,CX ; a16 E1 rb [8086]
|
||||
# LOOPE imm,ECX ; a32 E1 rb [386]
|
||||
# LOOPZ imm ; E1 rb [8086]
|
||||
# LOOPZ imm,CX ; a16 E1 rb [8086]
|
||||
# LOOPZ imm,ECX ; a32 E1 rb [386]
|
||||
|
||||
# LOOPNE imm ; E0 rb [8086]
|
||||
# LOOPNE imm,CX ; a16 E0 rb [8086]
|
||||
# LOOPNE imm,ECX ; a32 E0 rb [386]
|
||||
# LOOPNZ imm ; E0 rb [8086]
|
||||
# LOOPNZ imm,CX ; a16 E0 rb [8086]
|
||||
# LOOPNZ imm,ECX ; a32 E0 rb [386]
|
||||
|
||||
# |LOOP| decrements its counter register (either |CX| or |ECX| - if one is
|
||||
# not specified explicitly, the |BITS| setting dictates which is used) by
|
||||
# one, and if the counter does not become zero as a result of this
|
||||
# operation, it jumps to the given label. The jump has a range of 128 bytes.
|
||||
|
||||
# |LOOPE| (or its synonym |LOOPZ|) adds the additional condition that it
|
||||
# only jumps if the counter is nonzero /and/ the zero flag is set.
|
||||
# Similarly, |LOOPNE| (and |LOOPNZ|) jumps only if the counter is nonzero
|
||||
# and the zero flag is clear.
|
||||
|
||||
|
||||
# A.100 |LSL|: Load Segment Limit
|
||||
|
||||
# LSL reg16,r/m16 ; o16 0F 03 /r [286,PRIV]
|
||||
# LSL reg32,r/m32 ; o32 0F 03 /r [286,PRIV]
|
||||
|
||||
# |LSL| is given a segment selector in its source (second) operand; it
|
||||
# computes the segment limit value by loading the segment limit field from
|
||||
# the associated segment descriptor in the GDT or LDT. (This involves
|
||||
# shifting left by 12 bits if the segment limit is page-granular, and not
|
||||
# if it is byte-granular; so you end up with a byte limit in either case.)
|
||||
# The segment limit obtained is then loaded into the destination (first)
|
||||
# operand.
|
||||
|
||||
|
||||
# A.101 |LTR|: Load Task Register
|
||||
|
||||
# LTR r/m16 ; 0F 00 /3 [286,PRIV]
|
||||
|
||||
# |LTR| looks up the segment base and limit in the GDT or LDT descriptor
|
||||
# specified by the segment selector given as its operand, and loads them
|
||||
# into the Task Register.
|
||||
|
||||
|
||||
# A.102 |MOV|: Move Data
|
||||
|
||||
# MOV r/m8,reg8 ; 88 /r [8086]
|
||||
# MOV r/m16,reg16 ; o16 89 /r [8086]
|
||||
# MOV r/m32,reg32 ; o32 89 /r [386]
|
||||
# MOV reg8,r/m8 ; 8A /r [8086]
|
||||
# MOV reg16,r/m16 ; o16 8B /r [8086]
|
||||
# MOV reg32,r/m32 ; o32 8B /r [386]
|
||||
|
||||
# MOV reg8,imm8 ; B0+r ib [8086]
|
||||
# MOV reg16,imm16 ; o16 B8+r iw [8086]
|
||||
# MOV reg32,imm32 ; o32 B8+r id [386]
|
||||
# MOV r/m8,imm8 ; C6 /0 ib [8086]
|
||||
# MOV r/m16,imm16 ; o16 C7 /0 iw [8086]
|
||||
# MOV r/m32,imm32 ; o32 C7 /0 id [386]
|
||||
|
||||
# MOV AL,memoffs8 ; A0 ow/od [8086]
|
||||
# MOV AX,memoffs16 ; o16 A1 ow/od [8086]
|
||||
# MOV EAX,memoffs32 ; o32 A1 ow/od [386]
|
||||
# MOV memoffs8,AL ; A2 ow/od [8086]
|
||||
# MOV memoffs16,AX ; o16 A3 ow/od [8086]
|
||||
# MOV memoffs32,EAX ; o32 A3 ow/od [386]
|
||||
|
||||
# MOV r/m16,segreg ; o16 8C /r [8086]
|
||||
# MOV r/m32,segreg ; o32 8C /r [386]
|
||||
# MOV segreg,r/m16 ; o16 8E /r [8086]
|
||||
# MOV segreg,r/m32 ; o32 8E /r [386]
|
||||
|
||||
# MOV reg32,CR0/2/3/4 ; 0F 20 /r [386]
|
||||
# MOV reg32,DR0/1/2/3/6/7 ; 0F 21 /r [386]
|
||||
# MOV reg32,TR3/4/5/6/7 ; 0F 24 /r [386]
|
||||
# MOV CR0/2/3/4,reg32 ; 0F 22 /r [386]
|
||||
# MOV DR0/1/2/3/6/7,reg32 ; 0F 23 /r [386]
|
||||
# MOV TR3/4/5/6/7,reg32 ; 0F 26 /r [386]
|
||||
|
||||
# |MOV| copies the contents of its source (second) operand into its
|
||||
# destination (first) operand.
|
||||
|
||||
# In all forms of the |MOV| instruction, the two operands are the same
|
||||
# size, except for moving between a segment register and an |r/m32|
|
||||
# operand. These instructions are treated exactly like the corresponding
|
||||
# 16-bit equivalent (so that, for example, |MOV DS,EAX| functions
|
||||
# identically to |MOV DS,AX| but saves a prefix when in 32-bit mode),
|
||||
# except that when a segment register is moved into a 32-bit destination,
|
||||
# the top two bytes of the result are undefined.
|
||||
|
||||
# |MOV| may not use |CS| as a destination.
|
||||
|
||||
# |CR4| is only a supported register on the Pentium and above.
|
||||
|
||||
|
||||
# A.103 |MOVD|: Move Doubleword to/from MMX Register
|
||||
|
||||
# MOVD mmxreg,r/m32 ; 0F 6E /r [PENT,MMX]
|
||||
# MOVD r/m32,mmxreg ; 0F 7E /r [PENT,MMX]
|
||||
|
||||
# |MOVD| copies 32 bits from its source (second) operand into its
|
||||
# destination (first) operand. When the destination is a 64-bit MMX
|
||||
# register, the top 32 bits are set to zero.
|
||||
|
||||
|
||||
# A.104 |MOVQ|: Move Quadword to/from MMX Register
|
||||
|
||||
# MOVQ mmxreg,r/m64 ; 0F 6F /r [PENT,MMX]
|
||||
# MOVQ r/m64,mmxreg ; 0F 7F /r [PENT,MMX]
|
||||
|
||||
# |MOVQ| copies 64 bits from its source (second) operand into its
|
||||
# destination (first) operand.
|
||||
|
||||
|
||||
# A.105 |MOVSB|, |MOVSW|, |MOVSD|: Move String
|
||||
|
||||
# MOVSB ; A4 [8086]
|
||||
# MOVSW ; o16 A5 [8086]
|
||||
# MOVSD ; o32 A5 [386]
|
||||
|
||||
# |MOVSB| copies the byte at |[ES:DI]| or |[ES:EDI]| to |[DS:SI]| or
|
||||
# |[DS:ESI]|. It then increments or decrements (depending on the direction
|
||||
# flag: increments if the flag is clear, decrements if it is set) |SI| and
|
||||
# |DI| (or |ESI| and |EDI|).
|
||||
|
||||
# The registers used are |SI| and |DI| if the address size is 16 bits, and
|
||||
# |ESI| and |EDI| if it is 32 bits. If you need to use an address size not
|
||||
# equal to the current |BITS| setting, you can use an explicit |a16| or
|
||||
# |a32| prefix.
|
||||
|
||||
# The segment register used to load from |[SI]| or |[ESI]| can be
|
||||
# overridden by using a segment register name as a prefix (for example,
|
||||
# |es movsb|). The use of |ES| for the store to |[DI]| or |[EDI]| cannot
|
||||
# be overridden.
|
||||
|
||||
# |MOVSW| and |MOVSD| work in the same way, but they copy a word or a
|
||||
# doubleword instead of a byte, and increment or decrement the addressing
|
||||
# registers by 2 or 4 instead of 1.
|
||||
|
||||
# The |REP| prefix may be used to repeat the instruction |CX| (or |ECX| -
|
||||
# again, the address size chooses which) times.
|
||||
|
||||
|
||||
# A.106 |MOVSX|, |MOVZX|: Move Data with Sign or Zero Extend
|
||||
|
||||
# MOVSX reg16,r/m8 ; o16 0F BE /r [386]
|
||||
# MOVSX reg32,r/m8 ; o32 0F BE /r [386]
|
||||
# MOVSX reg32,r/m16 ; o32 0F BF /r [386]
|
||||
|
||||
# MOVZX reg16,r/m8 ; o16 0F B6 /r [386]
|
||||
# MOVZX reg32,r/m8 ; o32 0F B6 /r [386]
|
||||
# MOVZX reg32,r/m16 ; o32 0F B7 /r [386]
|
||||
|
||||
# |MOVSX| sign-extends its source (second) operand to the length of its
|
||||
# destination (first) operand, and copies the result into the destination
|
||||
# operand. |MOVZX| does the same, but zero-extends rather than
|
||||
# sign-extending.
|
||||
|
||||
|
||||
# A.107 |MUL|: Unsigned Integer Multiply
|
||||
|
||||
# MUL r/m8 ; F6 /4 [8086]
|
||||
# MUL r/m16 ; o16 F7 /4 [8086]
|
||||
# MUL r/m32 ; o32 F7 /4 [386]
|
||||
|
||||
# |MUL| performs unsigned integer multiplication. The other operand to the
|
||||
# multiplication, and the destination operand, are implicit, in the
|
||||
# following way:
|
||||
|
||||
# * For |MUL r/m8|, |AL| is multiplied by the given operand; the
|
||||
# product is stored in |AX|.
|
||||
# * For |MUL r/m16|, |AX| is multiplied by the given operand; the
|
||||
# product is stored in |DX:AX|.
|
||||
# * For |MUL r/m32|, |EAX| is multiplied by the given operand; the
|
||||
# product is stored in |EDX:EAX|.
|
||||
|
||||
# Signed integer multiplication is performed by the |IMUL| instruction:
|
||||
# see section A.77 <#section-A.77>.
|
||||
|
||||
|
||||
# A.108 |NEG|, |NOT|: Two's and One's Complement
|
||||
|
||||
# NEG r/m8 ; F6 /3 [8086]
|
||||
# NEG r/m16 ; o16 F7 /3 [8086]
|
||||
# NEG r/m32 ; o32 F7 /3 [386]
|
||||
|
||||
# NOT r/m8 ; F6 /2 [8086]
|
||||
# NOT r/m16 ; o16 F7 /2 [8086]
|
||||
# NOT r/m32 ; o32 F7 /2 [386]
|
||||
|
||||
# |NEG| replaces the contents of its operand by the two's complement
|
||||
# negation (invert all the bits and then add one) of the original value.
|
||||
# |NOT|, similarly, performs one's complement (inverts all the bits).
|
||||
|
||||
|
||||
# A.109 |NOP|: No Operation
|
||||
|
||||
# NOP ; 90 [8086]
|
||||
|
||||
# |NOP| performs no operation. Its opcode is the same as that generated by
|
||||
# |XCHG AX,AX| or |XCHG EAX,EAX| (depending on the processor mode; see
|
||||
# section A.168 <#section-A.168>).
|
||||
|
||||
|
||||
# A.110 |OR|: Bitwise OR
|
||||
|
||||
# OR r/m8,reg8 ; 08 /r [8086]
|
||||
# OR r/m16,reg16 ; o16 09 /r [8086]
|
||||
# OR r/m32,reg32 ; o32 09 /r [386]
|
||||
|
||||
# OR reg8,r/m8 ; 0A /r [8086]
|
||||
# OR reg16,r/m16 ; o16 0B /r [8086]
|
||||
# OR reg32,r/m32 ; o32 0B /r [386]
|
||||
|
||||
# OR r/m8,imm8 ; 80 /1 ib [8086]
|
||||
# OR r/m16,imm16 ; o16 81 /1 iw [8086]
|
||||
# OR r/m32,imm32 ; o32 81 /1 id [386]
|
||||
|
||||
# OR r/m16,imm8 ; o16 83 /1 ib [8086]
|
||||
# OR r/m32,imm8 ; o32 83 /1 ib [386]
|
||||
|
||||
# OR AL,imm8 ; 0C ib [8086]
|
||||
# OR AX,imm16 ; o16 0D iw [8086]
|
||||
# OR EAX,imm32 ; o32 0D id [386]
|
||||
|
||||
# |OR| performs a bitwise OR operation between its two operands (i.e. each
|
||||
# bit of the result is 1 if and only if at least one of the corresponding
|
||||
# bits of the two inputs was 1), and stores the result in the destination
|
||||
# (first) operand.
|
||||
|
||||
# In the forms with an 8-bit immediate second operand and a longer first
|
||||
# operand, the second operand is considered to be signed, and is
|
||||
# sign-extended to the length of the first operand. In these cases, the
|
||||
# |BYTE| qualifier is necessary to force NASM to generate this form of the
|
||||
# instruction.
|
||||
|
||||
# The MMX instruction |POR| (see section A.129 <#section-A.129>) performs
|
||||
# the same operation on the 64-bit MMX registers.
|
||||
|
||||
|
||||
# A.111 |OUT|: Output Data to I/O Port
|
||||
|
||||
# OUT imm8,AL ; E6 ib [8086]
|
||||
# OUT imm8,AX ; o16 E7 ib [8086]
|
||||
# OUT imm8,EAX ; o32 E7 ib [386]
|
||||
# OUT DX,AL ; EE [8086]
|
||||
# OUT DX,AX ; o16 EF [8086]
|
||||
# OUT DX,EAX ; o32 EF [386]
|
||||
|
||||
# |IN| writes the contents of the given source register to the specified
|
||||
# I/O port. The port number may be specified as an immediate value if it
|
||||
# is between 0 and 255, and otherwise must be stored in |DX|. See also
|
||||
# |IN| (section A.78 <#section-A.78>).
|
||||
|
||||
|
||||
# A.112 |OUTSB|, |OUTSW|, |OUTSD|: Output String to I/O Port
|
||||
|
||||
# OUTSB ; 6E [186]
|
||||
|
||||
# OUTSW ; o16 6F [186]
|
||||
|
||||
# OUTSD ; o32 6F [386]
|
||||
|
||||
# |OUTSB| loads a byte from |[DS:SI]| or |[DS:ESI]| and writes it to the
|
||||
# I/O port specified in |DX|. It then increments or decrements (depending
|
||||
# on the direction flag: increments if the flag is clear, decrements if it
|
||||
# is set) |SI| or |ESI|.
|
||||
|
||||
# The register used is |SI| if the address size is 16 bits, and |ESI| if
|
||||
# it is 32 bits. If you need to use an address size not equal to the
|
||||
# current |BITS| setting, you can use an explicit |a16| or |a32| prefix.
|
||||
|
||||
# The segment register used to load from |[SI]| or |[ESI]| can be
|
||||
# overridden by using a segment register name as a prefix (for example,
|
||||
# |es outsb|).
|
||||
|
||||
# |OUTSW| and |OUTSD| work in the same way, but they output a word or a
|
||||
# doubleword instead of a byte, and increment or decrement the addressing
|
||||
# registers by 2 or 4 instead of 1.
|
||||
|
||||
# The |REP| prefix may be used to repeat the instruction |CX| (or |ECX| -
|
||||
# again, the address size chooses which) times.
|
||||
|
||||
|
||||
# A.113 |PACKSSDW|, |PACKSSWB|, |PACKUSWB|: Pack Data
|
||||
|
||||
# PACKSSDW mmxreg,r/m64 ; 0F 6B /r [PENT,MMX]
|
||||
# PACKSSWB mmxreg,r/m64 ; 0F 63 /r [PENT,MMX]
|
||||
# PACKUSWB mmxreg,r/m64 ; 0F 67 /r [PENT,MMX]
|
||||
|
||||
# All these instructions start by forming a notional 128-bit word by
|
||||
# placing the source (second) operand on the left of the destination
|
||||
# (first) operand. |PACKSSDW| then splits this 128-bit word into four
|
||||
# doublewords, converts each to a word, and loads them side by side into
|
||||
# the destination register; |PACKSSWB| and |PACKUSWB| both split the
|
||||
# 128-bit word into eight words, converts each to a byte, and loads
|
||||
# /those/ side by side into the destination register.
|
||||
|
||||
# |PACKSSDW| and |PACKSSWB| perform signed saturation when reducing the
|
||||
