remove the old asm (that is now arm)
This commit is contained in:
parent
79a28ac5fa
commit
cba171cc7d
@ -1,13 +0,0 @@
|
||||
Assembler in Ruby
|
||||
=================
|
||||
|
||||
Supporting arm, but aimed quite specifically at raspberry pi, arm v7, floating point included (later)
|
||||
|
||||
Supported (pseudo)instructions:
|
||||
|
||||
- adc, add, and, bic, eor, orr, rsb, rsc, sbc, sub, cmn, cmp, teq, tst,
|
||||
mov, mvn, strb, str, ldrb, ldr, push, pop, b, bl, bx, swi
|
||||
- Conditional versions of above
|
||||
|
||||
Thanks to Mikko for starting this arm/elf project in the first place: https://github.com/cyndis/as
|
||||
|
@ -1,82 +0,0 @@
|
||||
module Asm
|
||||
|
||||
module ArmMachine
|
||||
OPCODES = {
|
||||
:adc => 0b0101, :add => 0b0100,
|
||||
:and => 0b0000, :bic => 0b1110,
|
||||
:eor => 0b0001, :orr => 0b1100,
|
||||
:rsb => 0b0011, :rsc => 0b0111,
|
||||
:sbc => 0b0110, :sub => 0b0010,
|
||||
|
||||
# for these Rn is sbz (should be zero)
|
||||
:mov => 0b1101,
|
||||
:mvn => 0b1111,
|
||||
# for these Rd is sbz and S=1
|
||||
:cmn => 0b1011,
|
||||
:cmp => 0b1010,
|
||||
:teq => 0b1001,
|
||||
:tst => 0b1000,
|
||||
|
||||
:b => 0b1010,
|
||||
:bl => 0b1011,
|
||||
:bx => 0b00010010
|
||||
}
|
||||
#return the bit patter that the cpu uses for the current instruction @opcode
|
||||
def op_bit_code
|
||||
OPCODES[@opcode] or throw "no code found for #{@opcode.inspect}"
|
||||
end
|
||||
|
||||
#codition codes can be applied to many instructions and thus save branches
|
||||
# :al => always , :eq => equal and so on
|
||||
# eq mov if equal :moveq r1 r2 (also exists as function) will only execute if the last operation was 0
|
||||
COND_CODES = {
|
||||
:al => 0b1110, :eq => 0b0000,
|
||||
:ne => 0b0001, :cs => 0b0010,
|
||||
:mi => 0b0100, :hi => 0b1000,
|
||||
:cc => 0b0011, :pl => 0b0101,
|
||||
:ls => 0b1001, :vc => 0b0111,
|
||||
:lt => 0b1011, :le => 0b1101,
|
||||
:ge => 0b1010, :gt => 0b1100,
|
||||
:vs => 0b0110
|
||||
}
|
||||
#return the bit pattern for the @condition_code variable, which signals the conditional code
|
||||
def cond_bit_code
|
||||
COND_CODES[@condition_code] or throw "no code found for #{@condition_code}"
|
||||
end
|
||||
|
||||
REGISTERS = { 'r0' => 0, 'r1' => 1, 'r2' => 2, 'r3' => 3, 'r4' => 4, 'r5' => 5,
|
||||
'r6' => 6, 'r7' => 7, 'r8' => 8, 'r9' => 9, 'r10' => 10, 'r11' => 11,
|
||||
'r12' => 12, 'r13' => 13, 'r14' => 14, 'r15' => 15, 'a1' => 0, 'a2' => 1,
|
||||
'a3' => 2, 'a4' => 3, 'v1' => 4, 'v2' => 5, 'v3' => 6, 'v4' => 7, 'v5' => 8,
|
||||
'v6' => 9, 'rfp' => 9, 'sl' => 10, 'fp' => 11, 'ip' => 12, 'sp' => 13,
|
||||
'lr' => 14, 'pc' => 15 }
|
||||
def reg name
|
||||
raise "no such register #{reg}" unless REGISTERS[name]
|
||||
Asm::Register.new(name , REGISTERS[name])
|
||||
end
|
||||
|
||||
|
||||
|
||||
def calculate_u8_with_rr(arg)
|
||||
parts = arg.value.to_s(2).rjust(32,'0').scan(/^(0*)(.+?)0*$/).flatten
|
||||
pre_zeros = parts[0].length
|
||||
imm_len = parts[1].length
|
||||
if ((pre_zeros+imm_len) % 2 == 1)
|
||||
u8_imm = (parts[1]+'0').to_i(2)
|
||||
imm_len += 1
|
||||
else
|
||||
u8_imm = parts[1].to_i(2)
|
||||
end
|
||||
if (u8_imm.fits_u8?)