# length of numbers: if the number is too large to fit into the reduced
|
||||
# space, they replace it by the largest signed number (|7FFFh| or |7Fh|)
|
||||
# that /will/ fit, and if it is too small then they replace it by the
|
||||
# smallest signed number (|8000h| or |80h|) that will fit. |PACKUSWB|
|
||||
# performs unsigned saturation: it treats its input as unsigned, and
|
||||
# replaces it by the largest unsigned number that will fit.
|
||||
|
||||
|
||||
# A.114 |PADDxx|: MMX Packed Addition
|
||||
|
||||
# PADDB mmxreg,r/m64 ; 0F FC /r [PENT,MMX]
|
||||
# PADDW mmxreg,r/m64 ; 0F FD /r [PENT,MMX]
|
||||
# PADDD mmxreg,r/m64 ; 0F FE /r [PENT,MMX]
|
||||
|
||||
# PADDSB mmxreg,r/m64 ; 0F EC /r [PENT,MMX]
|
||||
# PADDSW mmxreg,r/m64 ; 0F ED /r [PENT,MMX]
|
||||
|
||||
# PADDUSB mmxreg,r/m64 ; 0F DC /r [PENT,MMX]
|
||||
# PADDUSW mmxreg,r/m64 ; 0F DD /r [PENT,MMX]
|
||||
|
||||
# |PADDxx| all perform packed addition between their two 64-bit operands,
|
||||
# storing the result in the destination (first) operand. The |PADDxB|
|
||||
# forms treat the 64-bit operands as vectors of eight bytes, and add each
|
||||
# byte individually; |PADDxW| treat the operands as vectors of four words;
|
||||
# and |PADDD| treats its operands as vectors of two doublewords.
|
||||
|
||||
# |PADDSB| and |PADDSW| perform signed saturation on the sum of each pair
|
||||
# of bytes or words: if the result of an addition is too large or too
|
||||
# small to fit into a signed byte or word result, it is clipped
|
||||
# (saturated) to the largest or smallest value which /will/ fit. |PADDUSB|
|
||||
# and |PADDUSW| similarly perform unsigned saturation, clipping to |0FFh|
|
||||
# or |0FFFFh| if the result is larger than that.
|
||||
|
||||
|
||||
# A.115 |PADDSIW|: MMX Packed Addition to Implicit Destination
|
||||
|
||||
# PADDSIW mmxreg,r/m64 ; 0F 51 /r [CYRIX,MMX]
|
||||
|
||||
# |PADDSIW|, specific to the Cyrix extensions to the MMX instruction set,
|
||||
# performs the same function as |PADDSW|, except that the result is not
|
||||
# placed in the register specified by the first operand, but instead in
|
||||
# the register whose number differs from the first operand only in the
|
||||
# last bit. So |PADDSIW MM0,MM2| would put the result in |MM1|, but
|
||||
# |PADDSIW MM1,MM2| would put the result in |MM0|.
|
||||
|
||||
|
||||
# A.116 |PAND|, |PANDN|: MMX Bitwise AND and AND-NOT
|
||||
|
||||
# PAND mmxreg,r/m64 ; 0F DB /r [PENT,MMX]
|
||||
# PANDN mmxreg,r/m64 ; 0F DF /r [PENT,MMX]
|
||||
|
||||
# |PAND| performs a bitwise AND operation between its two operands (i.e.
|
||||
# each bit of the result is 1 if and only if the corresponding bits of the
|
||||
# two inputs were both 1), and stores the result in the destination
|
||||
# (first) operand.
|
||||
|
||||
# |PANDN| performs the same operation, but performs a one's complement
|
||||
# operation on the destination (first) operand first.
|
||||
|
||||
|
||||
# A.117 |PAVEB|: MMX Packed Average
|
||||
|
||||
# PAVEB mmxreg,r/m64 ; 0F 50 /r [CYRIX,MMX]
|
||||
|
||||
# |PAVEB|, specific to the Cyrix MMX extensions, treats its two operands
|
||||
# as vectors of eight unsigned bytes, and calculates the average of the
|
||||
# corresponding bytes in the operands. The resulting vector of eight
|
||||
# averages is stored in the first operand.
|
||||
|
||||
|
||||
# A.118 |PCMPxx|: MMX Packed Comparison
|
||||
|
||||
# PCMPEQB mmxreg,r/m64 ; 0F 74 /r [PENT,MMX]
|
||||
# PCMPEQW mmxreg,r/m64 ; 0F 75 /r [PENT,MMX]
|
||||
# PCMPEQD mmxreg,r/m64 ; 0F 76 /r [PENT,MMX]
|
||||
|
||||
# PCMPGTB mmxreg,r/m64 ; 0F 64 /r [PENT,MMX]
|
||||
# PCMPGTW mmxreg,r/m64 ; 0F 65 /r [PENT,MMX]
|
||||
# PCMPGTD mmxreg,r/m64 ; 0F 66 /r [PENT,MMX]
|
||||
|
||||
# The |PCMPxx| instructions all treat their operands as vectors of bytes,
|
||||
# words, or doublewords; corresponding elements of the source and
|
||||
# destination are compared, and the corresponding element of the
|
||||
# destination (first) operand is set to all zeros or all ones depending on
|
||||
# the result of the comparison.
|
||||
|
||||
# |PCMPxxB| treats the operands as vectors of eight bytes, |PCMPxxW|
|
||||
# treats them as vectors of four words, and |PCMPxxD| as two doublewords.
|
||||
|
||||
# |PCMPEQx| sets the corresponding element of the destination operand to
|
||||
# all ones if the two elements compared are equal; |PCMPGTx| sets the
|
||||
# destination element to all ones if the element of the first
|
||||
# (destination) operand is greater (treated as a signed integer) than that
|
||||
# of the second (source) operand.
|
||||
|
||||
|
||||
# A.119 |PDISTIB|: MMX Packed Distance and Accumulate with Implied
|
||||
# Register
|
||||
|
||||
# PDISTIB mmxreg,mem64 ; 0F 54 /r [CYRIX,MMX]
|
||||
|
||||
# |PDISTIB|, specific to the Cyrix MMX extensions, treats its two input
|
||||
# operands as vectors of eight unsigned bytes. For each byte position, it
|
||||
# finds the absolute difference between the bytes in that position in the
|
||||
# two input operands, and adds that value to the byte in the same position
|
||||
# in the implied output register. The addition is saturated to an unsigned
|
||||
# byte in the same way as |PADDUSB|.
|
||||
|
||||
# The implied output register is found in the same way as |PADDSIW|
|
||||
# (section A.115 <#section-A.115>).
|
||||
|
||||
# Note that |PDISTIB| cannot take a register as its second source operand.
|
||||
|
||||
|
||||
# A.120 |PMACHRIW|: MMX Packed Multiply and Accumulate with Rounding
|
||||
|
||||
# PMACHRIW mmxreg,mem64 ; 0F 5E /r [CYRIX,MMX]
|
||||
|
||||
# |PMACHRIW| acts almost identically to |PMULHRIW| (section A.123
|
||||
# <#section-A.123>), but instead of /storing/ its result in the implied
|
||||
# destination register, it /adds/ its result, as four packed words, to the
|
||||
# implied destination register. No saturation is done: the addition can
|
||||
# wrap around.
|
||||
|
||||
# Note that |PMACHRIW| cannot take a register as its second source operand.
|
||||
|
||||
|
||||
# A.121 |PMADDWD|: MMX Packed Multiply and Add
|
||||
|
||||
# PMADDWD mmxreg,r/m64 ; 0F F5 /r [PENT,MMX]
|
||||
|
||||
# |PMADDWD| treats its two inputs as vectors of four signed words. It
|
||||
# multiplies corresponding elements of the two operands, giving four
|
||||
# signed doubleword results. The top two of these are added and placed in
|
||||
# the top 32 bits of the destination (first) operand; the bottom two are
|
||||
# added and placed in the bottom 32 bits.
|
||||
|
||||
|
||||
# A.122 |PMAGW|: MMX Packed Magnitude
|
||||
|
||||
# PMAGW mmxreg,r/m64 ; 0F 52 /r [CYRIX,MMX]
|
||||
|
||||
# |PMAGW|, specific to the Cyrix MMX extensions, treats both its operands
|
||||
# as vectors of four signed words. It compares the absolute values of the
|
||||
# words in corresponding positions, and sets each word of the destination
|
||||
# (first) operand to whichever of the two words in that position had the
|
||||
# larger absolute value.
|
||||
|
||||
|
||||
# A.123 |PMULHRW|, |PMULHRIW|: MMX Packed Multiply High with Rounding
|
||||
|
||||
# PMULHRW mmxreg,r/m64 ; 0F 59 /r [CYRIX,MMX]
|
||||
# PMULHRIW mmxreg,r/m64 ; 0F 5D /r [CYRIX,MMX]
|
||||
|
||||
# These instructions, specific to the Cyrix MMX extensions, treat their
|
||||
# operands as vectors of four signed words. Words in corresponding
|
||||
# positions are multiplied, to give a 32-bit value in which bits 30 and 31
|
||||
# are guaranteed equal. Bits 30 to 15 of this value (bit mask
|
||||
# |0x7FFF8000|) are taken and stored in the corresponding position of the
|
||||
# destination operand, after first rounding the low bit (equivalent to
|
||||
# adding |0x4000| before extracting bits 30 to 15).
|
||||
|
||||
# For |PMULHRW|, the destination operand is the first operand; for
|
||||
# |PMULHRIW| the destination operand is implied by the first operand in
|
||||
# the manner of |PADDSIW| (section A.115 <#section-A.115>).
|
||||
|
||||
|
||||
# A.124 |PMULHW|, |PMULLW|: MMX Packed Multiply
|
||||
|
||||
# PMULHW mmxreg,r/m64 ; 0F E5 /r [PENT,MMX]
|
||||
# PMULLW mmxreg,r/m64 ; 0F D5 /r [PENT,MMX]
|
||||
|
||||
# |PMULxW| treats its two inputs as vectors of four signed words. It
|
||||
# multiplies corresponding elements of the two operands, giving four
|
||||
# signed doubleword results.
|
||||
|
||||
# |PMULHW| then stores the top 16 bits of each doubleword in the
|
||||
# destination (first) operand; |PMULLW| stores the bottom 16 bits of each
|
||||
# doubleword in the destination operand.
|
||||
|
||||
|
||||
# A.125 |PMVccZB|: MMX Packed Conditional Move
|
||||
|
||||
# PMVZB mmxreg,mem64 ; 0F 58 /r [CYRIX,MMX]
|
||||
# PMVNZB mmxreg,mem64 ; 0F 5A /r [CYRIX,MMX]
|
||||
# PMVLZB mmxreg,mem64 ; 0F 5B /r [CYRIX,MMX]
|
||||
# PMVGEZB mmxreg,mem64 ; 0F 5C /r [CYRIX,MMX]
|
||||
|
||||
# These instructions, specific to the Cyrix MMX extensions, perform
|
||||
# parallel conditional moves. The two input operands are treated as
|
||||
# vectors of eight bytes. Each byte of the destination (first) operand is
|
||||
# either written from the corresponding byte of the source (second)
|
||||
# operand, or left alone, depending on the value of the byte in the
|
||||
# /implied/ operand (specified in the same way as |PADDSIW|, in section
|
||||
# A.115 <#section-A.115>).
|
||||
|
||||
# |PMVZB| performs each move if the corresponding byte in the implied
|
||||
# operand is zero. |PMVNZB| moves if the byte is non-zero. |PMVLZB| moves
|
||||
# if the byte is less than zero, and |PMVGEZB| moves if the byte is
|
||||
# greater than or equal to zero.
|
||||
|
||||
# Note that these instructions cannot take a register as their second
|
||||
# source operand.
|
||||
|
||||
|
||||
# A.126 |POP|: Pop Data from Stack
|
||||
|
||||
# POP reg16 ; o16 58+r [8086]
|
||||
# POP reg32 ; o32 58+r [386]
|
||||
|
||||
# POP r/m16 ; o16 8F /0 [8086]
|
||||
# POP r/m32 ; o32 8F /0 [386]
|
||||
|
||||
# POP CS ; 0F [8086,UNDOC]
|
||||
# POP DS ; 1F [8086]
|
||||
# POP ES ; 07 [8086]
|
||||
# POP SS ; 17 [8086]
|
||||
# POP FS ; 0F A1 [386]
|
||||
# POP GS ; 0F A9 [386]
|
||||
|
||||
# |POP| loads a value from the stack (from |[SS:SP]| or |[SS:ESP]|) and
|
||||
# then increments the stack pointer.
|
||||
|
||||
# The address-size attribute of the instruction determines whether |SP| or
|
||||
# |ESP| is used as the stack pointer: to deliberately override the default
|
||||
# given by the |BITS| setting, you can use an |a16| or |a32| prefix.
|
||||
|
||||
# The operand-size attribute of the instruction determines whether the
|
||||
# stack pointer is incremented by 2 or 4: this means that segment register
|
||||
# pops in |BITS 32| mode will pop 4 bytes off the stack and discard the
|
||||
# upper two of them. If you need to override that, you can use an |o16| or
|
||||
# |o32| prefix.
|
||||
|
||||
# The above opcode listings give two forms for general-purpose register
|
||||
# pop instructions: for example, |POP BX| has the two forms |5B| and |8F
|
||||
# C3|. NASM will always generate the shorter form when given |POP BX|.
|
||||
# NDISASM will disassemble both.
|
||||
|
||||
# |POP CS| is not a documented instruction, and is not supported on any
|
||||
# processor above the 8086 (since they use |0Fh| as an opcode prefix for
|
||||
# instruction set extensions). However, at least some 8086 processors do
|
||||
# support it, and so NASM generates it for completeness.
|
||||
|
||||
|
||||
# A.127 |POPAx|: Pop All General-Purpose Registers
|
||||
|
||||
# POPA ; 61 [186]
|
||||
# POPAW ; o16 61 [186]
|
||||
# POPAD ; o32 61 [386]
|
||||
|
||||
# |POPAW| pops a word from the stack into each of, successively, |DI|,
|
||||
# |SI|, |BP|, nothing (it discards a word from the stack which was a
|
||||
# placeholder for |SP|), |BX|, |DX|, |CX| and |AX|. It is intended to
|
||||
# reverse the operation of |PUSHAW| (see section A.135 <#section-A.135>),
|
||||
# but it ignores the value for |SP| that was pushed on the stack by |PUSHAW|.
|
||||
|
||||
# |POPAD| pops twice as much data, and places the results in |EDI|, |ESI|,
|
||||
# |EBP|, nothing (placeholder for |ESP|), |EBX|, |EDX|, |ECX| and |EAX|.
|
||||
# It reverses the operation of |PUSHAD|.
|
||||
|
||||
# |POPA| is an alias mnemonic for either |POPAW| or |POPAD|, depending on
|
||||
# the current |BITS| setting.
|
||||
|
||||
# Note that the registers are popped in reverse order of their numeric
|
||||
# values in opcodes (see section A.2.1 <#section-A.2.1>).
|
||||
|
||||
|
||||
# A.128 |POPFx|: Pop Flags Register
|
||||
|
||||
# POPF ; 9D [186]
|
||||
# POPFW ; o16 9D [186]
|
||||
# POPFD ; o32 9D [386]
|
||||
|
||||
# |POPFW| pops a word from the stack and stores it in the bottom 16 bits
|
||||
# of the flags register (or the whole flags register, on processors below
|
||||
# a 386). |POPFD| pops a doubleword and stores it in the entire flags
|
||||
# register.
|
||||
|
||||
# |POPF| is an alias mnemonic for either |POPFW| or |POPFD|, depending on
|
||||
# the current |BITS| setting.
|
||||
|
||||
# See also |PUSHF| (section A.136 <#section-A.136>).
|
||||
|
||||
|
||||
# A.129 |POR|: MMX Bitwise OR
|
||||
|
||||
# POR mmxreg,r/m64 ; 0F EB /r [PENT,MMX]
|
||||
|
||||
# |POR| performs a bitwise OR operation between its two operands (i.e.
|
||||
# each bit of the result is 1 if and only if at least one of the
|
||||
# corresponding bits of the two inputs was 1), and stores the result in
|
||||
# the destination (first) operand.
|
||||
|
||||
|
||||
# A.130 |PSLLx|, |PSRLx|, |PSRAx|: MMX Bit Shifts
|
||||
|
||||
# PSLLW mmxreg,r/m64 ; 0F F1 /r [PENT,MMX]
|
||||
# PSLLW mmxreg,imm8 ; 0F 71 /6 ib [PENT,MMX]
|
||||
|
||||
# PSLLD mmxreg,r/m64 ; 0F F2 /r [PENT,MMX]
|
||||
# PSLLD mmxreg,imm8 ; 0F 72 /6 ib [PENT,MMX]
|
||||
|
||||
# PSLLQ mmxreg,r/m64 ; 0F F3 /r [PENT,MMX]
|
||||
# PSLLQ mmxreg,imm8 ; 0F 73 /6 ib [PENT,MMX]
|
||||
|
||||
# PSRAW mmxreg,r/m64 ; 0F E1 /r [PENT,MMX]
|
||||
# PSRAW mmxreg,imm8 ; 0F 71 /4 ib [PENT,MMX]
|
||||
|
||||
# PSRAD mmxreg,r/m64 ; 0F E2 /r [PENT,MMX]
|
||||
# PSRAD mmxreg,imm8 ; 0F 72 /4 ib [PENT,MMX]
|
||||
|
||||
# PSRLW mmxreg,r/m64 ; 0F D1 /r [PENT,MMX]
|
||||
# PSRLW mmxreg,imm8 ; 0F 71 /2 ib [PENT,MMX]
|
||||
|
||||
# PSRLD mmxreg,r/m64 ; 0F D2 /r [PENT,MMX]
|
||||
# PSRLD mmxreg,imm8 ; 0F 72 /2 ib [PENT,MMX]
|
||||
|
||||
# PSRLQ mmxreg,r/m64 ; 0F D3 /r [PENT,MMX]
|
||||
# PSRLQ mmxreg,imm8 ; 0F 73 /2 ib [PENT,MMX]
|
||||
|
||||
# |PSxxQ| perform simple bit shifts on the 64-bit MMX registers: the
|
||||
# destination (first) operand is shifted left or right by the number of
|
||||
# bits given in the source (second) operand, and the vacated bits are
|
||||
# filled in with zeros (for a logical shift) or copies of the original
|
||||
# sign bit (for an arithmetic right shift).
|
||||
|
||||
# |PSxxW| and |PSxxD| perform packed bit shifts: the destination operand
|
||||
# is treated as a vector of four words or two doublewords, and each
|
||||
# element is shifted individually, so bits shifted out of one element do
|
||||
# not interfere with empty bits coming into the next.
|
||||
|
||||
# |PSLLx| and |PSRLx| perform logical shifts: the vacated bits at one end
|
||||
# of the shifted number are filled with zeros. |PSRAx| performs an
|
||||
# arithmetic right shift: the vacated bits at the top of the shifted
|
||||
# number are filled with copies of the original top (sign) bit.
|
||||
|
||||
|
||||
# A.131 |PSUBxx|: MMX Packed Subtraction
|
||||
|
||||
# PSUBB mmxreg,r/m64 ; 0F F8 /r [PENT,MMX]
|
||||
# PSUBW mmxreg,r/m64 ; 0F F9 /r [PENT,MMX]
|
||||
# PSUBD mmxreg,r/m64 ; 0F FA /r [PENT,MMX]
|
||||
|
||||
# PSUBSB mmxreg,r/m64 ; 0F E8 /r [PENT,MMX]
|
||||
# PSUBSW mmxreg,r/m64 ; 0F E9 /r [PENT,MMX]
|
||||
|
||||
# PSUBUSB mmxreg,r/m64 ; 0F D8 /r [PENT,MMX]
|
||||
# PSUBUSW mmxreg,r/m64 ; 0F D9 /r [PENT,MMX]
|
||||
|
||||
# |PSUBxx| all perform packed subtraction between their two 64-bit
|
||||
# operands, storing the result in the destination (first) operand. The
|
||||
# |PSUBxB| forms treat the 64-bit operands as vectors of eight bytes, and
|
||||
# subtract each byte individually; |PSUBxW| treat the operands as vectors
|
||||
# of four words; and |PSUBD| treats its operands as vectors of two
|
||||
# doublewords.
|
||||
|
||||
# In all cases, the elements of the operand on the right are subtracted
|
||||
# from the corresponding elements of the operand on the left, not the
|
||||
# other way round.
|
||||
|
||||
# |PSUBSB| and |PSUBSW| perform signed saturation on the sum of each pair
|
||||
# of bytes or words: if the result of a subtraction is too large or too
|
||||
# small to fit into a signed byte or word result, it is clipped
|
||||
# (saturated) to the largest or smallest value which /will/ fit. |PSUBUSB|
|
||||
# and |PSUBUSW| similarly perform unsigned saturation, clipping to |0FFh|
|
||||
# or |0FFFFh| if the result is larger than that.
|
||||
|
||||
|
||||
# A.132 |PSUBSIW|: MMX Packed Subtract with Saturation to Implied
|
||||
# Destination
|
||||
|
||||
# PSUBSIW mmxreg,r/m64 ; 0F 55 /r [CYRIX,MMX]
|
||||
|
||||
# |PSUBSIW|, specific to the Cyrix extensions to the MMX instruction set,
|
||||
# performs the same function as |PSUBSW|, except that the result is not
|
||||
# placed in the register specified by the first operand, but instead in
|
||||
# the implied destination register, specified as for |PADDSIW| (section
|
||||
# A.115 <#section-A.115>).
|
||||
|
||||
|
||||
# A.133 |PUNPCKxxx|: Unpack Data
|
||||
|
||||
# PUNPCKHBW mmxreg,r/m64 ; 0F 68 /r [PENT,MMX]
|
||||
# PUNPCKHWD mmxreg,r/m64 ; 0F 69 /r [PENT,MMX]
|
||||
# PUNPCKHDQ mmxreg,r/m64 ; 0F 6A /r [PENT,MMX]
|
||||
|
||||
# PUNPCKLBW mmxreg,r/m64 ; 0F 60 /r [PENT,MMX]
|
||||
# PUNPCKLWD mmxreg,r/m64 ; 0F 61 /r [PENT,MMX]
|
||||
# PUNPCKLDQ mmxreg,r/m64 ; 0F 62 /r [PENT,MMX]
|
||||
|
||||
# |PUNPCKxx| all treat their operands as vectors, and produce a new vector
|
||||
# generated by interleaving elements from the two inputs. The |PUNPCKHxx|
|
||||
# instructions start by throwing away the bottom half of each input
|
||||
# operand, and the |PUNPCKLxx| instructions throw away the top half.
|
||||
|
||||
# The remaining elements, totalling 64 bits, are then interleaved into the
|
||||
# destination, alternating elements from the second (source) operand and
|
||||
# the first (destination) operand: so the leftmost element in the result
|
||||
# always comes from the second operand, and the rightmost from the
|
||||
# destination.
|
||||
|
||||
# |PUNPCKxBW| works a byte at a time, |PUNPCKxWD| a word at a time, and
|
||||
# |PUNPCKxDQ| a doubleword at a time.
|
||||
|
||||
# So, for example, if the first operand held |0x7A6A5A4A3A2A1A0A| and the
|
||||
# second held |0x7B6B5B4B3B2B1B0B|, then:
|
||||
|
||||
# * |PUNPCKHBW| would return |0x7B7A6B6A5B5A4B4A|.
|
||||
# * |PUNPCKHWD| would return |0x7B6B7A6A5B4B5A4A|.
|
||||
# * |PUNPCKHDQ| would return |0x7B6B5B4B7A6A5A4A|.
|
||||
# * |PUNPCKLBW| would return |0x3B3A2B2A1B1A0B0A|.
|
||||
# * |PUNPCKLWD| would return |0x3B2B3A2A1B0B1A0A|.
|
||||
# * |PUNPCKLDQ| would return |0x3B2B1B0B3A2A1A0A|.
|
||||
|
||||
|
||||
# A.134 |PUSH|: Push Data on Stack
|
||||
|
||||
# PUSH reg16 ; o16 50+r [8086]
|
||||
# PUSH reg32 ; o32 50+r [386]
|
||||
|
||||
# PUSH r/m16 ; o16 FF /6 [8086]
|
||||
# PUSH r/m32 ; o32 FF /6 [386]
|
||||
|
||||
# PUSH CS ; 0E [8086]
|
||||
# PUSH DS ; 1E [8086]
|
||||
# PUSH ES ; 06 [8086]
|
||||
# PUSH SS ; 16 [8086]
|
||||
# PUSH FS ; 0F A0 [386]
|
||||
# PUSH GS ; 0F A8 [386]
|
||||
|
||||
# PUSH imm8 ; 6A ib [286]
|
||||
# PUSH imm16 ; o16 68 iw [286]
|
||||
# PUSH imm32 ; o32 68 id [386]
|
||||
|
||||
# |PUSH| decrements the stack pointer (|SP| or |ESP|) by 2 or 4, and then
|
||||
# stores the given value at |[SS:SP]| or |[SS:ESP]|.
|
||||
|
||||
# The address-size attribute of the instruction determines whether |SP| or
|
||||
# |ESP| is used as the stack pointer: to deliberately override the default
|
||||
# given by the |BITS| setting, you can use an |a16| or |a32| prefix.
|
||||
|
||||
# The operand-size attribute of the instruction determines whether the
|
||||
# stack pointer is decremented by 2 or 4: this means that segment register
|
||||
# pushes in |BITS 32| mode will push 4 bytes on the stack, of which the
|
||||
# upper two are undefined. If you need to override that, you can use an
|
||||
# |o16| or |o32| prefix.
|
||||
|
||||
# The above opcode listings give two forms for general-purpose register
|
||||
# push instructions: for example, |PUSH BX| has the two forms |53| and |FF
|
||||
# F3|. NASM will always generate the shorter form when given |PUSH BX|.
|
||||
# NDISASM will disassemble both.
|
||||
|
||||
# Unlike the undocumented and barely supported |POP CS|, |PUSH CS| is a
|
||||
# perfectly valid and sensible instruction, supported on all processors.
|
||||
|
||||
# The instruction |PUSH SP| may be used to distinguish an 8086 from later
|
||||
# processors: on an 8086, the value of |SP| stored is the value it has
|
||||
# /after/ the push instruction, whereas on later processors it is the
|
||||
# value /before/ the push instruction.
|
||||
|
||||
|
||||
# A.135 |PUSHAx|: Push All General-Purpose Registers
|
||||
|
||||
# PUSHA ; 60 [186]
|
||||
# PUSHAD ; o32 60 [386]
|
||||
# PUSHAW ; o16 60 [186]
|
||||
|
||||
# |PUSHAW| pushes, in succession, |AX|, |CX|, |DX|, |BX|, |SP|, |BP|, |SI|
|
||||
# and |DI| on the stack, decrementing the stack pointer by a total of 16.
|
||||
|
||||
# |PUSHAD| pushes, in succession, |EAX|, |ECX|, |EDX|, |EBX|, |ESP|,
|
||||
# |EBP|, |ESI| and |EDI| on the stack, decrementing the stack pointer by a
|
||||
# total of 32.
|
||||
|
||||
# In both cases, the value of |SP| or |ESP| pushed is its /original/
|
||||
# value, as it had before the instruction was executed.
|
||||
|
||||
# |PUSHA| is an alias mnemonic for either |PUSHAW| or |PUSHAD|, depending
|
||||
# on the current |BITS| setting.
|
||||
|
||||
# Note that the registers are pushed in order of their numeric values in
|
||||
# opcodes (see section A.2.1 <#section-A.2.1>).
|
||||
|
||||
# See also |POPA| (section A.127 <#section-A.127>).
|
||||
|
||||
|
||||
# A.136 |PUSHFx|: Push Flags Register
|
||||
|
||||
# PUSHF ; 9C [186]
|
||||
# PUSHFD ; o32 9C [386]
|
||||
# PUSHFW ; o16 9C [186]
|
||||
|
||||
# |PUSHFW| pops a word from the stack and stores it in the bottom 16 bits
|
||||
# of the flags register (or the whole flags register, on processors below
|
||||
# a 386). |PUSHFD| pops a doubleword and stores it in the entire flags
|
||||
# register.
|
||||
|
||||
# |PUSHF| is an alias mnemonic for either |PUSHFW| or |PUSHFD|, depending
|
||||
# on the current |BITS| setting.
|
||||
|
||||
# See also |POPF| (section A.128 <#section-A.128>).
|
||||
|
||||
|
||||
# A.137 |PXOR|: MMX Bitwise XOR
|
||||
|
||||
# PXOR mmxreg,r/m64 ; 0F EF /r [PENT,MMX]
|
||||
|
||||
# |PXOR| performs a bitwise XOR operation between its two operands (i.e.
|
||||
# each bit of the result is 1 if and only if exactly one of the
|
||||
# corresponding bits of the two inputs was 1), and stores the result in
|
||||
# the destination (first) operand.
|
||||
|
||||
|
||||
# A.138 |RCL|, |RCR|: Bitwise Rotate through Carry Bit
|
||||
|
||||
# RCL r/m8,1 ; D0 /2 [8086]
|
||||
# RCL r/m8,CL ; D2 /2 [8086]
|
||||
# RCL r/m8,imm8 ; C0 /2 ib [286]
|
||||
# RCL r/m16,1 ; o16 D1 /2 [8086]
|
||||
# RCL r/m16,CL ; o16 D3 /2 [8086]
|
||||
# RCL r/m16,imm8 ; o16 C1 /2 ib [286]
|
||||
# RCL r/m32,1 ; o32 D1 /2 [386]
|
||||
# RCL r/m32,CL ; o32 D3 /2 [386]
|
||||
# RCL r/m32,imm8 ; o32 C1 /2 ib [386]
|
||||
|
||||
# RCR r/m8,1 ; D0 /3 [8086]
|
||||
# RCR r/m8,CL ; D2 /3 [8086]
|
||||
# RCR r/m8,imm8 ; C0 /3 ib [286]
|
||||
# RCR r/m16,1 ; o16 D1 /3 [8086]
|
||||
# RCR r/m16,CL ; o16 D3 /3 [8086]
|
||||
# RCR r/m16,imm8 ; o16 C1 /3 ib [286]
|
||||
# RCR r/m32,1 ; o32 D1 /3 [386]
|
||||
# RCR r/m32,CL ; o32 D3 /3 [386]
|
||||
# RCR r/m32,imm8 ; o32 C1 /3 ib [386]
|
||||
|
||||
# |RCL| and |RCR| perform a 9-bit, 17-bit or 33-bit bitwise rotation
|
||||
# operation, involving the given source/destination (first) operand and
|
||||
# the carry bit. Thus, for example, in the operation |RCR AL,1|, a 9-bit
|
||||
# rotation is performed in which |AL| is shifted left by 1, the top bit of
|
||||
# |AL| moves into the carry flag, and the original value of the carry flag
|
||||
# is placed in the low bit of |AL|.
|
||||
|
||||
# The number of bits to rotate by is given by the second operand. Only the
|
||||
# bottom five bits of the rotation count are considered by processors
|
||||
# above the 8086.
|
||||
|
||||
# You can force the longer (286 and upwards, beginning with a |C1| byte)
|
||||
# form of |RCL foo,1| by using a |BYTE| prefix: |RCL foo,BYTE 1|.
|
||||
# Similarly with |RCR|.
|
||||
|
||||
|
||||
# A.139 |RDMSR|: Read Model-Specific Registers
|
||||
|
||||
# RDMSR ; 0F 32 [PENT]
|
||||
|
||||
# |RDMSR| reads the processor Model-Specific Register (MSR) whose index is
|
||||
# stored in |ECX|, and stores the result in |EDX:EAX|. See also |WRMSR|
|
||||
# (section A.165 <#section-A.165>).
|
||||
|
||||
|
||||
# A.140 |RDPMC|: Read Performance-Monitoring Counters
|
||||
|
||||
# RDPMC ; 0F 33 [P6]
|