|
||||
# can do!
|
||||
rot_imm = (pre_zeros+imm_len) / 2
|
||||
if (rot_imm > 15)
|
||||
return nil
|
||||
end
|
||||
return u8_imm | (rot_imm << 8)
|
||||
else
|
||||
return nil
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
@ -1,98 +0,0 @@
|
||||
require 'asm/nodes'
|
||||
require 'asm/block'
|
||||
require 'stream_reader'
|
||||
require 'stringio'
|
||||
require "asm/string_literal"
|
||||
|
||||
module Asm
|
||||
|
||||
# Assembler is the the top-level of the code hierachy, except it is not derived from code
|
||||
# instead a Assembler is a list of blocks (and string constants)
|
||||
|
||||
# All code is created in blocks (see there) and there are two styles for that, for forward of backward
|
||||
# referencing. Read function block and add_block and Block.set
|
||||
|
||||
|
||||
class Assembler
|
||||
|
||||
def initialize
|
||||
@blocks = []
|
||||
@string_table = {}
|
||||
end
|
||||
|
||||
attr_reader :blocks
|
||||
|
||||
# Assembling to string will return a binary string of the whole program, ie all blocks and the
|
||||
# strings they use
|
||||
# As a memory reference this would be callable, but more likely you will hand it over to
|
||||
# an ObjectWriter as the .text section and then link it. And then execute it :-)
|
||||
def assemble_to_string
|
||||
#put the strings at the end of the assembled code.
|
||||
# adding them will fix their position and make them assemble after
|
||||
@string_table.values.each do |data|
|
||||
add_block data
|
||||
end
|
||||
io = StringIO.new
|
||||
assemble(io)
|
||||
io.string
|
||||
end
|
||||
|
||||
# Add a string to the string table. Strings are global and constant. So only one copy of each
|
||||
# string exists
|
||||
# Internally StringLiterals are created and stored and during assembly written after the blocks
|
||||
def add_string str
|
||||
code = @string_table[str]
|
||||
return code if code
|
||||
data = Asm::StringLiteral.new(str)
|
||||
@string_table[str] = data
|
||||
end
|
||||
|
||||
# Length of all blocks. Does not take strings into account as they are added after all blocks.
|
||||
# This is used to determine where a block when it is added after creation (see add_block)
|
||||
def length
|
||||
@blocks.inject(0) {| sum , item | sum + item.length}
|
||||
end
|
||||
|
||||
# This is how you add a forward declared block. This is called automatically when you
|
||||
# call block with ruby block, but has to be done manually if not
|
||||
def add_block block
|
||||
block.at self.length
|
||||
@blocks << block
|
||||
end
|
||||
|
||||
# return the block of the given name
|
||||
# or raise an exception, as this is meant to be called when the block is available
|
||||
def get_block name
|
||||
block = @blocks.find {|b| b.name == name}
|
||||
raise "No block found for #{name} (in #{blocks.collect{|b|b.name}.join(':')})" unless block
|
||||
block
|
||||
end
|
||||
# this is used to create blocks.
|
||||
# All functions that have no args are interpreted as block names
|
||||
# and if a block is provided, it is evaluated in the (ruby)blocks scope and the block added to the
|
||||
# program immediately.
|
||||
# If no block is provided (forward declaration), you must call code on it later
|
||||
def method_missing(meth, *args, &block)
|
||||
if args.length == 0
|
||||
code = Block.new(meth.to_s , self )
|
||||
if block_given?