||||
|
||||
# |RDPMC| reads the processor performance-monitoring counter whose index
|
||||
# is stored in |ECX|, and stores the result in |EDX:EAX|.
|
||||
|
||||
|
||||
# A.141 |RDTSC|: Read Time-Stamp Counter
|
||||
|
||||
# RDTSC ; 0F 31 [PENT]
|
||||
|
||||
# |RDTSC| reads the processor's time-stamp counter into |EDX:EAX|.
|
||||
|
||||
|
||||
# A.142 |RET|, |RETF|, |RETN|: Return from Procedure Call
|
||||
|
||||
# RET ; C3 [8086]
|
||||
# RET imm16 ; C2 iw [8086]
|
||||
|
||||
# RETF ; CB [8086]
|
||||
# RETF imm16 ; CA iw [8086]
|
||||
|
||||
# RETN ; C3 [8086]
|
||||
# RETN imm16 ; C2 iw [8086]
|
||||
|
||||
# |RET|, and its exact synonym |RETN|, pop |IP| or |EIP| from the stack
|
||||
# and transfer control to the new address. Optionally, if a numeric second
|
||||
# operand is provided, they increment the stack pointer by a further
|
||||
# |imm16| bytes after popping the return address.
|
||||
|
||||
# |RETF| executes a far return: after popping |IP|/|EIP|, it then pops
|
||||
# |CS|, and /then/ increments the stack pointer by the optional argument
|
||||
# if present.
|
||||
|
||||
|
||||
# A.143 |ROL|, |ROR|: Bitwise Rotate
|
||||
|
||||
# ROL r/m8,1 ; D0 /0 [8086]
|
||||
# ROL r/m8,CL ; D2 /0 [8086]
|
||||
# ROL r/m8,imm8 ; C0 /0 ib [286]
|
||||
# ROL r/m16,1 ; o16 D1 /0 [8086]
|
||||
# ROL r/m16,CL ; o16 D3 /0 [8086]
|
||||
# ROL r/m16,imm8 ; o16 C1 /0 ib [286]
|
||||
# ROL r/m32,1 ; o32 D1 /0 [386]
|
||||
# ROL r/m32,CL ; o32 D3 /0 [386]
|
||||
# ROL r/m32,imm8 ; o32 C1 /0 ib [386]
|
||||
|
||||
# ROR r/m8,1 ; D0 /1 [8086]
|
||||
# ROR r/m8,CL ; D2 /1 [8086]
|
||||
# ROR r/m8,imm8 ; C0 /1 ib [286]
|
||||
# ROR r/m16,1 ; o16 D1 /1 [8086]
|
||||
# ROR r/m16,CL ; o16 D3 /1 [8086]
|
||||
# ROR r/m16,imm8 ; o16 C1 /1 ib [286]
|
||||
# ROR r/m32,1 ; o32 D1 /1 [386]
|
||||
# ROR r/m32,CL ; o32 D3 /1 [386]
|
||||
# ROR r/m32,imm8 ; o32 C1 /1 ib [386]
|
||||
|
||||
# |ROL| and |ROR| perform a bitwise rotation operation on the given
|
||||
# source/destination (first) operand. Thus, for example, in the operation
|
||||
# |ROR AL,1|, an 8-bit rotation is performed in which |AL| is shifted left
|
||||
# by 1 and the original top bit of |AL| moves round into the low bit.
|
||||
|
||||
# The number of bits to rotate by is given by the second operand. Only the
|
||||
# bottom 3, 4 or 5 bits (depending on the source operand size) of the
|
||||
# rotation count are considered by processors above the 8086.
|
||||
|
||||
# You can force the longer (286 and upwards, beginning with a |C1| byte)
|
||||
# form of |ROL foo,1| by using a |BYTE| prefix: |ROL foo,BYTE 1|.
|
||||
# Similarly with |ROR|.
|
||||
|
||||
|
||||
# A.144 |RSM|: Resume from System-Management Mode
|
||||
|
||||
# RSM ; 0F AA [PENT]
|
||||
|
||||
# |RSM| returns the processor to its normal operating mode when it was in
|
||||
# System-Management Mode.
|
||||
|
||||
|
||||
# A.145 |SAHF|: Store AH to Flags
|
||||
|
||||
# SAHF ; 9E [8086]
|
||||
|
||||
# |SAHF| sets the low byte of the flags word according to the contents of
|
||||
# the |AH| register. See also |LAHF| (section A.90 <#section-A.90>).
|
||||
|
||||
|
||||
# A.146 |SAL|, |SAR|: Bitwise Arithmetic Shifts
|
||||
|
||||
# SAL r/m8,1 ; D0 /4 [8086]
|
||||
# SAL r/m8,CL ; D2 /4 [8086]
|
||||
# SAL r/m8,imm8 ; C0 /4 ib [286]
|
||||
# SAL r/m16,1 ; o16 D1 /4 [8086]
|
||||
# SAL r/m16,CL ; o16 D3 /4 [8086]
|
||||
# SAL r/m16,imm8 ; o16 C1 /4 ib [286]
|
||||
# SAL r/m32,1 ; o32 D1 /4 [386]
|
||||
# SAL r/m32,CL ; o32 D3 /4 [386]
|
||||
# SAL r/m32,imm8 ; o32 C1 /4 ib [386]
|
||||
|
||||
# SAR r/m8,1 ; D0 /0 [8086]
|
||||
# SAR r/m8,CL ; D2 /0 [8086]
|
||||
# SAR r/m8,imm8 ; C0 /0 ib [286]
|
||||
# xxSAR r/m16,1 ; o16 D1 /0 [8086]
|
||||
# SAR r/m16,CL ; o16 D3 /0 [8086]
|
||||
# SAR r/m16,imm8 ; o16 C1 /0 ib [286]
|
||||
# xxSAR r/m32,1 ; o32 D1 /0 [386]
|
||||
# SAR r/m32,CL ; o32 D3 /0 [386]
|
||||
# SAR r/m32,imm8 ; o32 C1 /0 ib [386]
|
||||
|
||||
# |SAL| and |SAR| perform an arithmetic shift operation on the given
|
||||
# source/destination (first) operand. The vacated bits are filled with
|
||||
# zero for |SAL|, and with copies of the original high bit of the source
|
||||
# operand for |SAR|.
|
||||
|
||||
# |SAL| is a synonym for |SHL| (see section A.152 <#section-A.152>). NASM
|
||||
# will assemble either one to the same code, but NDISASM will always
|
||||
# disassemble that code as |SHL|.
|
||||
|
||||
# The number of bits to shift by is given by the second operand. Only the
|
||||
# bottom 3, 4 or 5 bits (depending on the source operand size) of the
|
||||
# shift count are considered by processors above the 8086.
|
||||
|
||||
# You can force the longer (286 and upwards, beginning with a |C1| byte)
|
||||
# form of |SAL foo,1| by using a |BYTE| prefix: |SAL foo,BYTE 1|.
|
||||
# Similarly with |SAR|.
|
||||
|
||||
|
||||
# A.147 |SALC|: Set AL from Carry Flag
|
||||
|
||||
# SALC ; D6 [8086,UNDOC]
|
||||
|
||||
# |SALC| is an early undocumented instruction similar in concept to
|
||||
# |SETcc| (section A.150 <#section-A.150>). Its function is to set |AL| to
|
||||
# zero if the carry flag is clear, or to |0xFF| if it is set.
|
||||
|
||||
|
||||
# A.148 |SBB|: Subtract with Borrow
|
||||
|
||||
# SBB r/m8,reg8 ; 18 /r [8086]
|
||||
# SBB r/m16,reg16 ; o16 19 /r [8086]
|
||||
# SBB r/m32,reg32 ; o32 19 /r [386]
|
||||
|
||||
# SBB reg8,r/m8 ; 1A /r [8086]
|
||||
# SBB reg16,r/m16 ; o16 1B /r [8086]
|
||||
# SBB reg32,r/m32 ; o32 1B /r [386]
|
||||
|
||||
# SBB r/m8,imm8 ; 80 /3 ib [8086]
|
||||
# SBB r/m16,imm16 ; o16 81 /3 iw [8086]
|
||||
# SBB r/m32,imm32 ; o32 81 /3 id [386]
|
||||
|
||||
# SBB r/m16,imm8 ; o16 83 /3 ib [8086]
|
||||
# SBB r/m32,imm8 ; o32 83 /3 ib [8086]
|
||||
|
||||
# SBB AL,imm8 ; 1C ib [8086]
|
||||
# SBB AX,imm16 ; o16 1D iw [8086]
|
||||
# SBB EAX,imm32 ; o32 1D id [386]
|
||||
|
||||
# |SBB| performs integer subtraction: it subtracts its second operand,
|
||||
# plus the value of the carry flag, from its first, and leaves the result
|
||||
# in its destination (first) operand. The flags are set according to the
|
||||
# result of the operation: in particular, the carry flag is affected and
|
||||
# can be used by a subsequent |SBB| instruction.
|
||||
|
||||
# In the forms with an 8-bit immediate second operand and a longer first
|
||||
# operand, the second operand is considered to be signed, and is
|
||||
# sign-extended to the length of the first operand. In these cases, the
|
||||
# |BYTE| qualifier is necessary to force NASM to generate this form of the
|
||||
# instruction.
|
||||
|
||||
# To subtract one number from another without also subtracting the
|
||||
# contents of the carry flag, use |SUB| (section A.159 <#section-A.159>).
|
||||
|
||||
|
||||
# A.149 |SCASB|, |SCASW|, |SCASD|: Scan String
|
||||
|
||||
# SCASB ; AE [8086]
|
||||
# SCASW ; o16 AF [8086]
|
||||
# SCASD ; o32 AF [386]
|
||||
|
||||
# |SCASB| compares the byte in |AL| with the byte at |[ES:DI]| or
|
||||
# |[ES:EDI]|, and sets the flags accordingly. It then increments or
|
||||
# decrements (depending on the direction flag: increments if the flag is
|
||||
# clear, decrements if it is set) |DI| (or |EDI|).
|
||||
|
||||
# The register used is |DI| if the address size is 16 bits, and |EDI| if
|
||||
# it is 32 bits. If you need to use an address size not equal to the
|
||||
# current |BITS| setting, you can use an explicit |a16| or |a32| prefix.
|
||||
|
||||
# Segment override prefixes have no effect for this instruction: the use
|
||||
# of |ES| for the load from |[DI]| or |[EDI]| cannot be overridden.
|
||||
|
||||
# |SCASW| and |SCASD| work in the same way, but they compare a word to
|
||||
# |AX| or a doubleword to |EAX| instead of a byte to |AL|, and increment
|
||||
# or decrement the addressing registers by 2 or 4 instead of 1.
|
||||
|
||||
# The |REPE| and |REPNE| prefixes (equivalently, |REPZ| and |REPNZ|) may
|
||||
# be used to repeat the instruction up to |CX| (or |ECX| - again, the
|
||||
# address size chooses which) times until the first unequal or equal byte
|
||||
# is found.
|
||||
|
||||
|
||||
# A.150 |SETcc|: Set Register from Condition
|
||||
|
||||
# SETcc r/m8 ; 0F 90+cc /2 [386]
|
||||
|
||||
# |SETcc| sets the given 8-bit operand to zero if its condition is not
|
||||
# satisfied, and to 1 if it is.
|
||||
|
||||
|
||||
# A.151 |SGDT|, |SIDT|, |SLDT|: Store Descriptor Table Pointers
|
||||
|
||||
# SGDT mem ; 0F 01 /0 [286,PRIV]
|
||||
# SIDT mem ; 0F 01 /1 [286,PRIV]
|
||||
# SLDT r/m16 ; 0F 00 /0 [286,PRIV]
|
||||
|
||||
# |SGDT| and |SIDT| both take a 6-byte memory area as an operand: they
|
||||
# store the contents of the GDTR (global descriptor table register) or
|
||||
# IDTR (interrupt descriptor table register) into that area as a 32-bit
|
||||
# linear address and a 16-bit size limit from that area (in that order).
|
||||
# These are the only instructions which directly use /linear/ addresses,
|
||||
# rather than segment/offset pairs.
|
||||
|
||||
# |SLDT| stores the segment selector corresponding to the LDT (local
|
||||
# descriptor table) into the given operand.
|
||||
|
||||
# See also |LGDT|, |LIDT| and |LLDT| (section A.95 <#section-A.95>).
|
||||
|
||||
|
||||
# A.152 |SHL|, |SHR|: Bitwise Logical Shifts
|
||||
|
||||
# SHL r/m8,1 ; D0 /4 [8086]
|
||||
# SHL r/m8,CL ; D2 /4 [8086]
|
||||
# SHL r/m8,imm8 ; C0 /4 ib [286]
|
||||
# SHL r/m16,1 ; o16 D1 /4 [8086]
|
||||
# SHL r/m16,CL ; o16 D3 /4 [8086]
|
||||
# SHL r/m16,imm8 ; o16 C1 /4 ib [286]
|
||||
# SHL r/m32,1 ; o32 D1 /4 [386]
|
||||
# SHL r/m32,CL ; o32 D3 /4 [386]
|
||||
# SHL r/m32,imm8 ; o32 C1 /4 ib [386]
|
||||
|
||||
# SHR r/m8,1 ; D0 /5 [8086]
|
||||
# SHR r/m8,CL ; D2 /5 [8086]
|
||||
# SHR r/m8,imm8 ; C0 /5 ib [286]
|
||||
# SHR r/m16,1 ; o16 D1 /5 [8086]
|
||||
# SHR r/m16,CL ; o16 D3 /5 [8086]
|
||||
# SHR r/m16,imm8 ; o16 C1 /5 ib [286]
|
||||
# SHR r/m32,1 ; o32 D1 /5 [386]
|
||||
# SHR r/m32,CL ; o32 D3 /5 [386]
|
||||
# SHR r/m32,imm8 ; o32 C1 /5 ib [386]
|
||||
|
||||
# |SHL| and |SHR| perform a logical shift operation on the given
|
||||
# source/destination (first) operand. The vacated bits are filled with zero.
|
||||
|
||||
# A synonym for |SHL| is |SAL| (see section A.146 <#section-A.146>). NASM
|
||||
# will assemble either one to the same code, but NDISASM will always
|
||||
# disassemble that code as |SHL|.
|
||||
|
||||
# The number of bits to shift by is given by the second operand. Only the
|
||||
# bottom 3, 4 or 5 bits (depending on the source operand size) of the
|
||||
# shift count are considered by processors above the 8086.
|
||||
|
||||
# You can force the longer (286 and upwards, beginning with a |C1| byte)
|
||||
# form of |SHL foo,1| by using a |BYTE| prefix: |SHL foo,BYTE 1|.
|
||||
# Similarly with |SHR|.
|
||||
|
||||
|
||||
# A.153 |SHLD|, |SHRD|: Bitwise Double-Precision Shifts
|
||||
|
||||
# SHLD r/m16,reg16,imm8 ; o16 0F A4 /r ib [386]
|
||||
# SHLD r/m16,reg32,imm8 ; o32 0F A4 /r ib [386]
|
||||
# SHLD r/m16,reg16,CL ; o16 0F A5 /r [386]
|
||||
# SHLD r/m16,reg32,CL ; o32 0F A5 /r [386]
|
||||
|
||||
# SHRD r/m16,reg16,imm8 ; o16 0F AC /r ib [386]
|
||||
# SHRD r/m32,reg32,imm8 ; o32 0F AC /r ib [386]
|
||||
# SHRD r/m16,reg16,CL ; o16 0F AD /r [386]
|
||||
# SHRD r/m32,reg32,CL ; o32 0F AD /r [386]
|
||||
|
||||
# |SHLD| performs a double-precision left shift. It notionally places its
|
||||
# second operand to the right of its first, then shifts the entire bit
|
||||
# string thus generated to the left by a number of bits specified in the
|
||||
# third operand. It then updates only the /first/ operand according to the
|
||||
# result of this. The second operand is not modified.
|
||||
|
||||
# |SHRD| performs the corresponding right shift: it notionally places the
|
||||
# second operand to the /left/ of the first, shifts the whole bit string
|
||||
# right, and updates only the first operand.
|
||||
|
||||
# For example, if |EAX| holds |0x01234567| and |EBX| holds |0x89ABCDEF|,
|
||||
# then the instruction |SHLD EAX,EBX,4| would update |EAX| to hold
|
||||
# |0x12345678|. Under the same conditions, |SHRD EAX,EBX,4| would update
|
||||
# |EAX| to hold |0xF0123456|.
|
||||
|
||||
# The number of bits to shift by is given by the third operand. Only the
|
||||
# bottom 5 bits of the shift count are considered.
|
||||
|
||||
|
||||
# A.154 |SMI|: System Management Interrupt
|
||||
|
||||
# SMI ; F1 [386,UNDOC]
|
||||
|
||||
# This is an opcode apparently supported by some AMD processors (which is
|
||||
# why it can generate the same opcode as |INT1|), and places the machine
|