|
||||
add_block code
|
||||
code.instance_eval(&block)
|
||||
end
|
||||
return code
|
||||
else
|
||||
super
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
private
|
||||
|
||||
def assemble(io)
|
||||
@blocks.each do |obj|
|
||||
obj.assemble io
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
@ -1,8 +0,0 @@
|
||||
module Asm
|
||||
class AssemblyError < StandardError
|
||||
def initialize(message)
|
||||
super(message)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
152
lib/asm/block.rb
152
lib/asm/block.rb
@ -1,152 +0,0 @@
|
||||
require_relative 'call_instruction'
|
||||
require_relative 'stack_instruction'
|
||||
require_relative 'logic_instruction'
|
||||
require_relative 'memory_instruction'
|
||||
require_relative "code"
|
||||
|
||||
module Asm
|
||||
|
||||
# A Block is the smalles unit of code, a list of instructions as it were
|
||||
# It is also a point to jump/branch to. An address in the final stream.
|
||||
# To allow for forward branches creation does not fix the position.
|
||||
# Thee position is fixed in one of three ways
|
||||
# - create the block with ruby block, signalling that the instantiation poin is the position
|
||||
# - call block.code with the code or if you wish program.add_block (and add you code with calls)
|
||||
# - the assmebly process will pin it if it wasn't set
|
||||
|
||||
# creating blocks is done by calling the blocks name/label on either a program or a block
|
||||
# (method missing will cathc the call and create the block)
|
||||
# and the easiest way is to go into a ruby block and start writing instructions
|
||||
# Example (backward jump):
|
||||
# program.loop do create a new block with label loop
|
||||
# sub r1 , r1 , 1 count the r1 register down
|
||||
# bne :loop jump back to loop when the counter is not zero
|
||||
# end (initialization and actual code missing off course)
|
||||
|
||||
# Example (forward jump)
|
||||
# else_block = program.else
|
||||
# program.if do
|
||||
# test r1 , 0 test some condition
|
||||
# beq :else_block
|
||||
# mov . . .. .. do whatever the if block does
|
||||
# end
|
||||
# else_block.code do
|
||||
# ldr .... do whatever else does
|
||||
# end
|
||||
|
||||
# Blocks are also used to create instructions, and so Block has functions for every cpu instruction
|
||||
# and to make using the apu function easier, there are functions that create registers as well
|
||||
class Block < Code
|
||||
|
||||
def initialize(name , prog)
|
||||
super()
|
||||
@name = name.to_sym
|
||||
@codes = []
|
||||
@position = 0
|
||||
@program = prog
|
||||
end
|
||||
attr_reader :name
|
||||
|
||||
ArmMachine::REGISTERS.each do |reg , number|
|
||||
define_method(reg) { Asm::Register.new(reg , number) }
|
||||
end
|
||||
|
||||
def instruction(clazz, opcode , condition_code , update_status , *args)
|
||||
arg_nodes = []
|
||||
args.each do |arg|
|
||||
if (arg.is_a?(Asm::Register))
|
||||
arg_nodes << arg
|
||||
elsif (arg.is_a?(Integer))
|
||||
arg_nodes << Asm::NumLiteral.new(arg)
|
||||
elsif (arg.is_a?(String))
|
||||
arg_nodes << @program.add_string(arg)
|
||||
elsif (arg.is_a?(Asm::Block))
|
||||
arg_nodes << arg
|
||||
elsif (arg.is_a?(Symbol))
|
||||
block = @program.get_block arg
|
||||
arg_nodes << block
|
||||
else
|
||||
raise "Invalid argument #{arg.inspect} for instruction"
|
||||
end
|
||||
end
|
||||
add_code clazz.new(opcode , condition_code , update_status , arg_nodes)
|
||||
end
|
||||
|
||||
|
||||
def self.define_instruction(inst , clazz )
|
||||
define_method(inst) do |*args|
|
||||
instruction clazz , inst , :al , 0 , *args
|
||||
end
|
||||
define_method("#{inst}s") do |*args|
|
||||
instruction clazz , inst , :al , 1 , *args
|
||||
end
|
||||
ArmMachine::COND_CODES.keys.each do |suffix|
|
||||
define_method("#{inst}#{suffix}") do |*args|
|
||||
instruction clazz , inst , suffix , 0 , *args
|
||||
end
|
||||
define_method("#{inst}s#{suffix}") do |*args|
|
||||
instruction clazz , inst , suffix , 1 , *args
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
[:push, :pop].each do |inst|
|
||||
define_instruction(inst , StackInstruction)
|
||||
end
|
||||
|
||||
[:adc, :add, :and, :bic, :eor, :orr, :rsb, :rsc, :sbc, :sub].each do |inst|
|
||||
define_instruction(inst , LogicInstruction)
|
||||
end
|
||||
[:mov, :mvn].each do |inst|
|
||||
define_instruction(inst , MoveInstruction)
|
||||
end
|
||||
[:cmn, :cmp, :teq, :tst].each do |inst|
|
||||
define_instruction(inst , CompareInstruction)
|
||||
end
|
||||
[:strb, :str , :ldrb, :ldr].each do |inst|
|
||||
define_instruction(inst , MemoryInstruction)
|
||||
end
|
||||
[:b, :bl , :swi].each do |inst|
|
||||
define_instruction(inst , CallInstruction)