||||
# into system-management mode, a special debugging mode.
|
||||
|
||||
|
||||
# A.155 |SMSW|: Store Machine Status Word
|
||||
|
||||
# SMSW r/m16 ; 0F 01 /4 [286,PRIV]
|
||||
|
||||
# |SMSW| stores the bottom half of the |CR0| control register (or the
|
||||
# Machine Status Word, on 286 processors) into the destination operand.
|
||||
# See also |LMSW| (section A.96 <#section-A.96>).
|
||||
|
||||
|
||||
# A.156 |STC|, |STD|, |STI|: Set Flags
|
||||
|
||||
# STC ; F9 [8086]
|
||||
# STD ; FD [8086]
|
||||
# STI ; FB [8086]
|
||||
|
||||
# These instructions set various flags. |STC| sets the carry flag; |STD|
|
||||
# sets the direction flag; and |STI| sets the interrupt flag (thus
|
||||
# enabling interrupts).
|
||||
|
||||
# To clear the carry, direction, or interrupt flags, use the |CLC|, |CLD|
|
||||
# and |CLI| instructions (section A.15 <#section-A.15>). To invert the
|
||||
# carry flag, use |CMC| (section A.16 <#section-A.16>).
|
||||
|
||||
|
||||
# A.157 |STOSB|, |STOSW|, |STOSD|: Store Byte to String
|
||||
|
||||
# STOSB ; AA [8086]
|
||||
# STOSW ; o16 AB [8086]
|
||||
# STOSD ; o32 AB [386]
|
||||
|
||||
# |STOSB| stores the byte in |AL| at |[ES:DI]| or |[ES:EDI]|, and sets the
|
||||
# flags accordingly. It then increments or decrements (depending on the
|
||||
# direction flag: increments if the flag is clear, decrements if it is
|
||||
# set) |DI| (or |EDI|).
|
||||
|
||||
# The register used is |DI| if the address size is 16 bits, and |EDI| if
|
||||
# it is 32 bits. If you need to use an address size not equal to the
|
||||
# current |BITS| setting, you can use an explicit |a16| or |a32| prefix.
|
||||
|
||||
# Segment override prefixes have no effect for this instruction: the use
|
||||
# of |ES| for the store to |[DI]| or |[EDI]| cannot be overridden.
|
||||
|
||||
# |STOSW| and |STOSD| work in the same way, but they store the word in
|
||||
# |AX| or the doubleword in |EAX| instead of the byte in |AL|, and
|
||||
# increment or decrement the addressing registers by 2 or 4 instead of 1.
|
||||
|
||||
# The |REP| prefix may be used to repeat the instruction |CX| (or |ECX| -
|
||||
# again, the address size chooses which) times.
|
||||
|
||||
|
||||
# A.158 |STR|: Store Task Register
|
||||
|
||||
# STR r/m16 ; 0F 00 /1 [286,PRIV]
|
||||
|
||||
# |STR| stores the segment selector corresponding to the contents of the
|
||||
# Task Register into its operand.
|
||||
|
||||
|
||||
# A.159 |SUB|: Subtract Integers
|
||||
|
||||
# SUB r/m8,reg8 ; 28 /r [8086]
|
||||
# SUB r/m16,reg16 ; o16 29 /r [8086]
|
||||
# SUB r/m32,reg32 ; o32 29 /r [386]
|
||||
|
||||
# SUB reg8,r/m8 ; 2A /r [8086]
|
||||
# SUB reg16,r/m16 ; o16 2B /r [8086]
|
||||
# SUB reg32,r/m32 ; o32 2B /r [386]
|
||||
|
||||
# SUB r/m8,imm8 ; 80 /5 ib [8086]
|
||||
# SUB r/m16,imm16 ; o16 81 /5 iw [8086]
|
||||
# SUB r/m32,imm32 ; o32 81 /5 id [386]
|
||||
|
||||
# SUB r/m16,imm8 ; o16 83 /5 ib [8086]
|
||||
# SUB r/m32,imm8 ; o32 83 /5 ib [386]
|
||||
|
||||
# SUB AL,imm8 ; 2C ib [8086]
|
||||
# SUB AX,imm16 ; o16 2D iw [8086]
|
||||
# SUB EAX,imm32 ; o32 2D id [386]
|
||||
|
||||
# |SUB| performs integer subtraction: it subtracts its second operand from
|
||||
# its first, and leaves the result in its destination (first) operand. The
|
||||
# flags are set according to the result of the operation: in particular,
|
||||
# the carry flag is affected and can be used by a subsequent |SBB|
|
||||
# instruction (section A.148 <#section-A.148>).
|
||||
|
||||
# In the forms with an 8-bit immediate second operand and a longer first
|
||||
# operand, the second operand is considered to be signed, and is
|
||||
# sign-extended to the length of the first operand. In these cases, the
|
||||
# |BYTE| qualifier is necessary to force NASM to generate this form of the
|
||||
# instruction.
|
||||
|
||||
|
||||
# A.160 |TEST|: Test Bits (notional bitwise AND)
|
||||
|
||||
# TEST r/m8,reg8 ; 84 /r [8086]
|
||||
# TEST r/m16,reg16 ; o16 85 /r [8086]
|
||||
# TEST r/m32,reg32 ; o32 85 /r [386]
|
||||
|
||||
# TEST r/m8,imm8 ; F6 /7 ib [8086]
|
||||
# TEST r/m16,imm16 ; o16 F7 /7 iw [8086]
|
||||
# TEST r/m32,imm32 ; o32 F7 /7 id [386]
|
||||
|
||||
# TEST AL,imm8 ; A8 ib [8086]
|
||||
# TEST AX,imm16 ; o16 A9 iw [8086]
|
||||
# TEST EAX,imm32 ; o32 A9 id [386]
|
||||
|
||||
# |TEST| performs a `mental' bitwise AND of its two operands, and affects
|
||||
# the flags as if the operation had taken place, but does not store the
|
||||
# result of the operation anywhere.
|
||||
|
||||
|
||||
# A.161 |UMOV|: User Move Data
|
||||
|
||||
# UMOV r/m8,reg8 ; 0F 10 /r [386,UNDOC]
|
||||
# UMOV r/m16,reg16 ; o16 0F 11 /r [386,UNDOC]
|
||||
# UMOV r/m32,reg32 ; o32 0F 11 /r [386,UNDOC]
|
||||
|
||||
# UMOV reg8,r/m8 ; 0F 12 /r [386,UNDOC]
|
||||
# UMOV reg16,r/m16 ; o16 0F 13 /r [386,UNDOC]
|
||||
# UMOV reg32,r/m32 ; o32 0F 13 /r [386,UNDOC]
|
||||
|
||||
# This undocumented instruction is used by in-circuit emulators to access
|
||||
# user memory (as opposed to host memory). It is used just like an
|
||||
# ordinary memory/register or register/register |MOV| instruction, but
|
||||
# accesses user space.
|
||||
|
||||
|
||||
# A.162 |VERR|, |VERW|: Verify Segment Readability/Writability
|
||||
|
||||
# VERR r/m16 ; 0F 00 /4 [286,PRIV]
|
||||
|
||||
# VERW r/m16 ; 0F 00 /5 [286,PRIV]
|
||||
|
||||
# |VERR| sets the zero flag if the segment specified by the selector in
|
||||
# its operand can be read from at the current privilege level. |VERW| sets
|
||||
# the zero flag if the segment can be written.
|
||||
|
||||
|
||||
# A.163 |WAIT|: Wait for Floating-Point Processor
|
||||
|
||||
# WAIT ; 9B [8086]
|
||||
|
||||
# |WAIT|, on 8086 systems with a separate 8087 FPU, waits for the FPU to
|
||||
# have finished any operation it is engaged in before continuing main
|
||||
# processor operations, so that (for example) an FPU store to main memory
|
||||
# can be guaranteed to have completed before the CPU tries to read the
|
||||
# result back out.
|
||||
|
||||
# On higher processors, |WAIT| is unnecessary for this purpose, and it has
|
||||
# the alternative purpose of ensuring that any pending unmasked FPU
|
||||
# exceptions have happened before execution continues.
|
||||
|
||||
|
||||
# A.164 |WBINVD|: Write Back and Invalidate Cache
|
||||
|
||||
# WBINVD ; 0F 09 [486]
|
||||
|
||||
# |WBINVD| invalidates and empties the processor's internal caches, and
|
||||
# causes the processor to instruct external caches to do the same. It
|
||||
# writes the contents of the caches back to memory first, so no data is
|
||||
# lost. To flush the caches quickly without bothering to write the data
|
||||
# back first, use |INVD| (section A.84 <#section-A.84>).
|
||||
|
||||
|
||||
# A.165 |WRMSR|: Write Model-Specific Registers
|
||||
|
||||
# WRMSR ; 0F 30 [PENT]
|
||||
|
||||
# |WRMSR| writes the value in |EDX:EAX| to the processor Model-Specific
|
||||
# Register (MSR) whose index is stored in |ECX|. See also |RDMSR| (section
|
||||
# A.139 <#section-A.139>).
|
||||
|
||||
|
||||
# A.166 |XADD|: Exchange and Add
|
||||
|
||||
# XADD r/m8,reg8 ; 0F C0 /r [486]
|
||||
# XADD r/m16,reg16 ; o16 0F C1 /r [486]
|
||||
# XADD r/m32,reg32 ; o32 0F C1 /r [486]
|
||||
|
||||
# |XADD| exchanges the values in its two operands, and then adds them
|
||||
# together and writes the result into the destination (first) operand.
|
||||
# This instruction can be used with a |LOCK| prefix for multi-processor
|
||||
# synchronisation purposes.
|
||||
|
||||
|
||||
# A.167 |XBTS|: Extract Bit String
|
||||
|
||||
# XBTS reg16,r/m16 ; o16 0F A6 /r [386,UNDOC]
|
||||
# XBTS reg32,r/m32 ; o32 0F A6 /r [386,UNDOC]
|
||||
|
||||
# No clear documentation seems to be available for this instruction: the
|
||||
# best I've been able to find reads `Takes a string of bits from the first
|
||||
# operand and puts them in the second operand'. It is present only in
|
||||
# early 386 processors, and conflicts with the opcodes for |CMPXCHG486|.
|
||||
# NASM supports it only for completeness. Its counterpart is |IBTS| (see
|
||||
# section A.75 <#section-A.75>).
|
||||
|
||||
|
||||
# A.168 |XCHG|: Exchange
|
||||
|
||||
# XCHG reg8,r/m8 ; 86 /r [8086]
|
||||
# XCHG reg16,r/m8 ; o16 87 /r [8086]
|
||||
# XCHG reg32,r/m32 ; o32 87 /r [386]
|
||||
|
||||
# XCHG r/m8,reg8 ; 86 /r [8086]
|
||||
# XCHG r/m16,reg16 ; o16 87 /r [8086]
|
||||
# XCHG r/m32,reg32 ; o32 87 /r [386]
|
||||
|
||||
# XCHG AX,reg16 ; o16 90+r [8086]
|
||||
# XCHG EAX,reg32 ; o32 90+r [386]
|
||||
# XCHG reg16,AX ; o16 90+r [8086]
|
||||
# XCHG reg32,EAX ; o32 90+r [386]
|
||||
|
||||
# |XCHG| exchanges the values in its two operands. It can be used with a
|
||||
# |LOCK| prefix for purposes of multi-processor synchronisation.
|
||||
|
||||
# |XCHG AX,AX| or |XCHG EAX,EAX| (depending on the |BITS| setting)
|
||||
# generates the opcode |90h|, and so is a synonym for |NOP| (section A.109
|
||||
# <#section-A.109>).
|
||||
|
||||
|
||||
# A.169 |XLATB|: Translate Byte in Lookup Table
|
||||
|
||||
# XLATB ; D7 [8086]
|
||||
|
||||
# |XLATB| adds the value in |AL|, treated as an unsigned byte, to |BX| or
|
||||
# |EBX|, and loads the byte from the resulting address (in the segment
|
||||
# specified by |DS|) back into |AL|.
|
||||
|
||||
# The base register used is |BX| if the address size is 16 bits, and |EBX|
|
||||
# if it is 32 bits. If you need to use an address size not equal to the
|
||||
# current |BITS| setting, you can use an explicit |a16| or |a32| prefix.
|
||||
|
||||
# The segment register used to load from |[BX+AL]| or |[EBX+AL]| can be
|
||||
# overridden by using a segment register name as a prefix (for example,
|
||||
# |es xlatb|).
|
||||
|
||||
|
||||
# A.170 |XOR|: Bitwise Exclusive OR
|
||||
|
||||
# XOR r/m8,reg8 ; 30 /r [8086]
|
||||
# XOR r/m16,reg16 ; o16 31 /r [8086]
|
||||
# XOR r/m32,reg32 ; o32 31 /r [386]
|
||||
|
||||
# XOR reg8,r/m8 ; 32 /r [8086]
|
||||
# XOR reg16,r/m16 ; o16 33 /r [8086]
|
||||
# XOR reg32,r/m32 ; o32 33 /r [386]
|
||||
|
||||
# XOR r/m8,imm8 ; 80 /6 ib [8086]
|
||||
# XOR r/m16,imm16 ; o16 81 /6 iw [8086]
|
||||
# XOR r/m32,imm32 ; o32 81 /6 id [386]
|
||||
|
||||
# XOR r/m16,imm8 ; o16 83 /6 ib [8086]
|
||||
# XOR r/m32,imm8 ; o32 83 /6 ib [386]
|
||||
|
||||
# XOR AL,imm8 ; 34 ib [8086]
|
||||
# XOR AX,imm16 ; o16 35 iw [8086]
|
||||
# XOR EAX,imm32 ; o32 35 id [386]
|
||||
|
||||
# |XOR| performs a bitwise XOR operation between its two operands (i.e.
|
||||
# each bit of the result is 1 if and only if exactly one of the
|
||||
# corresponding bits of the two inputs was 1), and stores the result in
|
||||
# the destination (first) operand.
|
||||
|
||||
# In the forms with an 8-bit immediate second operand and a longer first
|
||||
# operand, the second operand is considered to be signed, and is
|
||||
# sign-extended to the length of the first operand. In these cases, the
|
||||
# |BYTE| qualifier is necessary to force NASM to generate this form of the
|
||||
# instruction.
|
||||
|
||||
# The MMX instruction |PXOR| (see section A.137 <#section-A.137>) performs
|
||||
# the same operation on the 64-bit MMX registers.
|
||||
|
||||
# Previous Chapter <nasmdo10.html> | Contents <nasmdoc0.html> | Index
|
||||
# <nasmdoci.html>
|
275
lib/intel/command.rb
Normal file
275
lib/intel/command.rb
Normal file
@ -0,0 +1,275 @@
|
||||
require 'intel/special_register'
|
||||
|
||||
module Intel
|
||||
##
|
||||
# Command is a potential command you can call. It has an
|
||||
# opcode (eg: MOV) and the memory format that it outputs as
|
||||
# (opcodes) as well as the kinds of parameters it takes and the
|
||||
# processor types that support the command.
|
||||
|
||||
# Commands are parsed from the assembler.txt file
|
||||
|
||||
class Command
|
||||
attr_accessor :opcode, :opcodes, :processors , :parameters
|
||||
|
||||
def initialize opcode , opcodes , processors , parameters = nil
|
||||
@opcode = opcode
|
||||
@opcodes = opcodes
|
||||
@processors = processors
|
||||
@parameters = parameters
|
||||
end
|
||||
|
||||
def dup
|
||||
x = super
|
||||
x.parameters = x.parameters.dup
|
||||
x.opcodes = x.opcodes.dup
|
||||
x
|
||||
end
|
||||
|
||||
# TODO: learn this better, and figure out why not polymorphic ==
|
||||
def parameter_matches a, b
|
||||
return false if String === b
|
||||
|
||||
if a.is_a?(Register) && b.is_a?(Register) then
|
||||
return a.bits == b.bits && (b.id.nil? || a.id == b.id)
|
||||
end
|
||||
|
||||
if a.is_a?(Address) && b.is_a?(Address) then
|
||||
return ! b.offset? || a.offset?