|
||||
end
|
||||
|
||||
# codeing a block fixes it's position in the stream.
|
||||
# You must call with a block, which is instance_eval'd and provides the actual code for the block
|
||||
def code &block
|
||||
@program.add_block self
|
||||
self.instance_eval block
|
||||
end
|
||||
|
||||
# length of the codes. In arm it would be the length * 4
|
||||
# (strings are stored globally in the Assembler)
|
||||
def length
|
||||
@codes.inject(0) {| sum , item | sum + item.length}
|
||||
end
|
||||
|
||||
def add_code(kode)
|
||||
kode.at(@position)
|
||||
length = kode.length
|
||||
@position += length
|
||||
@codes << kode
|
||||
end
|
||||
|
||||
def assemble(io)
|
||||
@codes.each do |obj|
|
||||
obj.assemble io
|
||||
end
|
||||
end
|
||||
|
||||
# this is used to create blocks.
|
||||
# All functions that have no args are interpreted as block names
|
||||
# In fact the block calls are delegated to the program which then instantiates the blocks
|
||||
def method_missing(meth, *args, &block)
|
||||
if args.length == 0
|
||||
@program.send(meth , *args , &block)
|
||||
else
|
||||
super
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
end
|
@ -1,49 +0,0 @@
|
||||
require_relative "instruction"
|
||||
|
||||
module Asm
|
||||
# There are only three call instructions in arm branch (b), call (bl) and syscall (swi)
|
||||
|
||||
# A branch could be called a jump as it has no notion of returning
|
||||
|
||||
# A call has the bl code as someone thought "branch with link" is a useful name.
|
||||
# The pc is put into the link register to make a return possible
|
||||
# a return is affected by moving the stored link register into the pc, effectively a branch
|
||||
|
||||
# swi (SoftWareInterrupt) or system call is how we call the kernel.
|
||||
# in Arm the register layout is different and so we have to place the syscall code into register 7
|
||||
# Registers 0-6 hold the call values as for a normal c call
|
||||
|
||||
class CallInstruction < Instruction
|
||||
|
||||
def assemble(io)
|
||||
case opcode
|
||||
when :b, :bl
|
||||
arg = args[0]
|
||||
if arg.is_a? Block
|
||||
diff = arg.position - self.position - 8
|
||||
arg = NumLiteral.new(diff)
|
||||
end
|
||||
if (arg.is_a?(Asm::NumLiteral))
|
||||
jmp_val = arg.value >> 2
|
||||
packed = [jmp_val].pack('l')
|
||||
# signed 32-bit, condense to 24-bit
|
||||
# TODO add check that the value fits into 24 bits
|
||||
io << packed[0,3]
|
||||
else
|
||||
raise "else not coded #{arg.inspect}"
|
||||
end
|
||||
io.write_uint8 OPCODES[opcode] | (COND_CODES[@condition_code] << 4)
|
||||
when :swi
|
||||
arg = args[0]
|
||||
if (arg.is_a?(Asm::NumLiteral))
|
||||
packed = [arg.value].pack('L')[0,3]
|
||||
io << packed
|
||||
io.write_uint8 0b1111 | (COND_CODES[@condition_code] << 4)
|
||||
else
|
||||
raise Asm::AssemblyError.new("invalid operand argument expected literal not #{arg}")