|
||||
end
|
||||
|
||||
if a.is_a?(SpecialRegister) && b.is_a?(SpecialRegister) then
|
||||
return a.class == b.class && (b.id.nil? || a.id == b.id)
|
||||
end
|
||||
|
||||
return false unless b.is_a?(Immediate)
|
||||
|
||||
if a.is_a? Integer then
|
||||
return (b.value && b.value == a) || b.bits.nil? || a < (2 ** b.bits)
|
||||
end
|
||||
|
||||
if a.is_a? Label then
|
||||
return (a.is_a?(FutureLabel) && a.position.nil? )? b.bits == a.machine.bits :
|
||||
a.bits <= (b.bits || a.machine.bits)
|
||||
end
|
||||
|
||||
false
|
||||
end
|
||||
|
||||
def instruction_applies? instruction
|
||||
return false if instruction.opcode != self.opcode
|
||||
return false if instruction.parameters.size != self.parameters.size
|
||||
|
||||
instruction.parameters.zip(self.parameters).all? { |a, b|
|
||||
self.parameter_matches a, b
|
||||
}
|
||||
end
|
||||
|
||||
def to_parameter parameter
|
||||
case parameter
|
||||
when 'r/m8' then return parameter # "Expanded by the parser"
|
||||
when 'r/m16' then return parameter # "Expanded by the parser"
|
||||
when 'r/m32' then return parameter # "Expanded by the parser"
|
||||
when 'r/m64' then return parameter # "Expanded by the parser"
|
||||
when 'TO fpureg' then return parameter # "Fixed in nasm_fixes"
|
||||
when 'SHORT imm' then return parameter # "Fixed in nasm_fixes"
|
||||
when 'FAR mem' then return parameter # "Fixed in nasm_fixes"
|
||||
when 'FAR mem16' then return parameter # "Fixed in nasm_fixes"
|
||||
when 'FAR mem32' then return parameter # "Fixed in nasm_fixes"
|
||||
when 'NEAR imm' then return parameter # "Fixed in nasm_fixes"
|
||||
when 'imm:imm16' then return parameter # "Fixed in nasm_fixes"
|
||||
when 'imm:imm32' then return parameter # "Fixed in nasm_fixes"
|
||||
when '1' then return Immediate.new(1)
|
||||
when 'AL' then return Register.new(nil, 0, 8)
|
||||
when 'AX' then return Register.new(nil, 0, 16)
|
||||
when 'EAX' then return Register.new(nil, 0, 32)
|
||||
when 'CL' then return Register.new(nil, 1, 8)
|
||||
when 'CX' then return Register.new(nil, 1, 16)
|
||||
when 'ECX' then return Register.new(nil, 1, 32)
|
||||
when 'DL' then return Register.new(nil, 2, 8)
|
||||
when 'DX' then return Register.new(nil, 2, 16)
|
||||
when 'EDX' then return Register.new(nil, 2, 32)
|
||||
when 'BL' then return Register.new(nil, 3, 8)
|
||||
when 'BX' then return Register.new(nil, 3, 16)
|
||||
when 'EBX' then return Register.new(nil, 3, 32)
|
||||
when 'ES' then return SegmentRegister.new(nil, 0)
|
||||
when 'CS' then return SegmentRegister.new(nil, 1)
|
||||
when 'SS' then return SegmentRegister.new(nil, 2)
|
||||
when 'DS' then return SegmentRegister.new(nil, 3)
|
||||
when 'FS' then return SegmentRegister.new(nil, 4)
|
||||
when 'GS' then return SegmentRegister.new(nil, 5)
|
||||
when 'imm' then return Immediate.new
|
||||
when 'imm8' then return Immediate.new(8)
|
||||
when 'imm16' then return Immediate.new(16)
|
||||
when 'imm32' then return Immediate.new(32)
|
||||
when 'segreg' then return SegmentRegister.new
|
||||
when 'reg' then return Register.new
|
||||
when 'reg8' then return Register.new(nil,nil,8)
|
||||
when 'reg16' then return Register.new(nil,nil,16)
|
||||
when 'reg32' then return Register.new(nil,nil,32)
|
||||
when 'mem' then return Address.new(false, 4)
|
||||
when 'mem8' then return Address.new(false, 8)
|
||||
when 'mem16' then return Address.new(false, 16)
|
||||
when 'mem32' then return Address.new(false, 32)
|
||||
when 'mem64' then return Address.new(false, 64)
|
||||
when 'mem80' then return Address.new(false, 80)
|
||||
when 'memoffs8' then return Address.new(true, 8)
|
||||
when 'memoffs16' then return Address.new(true, 16)
|
||||
when 'memoffs32' then return Address.new(true, 32)
|
||||
when 'fpureg' then return FPURegister.new
|
||||
when /ST(.*)/ then return FPURegister.new(nil,$1.to_i)
|
||||
when 'mmxreg' then return MMXRegister.new
|
||||
when /MM(.*)/ then return MMXRegister.new(nil,nil,$1.to_i)
|
||||
when 'CR0/2/3/4' then return ControlRegister.new
|
||||
when 'DR0/1/2/3/6/7' then return DebugRegister.new
|
||||
when 'TR3/4/5/6/7' then return TestRegister.new
|
||||
else
|
||||
warn "unknown parameter: #{parameter.inspect}"
|
||||
return parameter
|
||||
end
|
||||
end
|
||||
|
||||
def initialize_parameters params
|
||||
self.parameters = params.split(/,/).map { |s| self.to_parameter s }
|
||||
end
|
||||
|
||||
def assemble instruction
|
||||
stream = []
|
||||
|
||||
opcodes.each_with_index do |each, index|
|
||||
self.execute_instruction_position_on(each, instruction,
|
||||
(index + 1) / opcodes.size, stream)
|
||||
end
|
||||
|
||||
stream
|
||||
end
|
||||
|
||||
def execute_instruction_position_on(byte, instruction, position, stream)
|
||||
case byte
|
||||
when 'a16', 'a32' then
|
||||
raise "not done yet"
|
||||
when 'o16' then
|
||||
return self.align16_on(instruction, stream)
|
||||
when 'o32' then
|
||||
return self.align32_on(instruction, stream)
|
||||
when 'ib' then
|
||||
return stream.push_B(instruction.get_immediate)
|
||||
when 'iw' then
|
||||
return stream.push_W(instruction.get_second_immediate) if position == 1
|
||||
return stream.push_W(instruction.get_immediate)
|
||||
when 'id' then
|
||||
return stream.push_D(instruction.get_second_immediate) if position == 1
|
||||
return stream.push_D(instruction.get_immediate)
|
||||
when 'rb' then
|
||||
return self.relative_b_on(instruction, stream)
|
||||
when 'rw' then
|
||||
return self.relative_w_on(instruction, stream)
|
||||
when 'rw/rd' then
|
||||
return self.relative_w_on(instruction, stream) if
|
||||
instruction.machine.bits == 16
|
||||
return self.relative_d_on(instruction, stream)
|
||||
when 'rd' then
|
||||
return self.relative_d_on(instruction, stream)
|
||||
when 'ow' then
|
||||
raise byte
|
||||
# [^stream push_W: instruction get_address offset].
|
||||
when 'od' then
|
||||
raise byte
|
||||
# [^stream push_D: instruction get_address offset].
|
||||
when 'ow/od' then
|
||||
if instruction.machine.bits == 16 then
|
||||
stream.push_W instruction.get_address.offset
|
||||
end
|
||||
|
||||
return stream.push_D(instruction.get_address.offset)
|
||||
when /^\/(.*)/ then
|
||||
return self.modrm_instruction_on($1, instruction, stream)
|
||||
end
|
||||
|
||||
number = byte.hex
|
||||
number += instruction.parameters[parameters.first.id ? 1 : 0].id if
|
||||
byte =~ /r$/
|
||||
stream << number
|
||||
end
|
||||
|
||||
##
|
||||
# If we get here, there will be at least two parameters to combine
|
||||
# a memory address with a register or a register with a register"
|
||||
|
||||
def modrm_r_on instruction, stream
|
||||
address, register = instruction.first, instruction.second
|
||||
swap = false # TODO: this can be 1 call at the bottom
|
||||
|
||||
if instruction.first.is_a?(Register) && instruction.second.is_a?(Register) then
|
||||
if parameters.first.is_a?(MemoryRegister) then
|
||||
return instruction.first.push_mod_rm_on(instruction.second, stream)
|
||||
else
|
||||
return instruction.second.push_mod_rm_on(instruction.first, stream)
|
||||
end
|
||||
end
|
||||
|
||||
if instruction.first.is_a?(SpecialRegister) then
|
||||
return instruction.second.push_mod_rm_on(instruction.first, stream)
|
||||
end
|
||||
|
||||
if instruction.second.is_a?(SpecialRegister) then
|
||||
return instruction.first.push_mod_rm_on(instruction.second, stream)
|
||||
end
|
||||
|
||||
address, register = if instruction.first.is_a?(Register) && instruction.second.respond_to?(:push_mod_rm_on) then
|
||||
[instruction.second, instruction.first]
|
||||
else
|
||||
[instruction.first, instruction.second]
|
||||
end
|
||||
|
||||
address.push_mod_rm_on register, stream
|
||||
end
|
||||
|
||||
def align16_on instruction, stream
|
||||
stream << 0x66 if instruction.machine.bits != 16
|
||||
end
|
||||
|
||||
def relative_x_on instruction, stream, msg, dist
|
||||
offset = instruction.first
|
||||
offset = offset.offset if offset.is_a?(Address) && offset.offset?
|
||||
|
||||
if offset.is_a? Label then
|
||||
if (offset.is_a?(FutureLabel) && offset.position.nil? ) then
|
||||
offset.add instruction.machine.stream.size
|
||||
return stream.send(msg, dist)
|
||||
end
|
||||
offset = offset.position
|
||||
end
|
||||
|
||||
stream.send(msg, -(instruction.machine.stream.size - offset + dist))
|
||||
end
|
||||
|
||||
def relative_b_on instruction, stream
|
||||
relative_x_on instruction, stream, :push_B, 2
|
||||
end
|
||||
|
||||
def relative_d_on instruction, stream
|
||||
relative_x_on instruction, stream, :push_D, 5
|
||||
end
|
||||
|
||||
def relative_w_on instruction, stream
|
||||
relative_x_on instruction, stream, :push_W, 3
|
||||
end
|
||||
|
||||
def modrm_n_instruction_on id, instruction, stream
|
||||
instruction.first.push_mod_rm_on Register.new(instruction.machine, id, instruction.first.bits), stream
|
||||
end
|
||||
|
||||
def align32_on instruction, stream
|
||||
stream << 0x67 if instruction.machine.bits != 32
|
||||
end
|
||||
|
||||
def modrm_instruction_on byte, instruction, stream
|
||||
if byte == "r" then
|
||||
self.modrm_r_on instruction, stream
|
||||
else
|
||||
self.modrm_n_instruction_on byte.to_i, instruction, stream
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
85
lib/intel/core_extensions.rb
Normal file
85
lib/intel/core_extensions.rb
Normal file
@ -0,0 +1,85 @@
|
||||
require "fiddle"
|
||||
|
||||
class Integer
|
||||
def m
|
||||
address = Intel::Address.new
|
||||
address.offset = self
|
||||
address
|
||||
end
|
||||
|
||||
def inspect
|
||||
"0x#{to_s 16}"
|
||||
end if $DEBUG
|
||||
end
|
||||
class Array
|
||||
def second
|
||||
self[1]
|
||||
end
|
||||
|
||||
def push_D integer
|
||||
self.push(*[integer].pack("V").unpack("C4"))
|
||||
end
|
||||
|
||||
def push_B integer
|
||||
self << (integer & 255)
|
||||
end
|
||||
|
||||
def push_W integer
|
||||
self.push((integer & 255), (integer >> 8 & 255))
|
||||
end
|
||||
end
|
||||
|
||||
ASM = []
|
||||
|
||||
|
||||
class Object
|
||||
def assemble arg_count = 0, &block
|
||||
asm = Intel::MachineCodeX86.new
|
||||
|
||||
# TODO: enter?
|
||||
asm.ebp.push
|
||||
asm.ebp.mov asm.esp
|
||||
|
||||
size = asm.stream.size
|
||||
|
||||
asm.instance_eval(&block)
|
||||
|
||||
if asm.stream.size == size # return nil
|
||||
warn "returning nil for #{self}##{name}"
|
||||
asm.eax.mov 4
|
||||
end
|
||||
|
||||
asm.leave
|
||||
asm.ret
|
||||
|
||||
code = asm.stream.pack("C*")
|
||||
|
||||
if $DEBUG then
|
||||
path = "#{$$}.obj"
|
||||
File.open path, "wb" do |f|
|
||||
f.write code
|
||||
end
|
||||
|
||||
puts code.unpack("C*").map { |n| "%02X" % n }.join(' ')
|
||||
system "ndisasm -u #{path}"
|
||||
|
||||
File.unlink path
|
||||
end
|
||||
|
||||
code
|
||||
end
|
||||
|
||||
@@asm = {}
|
||||
def asm(name, *args, &block)
|
||||
code = @@asm[name] ||= assemble(&block).to_ptr
|
||||
|
||||
return execute_asm(code) # code is the function pointer, wrapped
|
||||
end
|
||||
|
||||
# defasm :execute_asm, :code do
|
||||
# eax.mov ebp + 0x0c # grab code
|
||||
# eax.mov eax + 0x10 # unwrap function pointer field
|
||||
# eax.mov eax.m # dereference the pointer
|
||||
# eax.call # call the function pointer
|
||||
# end
|
||||
end
|
20
lib/intel/immediate.rb
Normal file
20
lib/intel/immediate.rb
Normal file
@ -0,0 +1,20 @@
|
||||
require 'intel/operand'
|
||||
|
||||
module Intel
|
||||
##
|
||||
# Immediate is an Integer wrapper so that we know the machine we're
|
||||
# dealing with when we apply commands
|
||||
|
||||
class Immediate < Operand
|
||||
attr_accessor :value
|
||||
|
||||
def initialize( bits = nil )
|
||||
super(nil , bits)
|
||||
end
|
||||
|
||||
def immediate?
|
||||
true
|
||||
end
|
||||
end
|
||||
|
||||
end
|
59
lib/intel/instruction.rb
Normal file
59
lib/intel/instruction.rb
Normal file
@ -0,0 +1,59 @@
|
||||
module Intel
|
||||
##
|
||||
# Instruction is an instruction shape that we're going to match to
|
||||
# Commands to find out what we should write in to memory.
|
||||
|
||||
class Instruction
|
||||
attr_accessor :opcode, :machine, :parameters
|
||||
|
||||
def initialize message, machine
|
||||
self.machine = machine
|
||||
self.opcode, *self.parameters = message
|
||||
self.opcode = opcode.to_s.upcase
|
||||
|
||||
self.machine = parameters[1].machine unless machine
|
||||
|
||||
self.parameters.map! { |each| Proc === each ? each.call.m : each }
|
||||
|
||||
self.parameters.each do |each|
|
||||
each.machine = self.machine if each.is_a? Operand
|
||||
end
|
||||
end
|
||||
|
||||
def first
|
||||
parameters.first
|
||||
end
|
||||
|
||||
def second
|
||||
parameters.second
|
||||
end
|
||||
|
||||
def get_address
|
||||
parameters.detect { |e| e.is_a?(Address) }
|
||||
end
|
||||
|
||||
def assemble
|
||||
instructions = machine.instructions.select { |command|
|
||||
command.instruction_applies? self
|
||||
}
|
||||
|
||||
return false if instructions.empty?
|
||||
|
||||
bytes = instructions.map { |instruction| instruction.assemble self }
|
||||
|
||||
sorted_bytes = bytes.sort_by {|byte| [byte.size, (byte[0]||0), (byte[1]||0)]}
|
||||
|
||||
machine.stream.push(*sorted_bytes.first)
|
||||
|
||||
true
|
||||
end
|
||||
|
||||
def get_second_immediate
|
||||
parameters.detect { |e| e.is_a? Integer }
|
||||
end
|
||||
|
||||
def get_immediate
|
||||
parameters.reverse.detect { |e| e.is_a? Integer }
|
||||
end
|
||||
end
|
||||
end
|
66
lib/intel/label.rb
Normal file
66
lib/intel/label.rb
Normal file
@ -0,0 +1,66 @@
|
||||
module Intel
|
||||
##
|
||||
# Label is a known point in the byte stream that we can jmp/loop back to.
|
||||
|
||||
class Label < Operand
|
||||
attr_accessor :position
|
||||
|
||||
def initialize machine , position = nil
|
||||
super( machine)
|
||||
@position = position
|
||||
end
|
||||
|
||||
def bits
|
||||
distance = machine.stream.size - position
|
||||
|
||||
if distance < 256 then
|
||||
8
|
||||
elsif distance < 65536 then
|
||||
16
|
||||
else
|
||||
32
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
##
|
||||
# FutureLabel is a label in memory that hasn't been defined yet and
|
||||
# will go back and fill in the appropriate memory bytes later
|
||||
|
||||
class FutureLabel < Label
|
||||
attr_accessor :positions
|
||||
|
||||
def initialize(machine)
|
||||
super( machine )
|
||||
self.positions = []
|
||||
end
|
||||
|
||||
def plant
|
||||
self.position = machine.stream.size
|
||||
|
||||
positions.each do |each|
|
||||
size = machine.stream[each + 1]
|
||||
address = []
|
||||
case size
|
||||
when 2 then
|
||||
address.push_B(position - each - 2)
|
||||
when 3 then
|
||||
address.push_W(position - each - 3)
|
||||
when 5 then
|
||||
address.push_D(position - each - 5)
|
||||
else
|
||||
raise "unhandled size #{size}"
|
||||
end
|
||||
|
||||
address.each_with_index do |byte, index|
|
||||
idx = each + index + 1
|
||||
machine.stream[idx] = byte
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
def add aPosition
|
||||
positions << aPosition
|
||||
end
|
||||
end
|
||||
end
|
264
lib/intel/machine_code_x86.rb
Normal file
264
lib/intel/machine_code_x86.rb
Normal file
@ -0,0 +1,264 @@
|
||||
module Intel
|
||||
|
||||
##
|
||||
# MachineCodeX86 is a concrete implementation of a machine to create
|
||||
# X86 assembly code on.
|
||||
#
|
||||
# To use this:
|
||||
#
|
||||
# a) you can instantiate an instance and use its register variables
|
||||
# to build up machine code in the @stream variable and then use
|
||||
# those bytes in any way that you see fit, or
|
||||
#
|
||||
#
|
||||
# == Using MachineCodeX86 for scripting
|
||||
#
|
||||
# This is the long hand way of writing assembly code, since you
|
||||
# always include a receiver with every command.
|
||||
#
|
||||
# asm = Assembler.MachineCodeX86.new
|
||||
#
|
||||
# Once you have an assembler, you can access the registers and send
|
||||
# commands to them, eg:
|
||||
#
|
||||
# asm.eax.mov 1
|
||||
#
|
||||
# As you send the commands, the @stream will build up containing the
|
||||
# X86 assembler bytes you can use. You can use memory addresses in
|
||||
# your assembler code with the #m method, eg:
|
||||
#
|
||||
# asm.eax.m.mov 1
|
||||
#
|
||||
# Once you are finished, you simply send:
|
||||
#
|
||||
# asm.stream
|
||||
#
|
||||
# This will return you the stream of bytes.
|
||||
#
|
||||
# == Labels & Jumps
|
||||
#
|
||||
# You can do labels and jump to them using two different label
|
||||
# commands. The first is #label, which places a label jump point
|
||||
# immediately on call, eg:
|
||||
#
|
||||
# label = asm.label
|
||||
# label.jmp
|
||||
#
|
||||
# The other is a future label that can be placed at some future
|
||||
# point in the program and jumped too
|
||||
#
|
||||
# label = asm.future_label
|
||||
# asm.eax.xor asm.eax
|
||||
# label.jmp
|
||||
# asm.eax.inc
|
||||
# label.plant
|
||||
#
|
||||
# You #plant the future label where you want it to actually be and
|
||||
# past references to it will be updated. Future labels will always
|
||||
# use a dword jmp so that there's space to fill in the command if
|
||||
# the jmp ends up being far.
|
||||
|
||||
class MachineCodeX86
|
||||
|
||||
attr_accessor :stream, :procedure, :bits, :cachedInstructions
|
||||
attr_reader :processors
|
||||
attr_writer :instructions
|
||||
|
||||
def initialize
|
||||
self.procedure = nil
|
||||
self.bits = self.defaultBits
|
||||
self.processors = self.defaultProcessors
|
||||
self.stream = []
|
||||
|
||||
self.setupMachine
|
||||
end
|
||||
|
||||
def inspect
|
||||
"#{self.class}#{stream.inspect}"
|
||||
end
|
||||
|
||||
def processors= o
|
||||
@processors = o
|
||||
@cachedInstructions = nil
|
||||
end
|
||||
|
||||
def supportsProcessor instructionProcessors
|
||||
# TODO: can still be improved. hashes, caching... something
|
||||
! (processors & instructionProcessors).empty?
|
||||
end
|
||||
|
||||
def instructions
|
||||
self.cachedInstructions ||= @instructions.select { |e|
|
||||
self.supportsProcessor e.processors
|
||||
}
|
||||
self.cachedInstructions
|
||||
end
|
||||
|
||||
def method_missing msg, *args
|
||||
ok = Instruction.new( [msg, *args] , self).assemble
|
||||
return super unless ok
|
||||
ok
|
||||
end
|
||||
|
||||
def label
|
||||
Label.new(self, stream.size)
|
||||
end
|
||||
|
||||
def future_label
|
||||
FutureLabel.new self
|
||||
end
|
||||
|
||||
def assemble instruction
|
||||
raise "no"
|
||||
# aBlock on: MessageNotUnderstood do: [:ex |
|
||||
# ex originator class = BlockClosure ifFalse: [ex pass].
|
||||
# ex resume: (ex originator value m perform: ex parameter selector withArguments: ex parameter arguments)]</body>
|
||||
end
|
||||
|
||||
# registers-general-32bit
|
||||
attr_accessor :eax, :ebx, :ebp, :esp, :edi, :esi, :ecx, :edx
|
||||
|
||||
# registers-fpu
|
||||
attr_accessor :st0, :st1, :st2, :st3, :st4, :st5, :st6, :st7
|
||||
|
||||
# registers-debug
|
||||
attr_accessor :dr0, :dr1, :dr2, :dr3, :dr6, :dr7
|
||||
|
||||
# registers-segment
|
||||
attr_accessor :es, :ss, :cs, :gs, :fs, :ds
|
||||
|
||||
# registers-test
|
||||
attr_accessor :tr3, :tr4, :tr5, :tr6, :tr7
|
||||
|
||||
# registers-general-8bit
|
||||
attr_accessor :al, :ah, :bl, :bh, :cl, :ch, :dl, :dh
|
||||
|
||||
# registers-general-16bit
|
||||
attr_accessor :ax, :bx, :cx, :dx, :sp, :bp, :si, :di
|
||||
|
||||
# registers-control
|
||||
attr_accessor :cr0, :cr2, :cr3, :cr4
|
||||
|
||||
# registers-mmx
|
||||
attr_accessor :mm0, :mm1, :mm2, :mm3, :mm4, :mm5, :mm6, :mm7
|
||||
|
||||
def setupFPURegisters
|
||||
self.st0 = FPURegister.new self, 0
|
||||
self.st1 = FPURegister.new self, 1
|
||||
self.st2 = FPURegister.new self, 2
|
||||
self.st3 = FPURegister.new self, 3
|
||||
self.st4 = FPURegister.new self, 4
|
||||
self.st5 = FPURegister.new self, 5
|
||||
self.st6 = FPURegister.new self, 6
|
||||
self.st7 = FPURegister.new self, 7
|
||||
end
|
||||
|
||||
def setupControlRegisters
|
||||
self.cr0 = ControlRegister.new self, 0
|
||||
self.cr2 = ControlRegister.new self, 2
|
||||
self.cr3 = ControlRegister.new self, 3
|
||||
self.cr4 = ControlRegister.new self, 4
|
||||
end
|
||||
|
||||
def platform
|
||||
'i386'
|
||||
end
|
||||
|
||||
def setupDebugRegisters
|
||||
self.dr0 = DebugRegister.new self, 0
|
||||
self.dr1 = DebugRegister.new self, 1
|
||||
self.dr2 = DebugRegister.new self, 2
|
||||
self.dr3 = DebugRegister.new self, 3
|
||||
self.dr6 = DebugRegister.new self, 6
|
||||
self.dr7 = DebugRegister.new self, 7
|
||||
end
|
||||
|
||||
def defaultBits
|
||||
32
|
||||
end
|
||||
|
||||
def setupSegmentRegisters
|
||||
self.es = SegmentRegister.new self, 0
|
||||
self.cs = SegmentRegister.new self, 1
|
||||
self.ss = SegmentRegister.new self, 2
|
||||
self.ds = SegmentRegister.new self, 3
|
||||
self.fs = SegmentRegister.new self, 4
|
||||
self.gs = SegmentRegister.new self, 5
|
||||
end
|
||||
|
||||
def defaultProcessors
|
||||
%w(8086 186 286 386 486 PENT P6 CYRIX FPU MMX PRIV UNDOC)
|
||||
end
|
||||
|
||||
def setupMachine
|
||||
self.instructions = Assembler.commands
|
||||
|
||||
self.setup8BitRegisters
|
||||
self.setup16BitRegisters
|
||||
self.setup32BitRegisters
|
||||
self.setupSegmentRegisters
|
||||
self.setupControlRegisters
|
||||
self.setupTestRegisters
|
||||
self.setupDebugRegisters
|
||||
self.setupFPURegisters
|
||||
self.setupMMXRegisters
|
||||
end
|
||||
|
||||
def setup8BitRegisters
|
||||
self.al = Register.new self, 0, 8
|
||||
self.cl = Register.new self, 1, 8
|
||||
self.dl = Register.new self, 2, 8
|
||||
self.bl = Register.new self, 3, 8
|
||||
self.ah = Register.new self, 4, 8
|
||||
self.ch = Register.new self, 5, 8
|
||||
self.dh = Register.new self, 6, 8
|
||||
self.bh = Register.new self, 7, 8
|
||||
end
|
||||
|
||||
def setup16BitRegisters
|
||||
self.ax = Register.new self, 0, 16
|
||||
self.cx = Register.new self, 1, 16
|
||||
self.dx = Register.new self, 2, 16
|
||||
self.bx = Register.new self, 3, 16
|
||||
self.sp = Register.new self, 4, 16
|
||||
self.bp = Register.new self, 5, 16
|
||||
self.si = Register.new self, 6, 16
|
||||
self.di = Register.new self, 7, 16
|
||||
end
|
||||
|
||||
def setupMMXRegisters
|
||||
self.mm0 = MMXRegister.new self, 0
|
||||
self.mm1 = MMXRegister.new self, 1
|
||||
self.mm2 = MMXRegister.new self, 2
|
||||
self.mm3 = MMXRegister.new self, 3
|
||||
self.mm4 = MMXRegister.new self, 4
|
||||
self.mm5 = MMXRegister.new self, 5
|
||||
self.mm6 = MMXRegister.new self, 6
|
||||
self.mm7 = MMXRegister.new self, 7
|
||||
end
|
||||
|
||||
def setupTestRegisters
|
||||
self.tr3 = TestRegister.new self, 3
|
||||
self.tr4 = TestRegister.new self, 4
|
||||
self.tr5 = TestRegister.new self, 5
|
||||
self.tr6 = TestRegister.new self, 6
|
||||
self.tr7 = TestRegister.new self, 7
|
||||
end
|
||||
|
||||
def setup32BitRegisters
|
||||
self.eax = Register.new self, 0, 32
|
||||
self.ecx = Register.new self, 1, 32
|
||||
self.edx = Register.new self, 2, 32
|
||||
self.ebx = Register.new self, 3, 32
|
||||
self.esp = Register.new self, 4, 32
|
||||
self.ebp = Register.new self, 5, 32
|
||||
self.esi = Register.new self, 6, 32
|
||||
self.edi = Register.new self, 7, 32
|
||||
end
|
||||
|
||||
def arg n
|
||||
ebp + (n+3) * 4
|
||||
end
|
||||
|
||||
end
|
||||
end
|
27
lib/intel/operand.rb
Normal file
27
lib/intel/operand.rb
Normal file
@ -0,0 +1,27 @@
|
||||
require 'intel/instruction'
|
||||
|
||||
module Intel
|
||||
##
|
||||
# Operand is any kind of operand used in a command or instruction,
|
||||
# eg: registers, memory addresses, labels, immediates, etc.
|
||||
|
||||
class Operand
|
||||
attr_accessor :machine, :bits
|
||||
|
||||
def initialize machine = nil , bits = nil
|
||||
@bits = bits
|
||||
@machine = machine
|
||||
end
|
||||
|
||||
def method_missing msg, *args, &b
|
||||
ok = Instruction.new( [msg, self, *args] + (b ? [b] : []) , machine).assemble
|
||||
return super unless ok
|
||||
ok
|
||||
end
|
||||
|
||||
def operand?
|
||||
true
|
||||
end
|
||||
end
|
||||
|
||||
end
|
52
lib/intel/register.rb
Normal file
52
lib/intel/register.rb
Normal file
@ -0,0 +1,52 @@
|
||||
module Intel
|
||||
|
||||
##
|
||||
# Register is a general X86 register, such as eax, ebx, ecx, edx,
|
||||
# etc...
|
||||
|
||||
class Register < Operand
|
||||
attr_accessor :id
|
||||
|
||||
def initialize machine = nil, id = nil , bits = nil
|
||||
super(machine, bits)
|
||||
self.id = id
|
||||
end
|
||||
|
||||
def get address # TODO: test
|
||||
self.mov address
|
||||
self.mov {self}
|
||||
end
|
||||
|
||||
def push_mod_rm_on spareRegister, stream
|
||||
stream << (0b11000000 + id + (spareRegister.id << 3))
|
||||
end
|
||||
|
||||
def m
|
||||
self + 0
|
||||
end
|
||||
|
||||
def - offset
|
||||
self + -offset
|
||||
end
|
||||
|
||||
def + offset
|
||||
address = Address.new
|
||||
address.machine = machine
|
||||
address.id = id
|
||||
address.offset = offset
|
||||
address
|
||||
end
|
||||
end
|
||||
|
||||
# MemoryRegister is a regular Register, but the parser needs to know
|
||||
# if it is a primary or secondary register. This form is a private
|
||||
# secondary register. Use Register instead of this guy.
|
||||
|
||||
class MemoryRegister < Register
|
||||
|
||||
def initialize bits
|
||||
super(nil,nil,bits)
|
||||
end
|
||||
end
|
||||
|
||||
end
|
57
lib/intel/special_register.rb
Normal file
57
lib/intel/special_register.rb
Normal file
@ -0,0 +1,57 @@
|
||||
require 'intel/register'
|
||||
require 'intel/operand'
|
||||
|
||||
module Intel
|
||||
##
|
||||
# SpecialRegister is the abstract implementation of any kind of
|
||||
# register that isn't a general register, eg: segment registers, mmx
|
||||
# registers, fpu registers, etc...
|
||||
|
||||
class SpecialRegister < Operand
|
||||
attr_accessor :id
|
||||
|
||||
def initialize machine = nil, id = nil , bits = nil
|
||||
super(machine,bits)
|
||||
self.id = id
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
##
|
||||
# DebugRegister is an X86 DRx register
|
||||
|
||||
class DebugRegister < SpecialRegister
|
||||
end
|
||||
|
||||
##
|
||||
# TestRegister is an X86 Test Register, TRx
|
||||
|
||||
class TestRegister < SpecialRegister
|
||||
end
|
||||
##
|
||||
# FPURegister is an X86 fpureg, STx
|
||||
|
||||
class FPURegister < SpecialRegister
|
||||
end
|
||||
|
||||
##
|
||||
# ControlRegister is an X86 CRx register
|
||||
|
||||
class ControlRegister < SpecialRegister
|
||||
end
|
||||
|
||||
##
|
||||
# MMXRegister is an X86 MMX register
|
||||
|
||||
class MMXRegister < SpecialRegister
|
||||
|
||||
def push_mod_rm_on spareRegister, stream
|
||||
stream << (0b11000000 + id + (spareRegister.id << 3))