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
end#class
|
||||
end
|
@ -1,45 +0,0 @@
|
||||
module Asm
|
||||
# Base class for anything that we can assemble
|
||||
|
||||
# Derived classes include instructions and data(strings)
|
||||
|
||||
# The commonality abstracted here is the length and position
|
||||
# and the ability to assemble itself into the stream
|
||||
|
||||
# All code is position independant once assembled.
|
||||
# But for jumps and calls two passes are neccessary.
|
||||
# The first setting the position, the second assembling
|
||||
class Code
|
||||
|
||||
# just sets position to nil, so we can sell that it has not been set
|
||||
def initialize
|
||||
@position = nil
|
||||
end
|
||||
|
||||
# the position in the stream. Think of it as an address if you want. The difference is small.
|
||||
# Especially since we produce _only_ position independant code
|
||||
# in other words, during assembly the position _must_ be resolved into a pc relative address
|
||||
# and not used as is
|
||||
def position
|
||||
throw "Not set" unless @address
|
||||
@address
|
||||
end
|
||||
|
||||
# The containing class (assembler/function) call this to tell the instruction/data where it is in the
|
||||
# stream. During assembly the position is then used to calculate pc relative addresses.
|
||||
def at address
|
||||
@address = address
|
||||
end
|
||||
|
||||
# length for this code in bytes
|
||||
def length
|
||||
throw "Not implemented #{self}"
|
||||
end
|
||||
|
||||
# so currently the interface passes the io (usually string_io) in for the code to assemble itself.
|
||||
# this may change as the writing is still done externally (or that will change)
|
||||
def assemble(io)
|
||||
throw "Not implemented #{self}"
|
||||
end
|
||||
end
|
||||
end
|
@ -1,46 +0,0 @@
|
||||
require_relative "assembly_error"
|
||||
require_relative "arm_machine"
|
||||
|
||||
module Asm
|
||||
|
||||
class Code ; end
|
||||
|
||||
# Not surprisingly represents an cpu instruction.
|
||||
# This is an abstract base class, with derived classes
|
||||
# Logic / Move / Compare / Stack / Memory (see there)
|
||||
#
|
||||
# Opcode is a (<= three) letter accronym (same as in assembly code). Though in arm, suffixes can
|
||||
# make the opcode longer, we chop those off in the constructor
|
||||
# Argurments are registers or labels or string/num Literals
|
||||
|
||||
class Instruction < Code
|
||||
include ArmMachine
|
||||
|
||||
COND_POSTFIXES = Regexp.union( COND_CODES.keys.collect{|k|k.to_s} ).source
|
||||
|
||||
def initialize(opcode , condition_code , update_status , args)
|
||||
@update_status_flag = update_status
|
||||
@condition_code = condition_code.to_sym
|
||||
@opcode = opcode
|
||||
@args = args
|
||||
@operand = 0
|
||||
end
|
||||
|
||||
attr_reader :opcode, :args
|
||||
# Many arm instructions may be conditional, where the default condition is always (al)
|
||||
# ArmMachine::COND_CODES names them, and this attribute reflects it
|
||||
attr_reader :condition_code
|
||||
attr_reader :operand
|
||||
|
||||
# Logic instructions may be executed with or without affecting the status register
|
||||
# Only when an instruction affects the status is a subsequent compare instruction effective
|
||||
# But to make the conditional execution (see cond) work for more than one instruction, one needs to
|
||||
# be able to execute without changing the status
|
||||
attr_reader :update_status_flag
|
||||
|
||||
# arm intrucioons are pretty sensible, and always 4 bytes (thumb not supported)
|
||||
def length
|
||||
4
|
||||
end
|
||||
end
|
||||
end
|
@ -1,107 +0,0 @@
|
||||
require_relative "instruction"
|
||||
|
||||
module Asm
|
||||
# ADDRESSING MODE 1
|
||||
# Logic ,Maths, Move and compare instructions (last three below)
|
||||
|
||||
class LogicInstruction < Instruction
|
||||
|
||||
def initialize(opcode , condition_code , update_status , args)
|
||||
super(opcode , condition_code , update_status , args)
|
||||
@rn = nil
|
||||
@i = 0
|
||||
@rd = args[0]
|
||||
end
|
||||
attr_accessor :i, :rn, :rd
|
||||
|
||||
# Build representation for source value
|
||||
def build
|
||||
@rn = args[1]
|
||||
do_build args[2]
|
||||
end
|
||||
|
||||
#(stays in subclases, while build is overriden to provide different arguments)
|
||||
def do_build(arg)
|
||||
if arg.is_a?(Asm::StringLiteral)
|
||||
# do pc relative addressing with the difference to the instuction
|
||||
# 8 is for the funny pipeline adjustment (ie oc pointing to fetch and not execute)
|
||||
arg = Asm::NumLiteral.new( arg.position - self.position - 8 )
|
||||
end
|
||||
if (arg.is_a?(Asm::NumLiteral))
|
||||
if (arg.value.fits_u8?)
|
||||
# no shifting needed
|
||||
@operand = arg.value
|
||||
@i = 1
|
||||
elsif (op_with_rot = calculate_u8_with_rr(arg))
|
||||
@operand = op_with_rot
|
||||
@i = 1
|
||||
else
|
||||
raise Asm::AssemblyError.new("cannot fit numeric literal argument in operand #{arg}")
|
||||
end
|
||||
elsif (arg.is_a?(Asm::Register))
|
||||
@operand = arg
|
||||
@i = 0
|
||||
elsif (arg.is_a?(Asm::Shift))
|
||||
rm_ref = arg.argument
|
||||
@i = 0
|
||||
shift_op = {'lsl' => 0b000, 'lsr' => 0b010, 'asr' => 0b100,
|
||||
'ror' => 0b110, 'rrx' => 0b110}[arg.type]
|
||||
if (arg.type == 'ror' and arg.value.nil?)
|
||||
# ror #0 == rrx
|
||||
raise Asm::AssemblyError.new('cannot rotate by zero', arg)
|
||||
end
|
||||
|
||||
arg1 = arg.value
|
||||
if (arg1.is_a?(Asm::NumLiteral))
|
||||
if (arg1.value >= 32)
|
||||
raise Asm::AssemblyError.new('cannot shift by more than 31', arg1)
|
||||
end
|
||||
shift_imm = arg1.value
|
||||
elsif (arg1.is_a?(Asm::Register))
|
||||
shift_op val |= 0x1;
|
||||
shift_imm = arg1.number << 1
|
||||
elsif (arg.type == 'rrx')
|
||||
shift_imm = 0
|
||||
end
|
||||
|
||||
@operand = rm_ref | (shift_op << 4) | (shift_imm << 4+3)
|
||||
else
|
||||
raise Asm::AssemblyError.new("invalid operand argument #{arg.inspect}")
|
||||
end
|
||||
end
|
||||
|
||||
def assemble(io)
|
||||
build
|
||||
instuction_class = 0b00 # OPC_DATA_PROCESSING
|
||||
val = operand.is_a?(Register) ? operand.bits : operand
|
||||
val |= (rd.bits << 12)
|
||||
val |= (rn.bits << 12+4)
|
||||
val |= (update_status_flag << 12+4+4)#20
|
||||
val |= (op_bit_code << 12+4+4 +1)
|
||||
val |= (i << 12+4+4 +1+4)
|
||||
val |= (instuction_class << 12+4+4 +1+4+1)
|
||||
val |= (cond_bit_code << 12+4+4 +1+4+1+2)
|
||||
io.write_uint32 val
|
||||
end
|
||||
end
|
||||
class CompareInstruction < LogicInstruction
|
||||
def initialize(opcode , condition_code , update_status , args)
|
||||
super(opcode , condition_code , update_status , args)
|
||||
@update_status_flag = 1
|
||||
@rn = args[0]
|
||||
@rd = reg "r0"
|
||||
end
|
||||
def build
|
||||
do_build args[1]
|
||||
end
|
||||
end
|
||||
class MoveInstruction < LogicInstruction
|
||||
def initialize(opcode , condition_code , update_status , args)
|
||||
super(opcode , condition_code , update_status , args)
|
||||
@rn = reg "r0" # register zero = zero bit pattern
|
||||
end
|
||||
def build
|
||||
do_build args[1]
|
||||
end
|
||||
end
|
||||
end
|
@ -1,80 +0,0 @@
|
||||
require "asm/nodes"
|
||||
require_relative "instruction"
|
||||
|
||||
module Asm
|
||||
# ADDRESSING MODE 2
|