|
||||
end
|
||||
end
|
||||
##
|
||||
# SegmentRegister is an X86 segment register, eg: ss, cs, ds, es...
|
||||
|
||||
class SegmentRegister < SpecialRegister
|
||||
end
|
||||
end
|
3
lib/intel/versions.rb
Normal file
3
lib/intel/versions.rb
Normal file
@ -0,0 +1,3 @@
|
||||
module Intel
|
||||
VERSION = '1.1.1'
|
||||
end
|
602
test/test_intel.rb
Normal file
602
test/test_intel.rb
Normal file
@ -0,0 +1,602 @@
|
||||
require_relative 'helper'
|
||||
require 'intel/all'
|
||||
|
||||
class TestIntel < MiniTest::Unit::TestCase
|
||||
# MachineCodeX86Test initialize-release
|
||||
|
||||
def setup
|
||||
@asm = Intel::MachineCodeX86.new
|
||||
@stream = asm.stream
|
||||
end
|
||||
|
||||
attr_reader :asm, :stream
|
||||
|
||||
def ttest_wtf_inline! #Fiddle disabled
|
||||
assert_equal 1000, X.new.counter
|
||||
end
|
||||
|
||||
def ttest_wtf1? #Fiddle disabled
|
||||
assert_equal 42, add_to_n(41)
|
||||
end
|
||||
|
||||
def ttest_wtf2? #Fiddle disabled
|
||||
assert_equal 42, passthrough(42)
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing ow/od
|
||||
|
||||
def test_mov_offset_eax
|
||||
256.m.mov asm.eax
|
||||
assert_equal [0xA3, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_eax_offset
|
||||
asm.eax.mov 256.m
|
||||
assert_equal [0xA1, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing reg<32, mem
|
||||
|
||||
def test_mov_al_big_offset
|
||||
asm.al.mov 256.m
|
||||
assert_equal [0xA0, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_cl_m_edx
|
||||
asm.cl.mov asm.edx.m
|
||||
assert_equal [0x8A, 0b00001010], stream
|
||||
end
|
||||
|
||||
def test_mov_ax_m_ecx
|
||||
asm.ax.mov asm.ecx.m
|
||||
assert_equal [0x66, 0x8B, 1], stream
|
||||
end
|
||||
|
||||
def test_mov_cl_offset
|
||||
asm.cl.mov 1.m
|
||||
assert_equal [0x8A, 0x0D, 1, 0, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_ax_big_offset
|
||||
asm.ax.mov 256.m
|
||||
assert_equal [0x66, 0xA1, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_al_offset
|
||||
asm.al.mov 1.m
|
||||
assert_equal [0xA0, 1, 0, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_cx_offset
|
||||
asm.cx.mov 1.m
|
||||
assert_equal [0x66, 0x8B, 0x0D, 1, 0, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_cx_m_edx
|
||||
asm.cx.mov asm.edx.m
|
||||
assert_equal [0x66, 0x8B, 0b00001010], stream
|
||||
end
|
||||
|
||||
def test_mov_ax_offset
|
||||
asm.ax.mov 1.m
|
||||
assert_equal [0x66, 0xA1, 1, 0, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_al_m_ecx
|
||||
asm.al.mov asm.ecx.m
|
||||
assert_equal [0x8A, 1], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing /r reg/reg
|
||||
|
||||
def test_mov_eax_ebx
|
||||
asm.eax.mov asm.ebx
|
||||
assert_equal [0x89, 0b11011000], stream
|
||||
end
|
||||
|
||||
def test_mov_ebx_ecx
|
||||
asm.ebx.mov asm.ecx
|
||||
assert_equal [0x89, 0b11001011], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing /n reg
|
||||
|
||||
def test_bt_ecx_literal
|
||||
asm.ecx.bt 1
|
||||
assert_equal [0x0F, 0xBA, 0b11100001, 1], stream
|
||||
end
|
||||
|
||||
def test_fdivr
|
||||
asm.ecx.m.fdivr
|
||||
assert_equal [0xD8, 0b00000001], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing []
|
||||
|
||||
def test_bracket_argument
|
||||
asm.eax.mov { asm.ecx }
|
||||
assert_equal [0x8B, 1], stream
|
||||
end
|
||||
|
||||
# def test_bracket_receiver # HACK
|
||||
# asm.assemble { [asm.ecx].mov asm.eax }
|
||||
# assert_equal [0x89, 1], stream
|
||||
# end
|
||||
|
||||
# MachineCodeX86Test testing ib/iw/id
|
||||
|
||||
def test_add_eax_literal
|
||||
asm.eax.add 256
|
||||
assert_equal [5, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_add_ax_literal
|
||||
asm.ax.add 256
|
||||
assert_equal [0x66, 5, 0, 1], stream
|
||||
end
|
||||
|
||||
def test_add_al_literal
|
||||
asm.al.add 1
|
||||
assert_equal [4, 1], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing rb/rw/rd
|
||||
|
||||
def test_label_jmp_veryFar
|
||||
label = asm.label
|
||||
65536.times { asm.stream << 0x90 } # cheaters way to do nop, so it runs faster
|
||||
label.jmp
|
||||
assert_equal 65536 + 5, stream.size
|
||||
assert_equal [0xE9, 0xFB, 0xFF, 0xFE, 0xFF], stream[65536..-1]
|
||||
end
|
||||
|
||||
def test_jmp_big_offset
|
||||
asm.jmp 256.m
|
||||
assert_equal [0xFF, 0b00100101, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_jmp_m_ecx
|
||||
asm.jmp asm.ecx.m
|
||||
assert_equal [0xFF, 0b00100001], stream
|
||||
end
|
||||
|
||||
def test_jmp_infinite
|
||||
label = asm.label
|
||||
label.jmp
|
||||
assert_equal [0xEB, 0xFE], stream
|
||||
end
|
||||
|
||||
def test_label_jmp_far
|
||||
asm.bits = 16
|
||||
label = asm.label
|
||||
256.times { stream << 0x90 } # cheaters way to do nop, so it runs faster
|
||||
label.jmp
|
||||
assert_equal 256 + 3, stream.size
|
||||
assert_equal [0xE9, 0xFD, 0xFE], stream[256..-1]
|
||||
end
|
||||
|
||||
def test_jmp_forward_and_backward
|
||||
label = asm.future_label
|
||||
label.jmp
|
||||
asm.nop
|
||||
label.plant
|
||||
label.jmp
|
||||
assert_equal [0xE9, 1, 0, 0, 0, 0x90, 0xEB, 0xFE], stream
|
||||
end
|
||||
|
||||
def test_jmp_forward
|
||||
label = asm.future_label
|
||||
label.jmp
|
||||
asm.nop
|
||||
label.plant
|
||||
assert_equal [0xE9, 1, 0, 0, 0, 0x90], stream
|
||||
end
|
||||
|
||||
def test_jmp_offset
|
||||
asm.jmp 1.m
|
||||
assert_equal [0xFF, 0b00100101, 1, 0, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_jmp_far
|
||||
asm.jmp 256
|
||||
assert_equal [0xE9, 0xFB, 0, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_loop_infinite
|
||||
label = asm.label
|
||||
label.loop
|
||||
assert_equal [0xE2, 0xFE], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing o16/o32
|
||||
|
||||
def test_adc_ax_literal
|
||||
asm.bits = 32
|
||||
asm.ax.add 1
|
||||
assert_equal [0x66, 5, 1, 0], stream
|
||||
end
|
||||
|
||||
def test_adc_ax_literal16
|
||||
asm.bits = 32
|
||||
asm.ax.add 256
|
||||
assert_equal [0x66, 5, 0, 1], stream
|
||||
end
|
||||
|
||||
def test_adc_eax_literal
|
||||
asm.bits = 16
|
||||
asm.eax.add 1
|
||||
assert_equal [0x67, 0x83, 0b11000000, 1], stream
|
||||
end
|
||||
|
||||
def test_adc_eax_literal16
|
||||
asm.bits = 16
|
||||
asm.eax.add 256
|
||||
assert_equal [0x67, 5, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing cpuregs
|
||||
|
||||
def test_mov_ecx_cr0
|
||||
asm.ecx.mov asm.cr0
|
||||
assert_equal [0x0f, 0x20, 0b11000001], stream
|
||||
end
|
||||
|
||||
def test_mov_dr0Ecx
|
||||
asm.dr0.mov asm.ecx
|
||||
assert_equal [0x0f, 0x23, 0b11000001], stream
|
||||
end
|
||||
|
||||
def test_mov_ecx_tr3
|
||||
asm.ecx.mov asm.tr3
|
||||
assert_equal [0x0f, 0x24, 0b11011001], stream
|
||||
end
|
||||
|
||||
def test_mov_tr3_ecx
|
||||
asm.tr3.mov asm.ecx
|
||||
assert_equal [0x0f, 0x26, 0b11011001], stream
|
||||
end
|
||||
|
||||
def test_mov_ecx_dr0
|
||||
asm.ecx.mov asm.dr0
|
||||
assert_equal [0x0f, 0x21, 0b11000001], stream
|
||||
end
|
||||
|
||||
def test_mov_cr0_ecx
|
||||
asm.cr0.mov asm.ecx
|
||||
assert_equal [0x0f, 0x22, 0b11000001], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing /r reg/mem
|
||||
|
||||
def test_mov_eax_m_ecx
|
||||
asm.eax.mov asm.ecx.m
|
||||
assert_equal [0x8B, 0b00000001], stream
|
||||
end
|
||||
|
||||
def test_mov_ebx_m_ecx_edx_offset
|
||||
asm.ebx.mov(asm.ecx + asm.edx + 1)
|
||||
assert_equal [0x8B, 0b00011100, 0b01010001, 1], stream
|
||||
end
|
||||
|
||||
def test_mov_ebx_m_ecx_edx
|
||||
asm.ebx.mov(asm.ecx + asm.edx)
|
||||
assert_equal [0x8B, 0b00011100, 0b00010001], stream
|
||||
end
|
||||
|
||||
def test_mov_ebx_m_ecx_edx_big_offset
|
||||
asm.ebx.mov(asm.ecx + asm.edx + 256)
|
||||
assert_equal [0x8B, 0b00011100, 0b10010001, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_eax_m_ecx_big_offset
|
||||
asm.eax.mov asm.ecx + 256
|
||||
assert_equal [0x8B, 0b10000001, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_ecx_m_offset
|
||||
asm.ecx.mov 256.m
|
||||
assert_equal [0x8B, 0x0D, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_eax_m_ecx_offset
|
||||
asm.eax.mov asm.ecx + 1
|
||||
assert_equal [0x8B, 0b01000001, 1], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing imm:imm
|
||||
|
||||
def test_jmp_imm_Imm32
|
||||
asm.jmp 256, 65537
|
||||
assert_equal [0xEA, 1, 0, 1, 0, 0, 1], stream
|
||||
end
|
||||
|
||||
def test_call_imm_Imm16
|
||||
asm.call 1, 2
|
||||
assert_equal [0x66, 0x9A, 2, 0, 1, 0], stream
|
||||
end
|
||||
|
||||
def test_jmp_imm_Imm16
|
||||
asm.jmp 1, 2
|
||||
assert_equal [0x66, 0xEA, 2, 0, 1, 0], stream
|
||||
end
|
||||
|
||||
def test_call_imm_Imm32
|
||||
asm.call 256, 65537
|
||||
assert_equal [0x9A, 1, 0, 1, 0, 0, 1], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing 0 args
|
||||
|
||||
def test_ret
|
||||
asm.ret
|
||||
assert_equal [0xC3], stream
|
||||
end
|
||||
|
||||
def test_nop
|
||||
asm.nop
|
||||
assert_equal [0x90], stream
|
||||
end
|
||||
|
||||
def test_hlt
|
||||
asm.hlt
|
||||
assert_equal [0xF4], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing 3 args
|
||||
|
||||
def test_imul_ecx_edx_immediate
|
||||
asm.ecx.imul asm.edx, 1
|
||||
assert_equal [0x6B, 0xCA, 1], stream
|
||||
end
|
||||
|
||||
def test_imul_ecx_edx_big_immediate
|
||||
asm.ecx.imul asm.edx, 256
|
||||
assert_equal [0x69, 0xCA, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing fpureg
|
||||
|
||||
def test_fadd_st0St1
|
||||
asm.st0.fadd asm.st1
|
||||
assert_equal [0xD8, 0xC1], stream
|
||||
end
|
||||
|
||||
def test_fmulp_st1St0
|
||||
asm.st1.fmulp asm.st0
|
||||
assert_equal [0xDE, 0xC9], stream
|
||||
end
|
||||
|
||||
def test_fadd_st0
|
||||
asm.st0.fadd
|
||||
assert_equal [0xD8, 0xC0], stream
|
||||
end
|
||||
|
||||
def test_fadd_st1
|
||||
asm.st1.fadd
|
||||
assert_equal [0xD8, 0xC1], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing /n mem
|
||||
|
||||
def test_fild_m_ecx_edx_offset
|
||||
(asm.ecx + asm.edx + 1).fild
|
||||
assert_equal [0xDB, 0b00000100, 0b01010001, 1], stream
|
||||
end
|
||||
|
||||
def test_bt_m_ecx_literal
|
||||
# ... this shouldn't work. The machine code generated here does
|
||||
# not work and nasm complains that a size was not specified if you
|
||||
# try to write the same code in nasm -> mov [ecx], 1
|
||||
#
|
||||
# Some how we're meant to know this is invalid and throw an
|
||||
# error.. not sure how yet.
|
||||
asm.ecx.m.bt 1
|
||||
assert_equal [0x0F, 0xBA, 0b00100001, 1], stream
|
||||
end
|
||||
|
||||
def test_fild_m_ecx_big_offset
|
||||
(asm.ecx + 256).fild
|
||||
assert_equal [0xDB, 0b10000001, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_fild_m_ecx_edx
|
||||
(asm.ecx + asm.edx).fild
|
||||
assert_equal [0xDB, 0b00000100, 0b00010001], stream
|
||||
end
|
||||
|
||||
def test_fild_m_ecx_edx_big_offset
|
||||
(asm.ecx + asm.edx + 256).fild
|
||||
assert_equal [0xDB, 0b00000100, 0b10010001, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_fild_m_ecx
|
||||
asm.ecx.m.fild
|
||||
assert_equal [0xDB, 0b00000001], stream
|
||||
end
|
||||
|
||||
def test_fild_m_ecx_offset
|
||||
(asm.ecx + 1).fild
|
||||
assert_equal [0xDB, 0b01000001, 1], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing processors
|
||||
|
||||
# def testing_adc_edx_ecx # HACK
|
||||
# asm.processors.reject! { |processor| processor == '386' }
|
||||
# assert_raise NoMethodError do
|
||||
# asm.edx.adc asm.ecx
|
||||
# end
|
||||
# end
|
||||
|
||||
# MachineCodeX86Test testing mmxreg
|
||||
|
||||
def test_psllw_mm1Immediate
|
||||
asm.mm1.psllw 1
|
||||
assert_equal [0x0F, 0x71, 0xF1, 1], stream
|
||||
end
|
||||
|
||||
def test_movd_eax_mm0
|
||||
asm.eax.movd asm.mm0
|
||||
assert_equal [0x0F, 0x7E, 0xC0], stream
|
||||
end
|
||||
|
||||
def test_movd_mm0Eax
|
||||
asm.mm0.movd asm.eax
|
||||
assert_equal [0x0F, 0x6E, 0xC0], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing +r
|
||||
|
||||
def test_mov_ecx_literal
|
||||
asm.ecx.mov 1
|
||||
assert_equal [0xB9, 1, 0, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_edx_literal
|
||||
asm.edx.mov 1
|
||||
assert_equal [0xBA, 1, 0, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_eax_literal
|
||||
asm.eax.mov 1
|
||||
assert_equal [0xB8, 1, 0, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_ebx_literal
|
||||
asm.ebx.mov 1
|
||||
assert_equal [0xBB, 1, 0, 0, 0], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing /r mem/reg
|
||||
|
||||
def test_mov_m_ecx_edx_offset_ebx
|
||||
(asm.ecx + asm.edx + 1).mov asm.ebx
|
||||
assert_equal [0x89, 0b00011100, 0b01010001, 1], stream
|
||||
end
|
||||
|
||||
def test_mov_m_eax_ecx
|
||||
asm.eax.m.mov asm.ecx
|
||||
assert_equal [0x89, 0b00001000], stream
|
||||
end
|
||||
|
||||
def test_mov_m_ecx_big_offset_ebx
|
||||
(asm.ecx + 256).mov asm.ebx
|
||||
assert_equal [0x89, 0b10011001, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_m_ecx_edx_big_offset_ebx
|
||||
(asm.ecx + asm.edx + 256).mov asm.ebx
|
||||
assert_equal [0x89, 0b00011100, 0b10010001, 0, 1, 0, 0], stream
|
||||
end
|
||||
|
||||
def test_mov_m_ecx_offset_ebx
|
||||
(asm.ecx + 1).mov asm.ebx
|
||||
assert_equal [0x89, 0b01011001, 1], stream
|
||||
end
|
||||
|
||||
def test_mov_m_ecx_eax
|
||||
asm.ecx.m.mov asm.eax
|
||||
assert_equal [0x89, 0b00000001], stream
|
||||
end
|
||||
|
||||
def test_mov_m_ecx_edx_ebx
|
||||
(asm.ecx + asm.edx).mov asm.ebx
|
||||
assert_equal [0x89, 0b00011100, 0b00010001], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing +cc
|
||||
|
||||
def test_cmovne_eax_ecx
|
||||
asm.eax.cmovne asm.ecx
|
||||
assert_equal [0x0F, 0x45, 0xC1], stream
|
||||
end
|
||||
|
||||
def test_cmove_eax_ecx
|
||||
asm.eax.cmove asm.ecx
|
||||
assert_equal [0x0F, 0x44, 0xC1], stream
|
||||
end
|
||||
|
||||
def test_jnb
|
||||
asm.label.jnb
|
||||
assert_equal [0x73, 0xFE], stream
|
||||
end
|
||||
|
||||
def test_jnc
|
||||
asm.label.jnc
|
||||
assert_equal [0x73, 0xFE], stream
|
||||
end
|
||||
|
||||
def test_jno
|
||||
asm.label.jno
|
||||
assert_equal [0x71, 0xFE], stream
|
||||
end
|
||||
|
||||
def test_jae
|
||||
asm.label.jae
|
||||
assert_equal [0x73, 0xFE], stream
|
||||
end
|
||||
|
||||
def test_jnae
|
||||
asm.label.jnae
|
||||
assert_equal [0x72, 0xFE], stream
|
||||
end
|
||||
|
||||
def test_cmovz_eax_ecx
|
||||
asm.eax.cmovz asm.ecx
|
||||
assert_equal [0x0F, 0x44, 0xC1], stream
|
||||
end
|
||||
|
||||
def test_jb
|
||||
asm.label.jb
|
||||
assert_equal [0x72, 0xFE], stream
|
||||
end
|
||||
|
||||
def test_jc
|
||||
asm.label.jc
|
||||
assert_equal [0x72, 0xFE], stream
|
||||
end
|
||||
|
||||
def test_cmovnz_eax_ecx
|
||||
asm.eax.cmovnz asm.ecx
|
||||
assert_equal [0x0F, 0x45, 0xC1], stream
|
||||
end
|
||||
|
||||
def test_jo
|
||||
asm.label.jo
|
||||
assert_equal [0x70, 0xFE], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing reg,1/cl
|
||||
|
||||
def test_rcr_eax1
|
||||
asm.eax.rcr 1
|
||||
assert_equal [0xD1, 0xD8], stream
|
||||
end
|
||||
|
||||
def test_rcr_eaxCl
|
||||
asm.eax.rcr asm.cl
|
||||
assert_equal [0xD3, 0xD8], stream
|
||||
end
|
||||
|
||||
# MachineCodeX86Test testing segreg
|
||||
|
||||
def test_mov_fs_m_eax
|
||||
asm.fs.mov asm.eax.m
|
||||
assert_equal [0x8E, 0x20], stream
|
||||
end
|
||||
|
||||
def test_mov_eaxFs
|
||||
asm.eax.mov asm.fs
|
||||
assert_equal [0x8C, 0xE0], stream
|
||||
end
|
||||
|
||||
def test_mov_m_eaxFs
|
||||
asm.eax.m.mov asm.fs
|
||||
assert_equal [0x8C, 0x20], stream
|
||||
end
|
||||
|
||||
def test_mov_fs_eax
|
||||
asm.fs.mov asm.eax
|
||||
assert_equal [0x8E, 0xE0], stream
|
||||
end
|
||||
end
|
Loading…
Reference in New Issue
Block a user