||||
# Implemented: immediate offset with offset=0
|
||||
class MemoryInstruction < Instruction
|
||||
|
||||
def initialize(opcode , condition_code , update_status , args)
|
||||
super(opcode , condition_code , update_status , args)
|
||||
@i = 0 #I flag (third bit)
|
||||
@pre_post_index = 0 #P flag
|
||||
@add_offset = 0 #U flag
|
||||
@byte_access = opcode.to_s[-1] == "b" ? 1 : 0 #B (byte) flag
|
||||
@w = 0 #W flag
|
||||
@is_load = opcode.to_s[0] == "l" ? 1 : 0 #L (load) flag
|
||||
@rn = reg "r0" # register zero = zero bit pattern
|
||||
@rd = reg "r0" # register zero = zero bit pattern
|
||||
end
|
||||
attr_accessor :i, :pre_post_index, :add_offset,
|
||||
:byte_access, :w, :is_load, :rn, :rd
|
||||
|
||||
# Build representation for target address
|
||||
def build
|
||||
if( @is_load )
|
||||
@rd = args[0]
|
||||
arg = args[1]
|
||||
else #store
|
||||
@rd = args[1]
|
||||
arg = args[0]
|
||||
end
|
||||
#str / ldr are _serious instructions. With BIG possibilities not half are implemented
|
||||
if (arg.is_a?(Asm::Register))
|
||||
@rn = arg
|
||||
if(arg.offset != 0)
|
||||
@operand = arg.offset
|
||||
if (@operand < 0)
|
||||
@add_offset = 0
|
||||
#TODO test/check/understand
|
||||
@operand *= -1
|
||||
else
|
||||
@add_offset = 1
|
||||
end
|
||||
if (@operand.abs > 4095)
|
||||
raise Asm::AssemblyError.new("reference offset too large/small (max 4095) #{argr.right}" )
|
||||
end
|
||||
end
|
||||
elsif (arg.is_a?(Asm::Label) or arg.is_a?(Asm::NumLiteral))
|
||||
@pre_post_index = 1
|
||||
@rn = pc
|
||||
@use_addrtable_reloc = true
|
||||
@addrtable_reloc_target = arg
|
||||
else
|
||||
raise Asm::AssemblyError.new("invalid operand argument #{arg.inspect}")
|
||||
end
|
||||
end
|
||||
|
||||
def assemble(io)
|
||||
build
|
||||
#not sure about these 2 constants. They produce the correct output for str r0 , r1
|
||||
# but i can't help thinking that that is because they are not used in that instruction and
|
||||
# so it doesn't matter. Will see
|
||||
@add_offset = 1
|
||||
@pre_post_index = 1
|
||||
instuction_class = 0b01 # OPC_MEMORY_ACCESS
|
||||
val = operand
|
||||
val |= (rd.bits << 12 )
|
||||
val |= (rn.bits << 12+4) #16
|
||||
val |= (is_load << 12+4 +4)
|
||||
val |= (w << 12+4 +4+1)
|
||||
val |= (byte_access << 12+4 +4+1+1)
|
||||
val |= (add_offset << 12+4 +4+1+1+1)
|
||||
val |= (pre_post_index << 12+4 +4+1+1+1+1)#24
|
||||
val |= (i << 12+4 +4+1+1+1+1 +1)
|
||||
val |= (instuction_class<<12+4 +4+1+1+1+1 +1+1)
|
||||
val |= (cond_bit_code << 12+4 +4+1+1+1+1 +1+1+2)
|
||||
io.write_uint32 val
|
||||
end
|
||||
end
|
||||
end
|
@ -1,44 +0,0 @@
|
||||
module Asm
|
||||
|
||||
class Shift
|
||||
attr_accessor :type, :value, :argument
|
||||
end
|
||||
|
||||
# Registers have off course a name (r1-16 for arm)
|
||||
# but also refer to an address. In other words they can be an operand for instructions.
|
||||
# Arm has addressing modes abound, and so can add to a register before actually using it
|
||||
# If can actually shift or indeed shift what it adds, but not implemented
|
||||
class Register
|
||||
attr_accessor :name , :offset , :bits
|
||||
def initialize name , bits
|
||||
@name = name
|
||||
@bits = bits
|
||||
@offset = 0
|
||||
end
|
||||
|
||||
# this is for the dsl, so we can write pretty code like r1 + 4
|
||||
# when we want to access the next word (4) after r1
|
||||
def + number
|
||||
@offset = number
|
||||
self
|
||||
end
|
||||
end
|
||||
|
||||
# maybe not used at all as code_gen::instruction raises if used.
|
||||
# instead now using Arrays
|
||||
class RegisterList
|
||||
attr_accessor :registers
|
||||
def initialize regs
|
||||
@registers = regs
|
||||
regs.each{ |reg| raise "not a reg #{sym} , #{reg}" unless reg.is_a?(Asm::Register) }
|
||||
end
|
||||
end
|
||||
|
||||
class NumLiteral
|
||||
attr_accessor :value
|
||||
def initialize val
|
||||
@value = val
|
||||
end
|
||||
end
|
||||
|
||||
end
|
@ -1,58 +0,0 @@
|
||||
require_relative "instruction"
|
||||
|
||||
module Asm
|
||||
# ADDRESSING MODE 4
|
||||
class StackInstruction < Instruction
|
||||
|
||||
def initialize(opcode , condition_code , update_status , args)
|
||||
super(opcode , condition_code , update_status , args)
|
||||
@update_status_flag= 0
|
||||
@rn = reg "r0" # register zero = zero bit pattern
|
||||
# downward growing, decrement before memory access
|
||||
# official ARM style stack as used by gas
|
||||
@write_base = 1
|
||||
if (opcode == :push)
|
||||
@pre_post_index = 1
|
||||
@up_down = 0
|
||||
@is_pop = 0
|
||||
else #pop
|
||||
@pre_post_index = 0
|
||||
@up_down = 1
|
||||
@is_pop = 1
|
||||
end
|
||||
end
|
||||
attr_accessor :pre_post_index, :up_down,
|
||||
:update_status_flag, :write_base, :is_pop, :rn
|
||||
|
||||
def assemble(io)
|
||||
build
|
||||
instuction_class = 0b10 # OPC_STACK
|
||||
cond = @condition_code.is_a?(Symbol) ? COND_CODES[@condition_code] : @condition_code
|
||||
rn = reg "sp" # sp register
|
||||
#assemble of old
|
||||
val = operand
|
||||
val |= (rn.bits << 16)
|
||||
val |= (is_pop << 16+4) #20
|
||||
val |= (write_base << 16+4+ 1)
|
||||
val |= (update_status_flag << 16+4+ 1+1)
|
||||
val |= (up_down << 16+4+ 1+1+1)
|
||||
val |= (pre_post_index << 16+4+ 1+1+1+1)#24
|
||||
val |= (instuction_class << 16+4+ 1+1+1+1 +2)
|
||||
val |= (cond << 16+4+ 1+1+1+1 +2+2)
|
||||
io.write_uint32 val
|
||||
end
|
||||
|
||||
private
|
||||
# Build representation for source value
|
||||
def build
|
||||
if (args.is_a?(Array))
|
||||
@operand = 0
|
||||
args.each do |reg |
|
||||
@operand |= (1 << reg.bits)
|
||||
end
|
||||
else
|
||||
raise Asm::AssemblyError.new("invalid operand argument #{args.inspect}")
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
@ -1,30 +0,0 @@
|
||||
require_relative "../vm/code"
|
||||
|
||||
module Asm
|
||||
# The name really says it all.
|
||||
# The only interesting thing is storage.
|
||||
# Currently string are stored "inline" , ie in the code segment.
|
||||
# Mainly because that works an i aint no elf expert.
|
||||
|
||||
class StringLiteral < Vm::Code
|
||||
|
||||
# currently aligned to 4 (ie padded with 0) and off course 0 at the end
|
||||
def initialize(str)
|
||||
length = str.length
|
||||
# rounding up to the next 4 (always adding one for zero pad)
|
||||
pad = ((length / 4 ) + 1 ) * 4 - length
|
||||
raise "#{pad} #{self}" unless pad >= 1
|
||||
@string = str + "\x00" * pad
|
||||
end
|
||||
|
||||
# the strings length plus padding
|
||||
def length
|
||||
@string.length
|
||||
end
|
||||
|
||||
# just writing the string
|
||||
def assemble(io)
|
||||
io << @string
|
||||
end
|
||||
end
|
||||
end
|
Loading…
x
Reference in New Issue
Block a user