#include "global.h" #include "agb_flash.h" #include "gba/flash_internal.h" #include "fieldmap.h" #include "save.h" #include "task.h" #include "decompress.h" #include "load_save.h" #include "overworld.h" #include "pokemon_storage_system.h" #include "main.h" #include "trainer_hill.h" #include "link.h" #include "constants/game_stat.h" static u16 CalculateChecksum(void *, u16); static bool8 ReadFlashSector(u8, struct SaveSector *); static u8 GetSaveValidStatus(const struct SaveSectorLocation *); static u8 CopySaveSlotData(u16, struct SaveSectorLocation *); static u8 TryWriteSector(u8, u8 *); static u8 HandleWriteSector(u16, const struct SaveSectorLocation *); static u8 HandleReplaceSector(u16, const struct SaveSectorLocation *); // Divide save blocks into individual chunks to be written to flash sectors /* * Sector Layout: * * Sectors 0 - 13: Save Slot 1 * Sectors 14 - 27: Save Slot 2 * Sectors 28 - 29: Hall of Fame * Sector 30: Trainer Hill * Sector 31: Recorded Battle * * There are two save slots for saving the player's game data. We alternate between * them each time the game is saved, so that if the current save slot is corrupt, * we can load the previous one. We also rotate the sectors in each save slot * so that the same data is not always being written to the same sector. This * might be done to reduce wear on the flash memory, but I'm not sure, since all * 14 sectors get written anyway. * * See SECTOR_ID_* constants in save.h */ #define SAVEBLOCK_CHUNK(structure, chunkNum) \ { \ chunkNum * SECTOR_DATA_SIZE, \ sizeof(structure) >= chunkNum * SECTOR_DATA_SIZE ? \ min(sizeof(structure) - chunkNum * SECTOR_DATA_SIZE, SECTOR_DATA_SIZE) : 0 \ } struct { u16 offset; u16 size; } static const sSaveSlotLayout[NUM_SECTORS_PER_SLOT] = { SAVEBLOCK_CHUNK(struct SaveBlock2, 0), // SECTOR_ID_SAVEBLOCK2 SAVEBLOCK_CHUNK(struct SaveBlock1, 0), // SECTOR_ID_SAVEBLOCK1_START SAVEBLOCK_CHUNK(struct SaveBlock1, 1), SAVEBLOCK_CHUNK(struct SaveBlock1, 2), SAVEBLOCK_CHUNK(struct SaveBlock1, 3), // SECTOR_ID_SAVEBLOCK1_END SAVEBLOCK_CHUNK(struct PokemonStorage, 0), // SECTOR_ID_PKMN_STORAGE_START SAVEBLOCK_CHUNK(struct PokemonStorage, 1), SAVEBLOCK_CHUNK(struct PokemonStorage, 2), SAVEBLOCK_CHUNK(struct PokemonStorage, 3), SAVEBLOCK_CHUNK(struct PokemonStorage, 4), SAVEBLOCK_CHUNK(struct PokemonStorage, 5), SAVEBLOCK_CHUNK(struct PokemonStorage, 6), SAVEBLOCK_CHUNK(struct PokemonStorage, 7), SAVEBLOCK_CHUNK(struct PokemonStorage, 8), // SECTOR_ID_PKMN_STORAGE_END }; u16 gLastWrittenSector; u32 gLastSaveCounter; u16 gLastKnownGoodSector; u32 gDamagedSaveSectors; u32 gSaveCounter; struct SaveSector *gReadWriteSector; // Pointer to a buffer for reading/writing a sector u16 gIncrementalSectorId; u16 gSaveUnusedVar; u16 gSaveFileStatus; void (*gGameContinueCallback)(void); struct SaveSectorLocation gRamSaveSectorLocations[NUM_SECTORS_PER_SLOT]; u16 gSaveUnusedVar2; u16 gSaveAttemptStatus; EWRAM_DATA struct SaveSector gSaveDataBuffer = {0}; // Buffer used for reading/writing sectors EWRAM_DATA static u8 sUnusedVar = 0; void ClearSaveData(void) { u16 i; // Clear the full save two sectors at a time for (i = 0; i < SECTORS_COUNT / 2; i++) { EraseFlashSector(i); EraseFlashSector(i + SECTORS_COUNT / 2); } } void Save_ResetSaveCounters(void) { gSaveCounter = 0; gLastWrittenSector = 0; gDamagedSaveSectors = 0; } static bool32 SetDamagedSectorBits(u8 op, u8 sectorId) { bool32 retVal = FALSE; switch (op) { case ENABLE: gDamagedSaveSectors |= (1 << sectorId); break; case DISABLE: gDamagedSaveSectors &= ~(1 << sectorId); break; case CHECK: // unused if (gDamagedSaveSectors & (1 << sectorId)) retVal = TRUE; break; } return retVal; } static u8 WriteSaveSectorOrSlot(u16 sectorId, const struct SaveSectorLocation *locations) { u32 status; u16 i; gReadWriteSector = &gSaveDataBuffer; if (sectorId != FULL_SAVE_SLOT) { // A sector was specified, just write that sector. // This is never reached, FULL_SAVE_SLOT is always used instead. status = HandleWriteSector(sectorId, locations); } else { // No sector was specified, write full save slot. gLastKnownGoodSector = gLastWrittenSector; // backup the current written sector before attempting to write. gLastSaveCounter = gSaveCounter; gLastWrittenSector++; gLastWrittenSector = gLastWrittenSector % NUM_SECTORS_PER_SLOT; gSaveCounter++; status = SAVE_STATUS_OK; for (i = 0; i < NUM_SECTORS_PER_SLOT; i++) HandleWriteSector(i, locations); if (gDamagedSaveSectors) { // At least one sector save failed status = SAVE_STATUS_ERROR; gLastWrittenSector = gLastKnownGoodSector; gSaveCounter = gLastSaveCounter; } } return status; } static u8 HandleWriteSector(u16 sectorId, const struct SaveSectorLocation *locations) { u16 i; u16 sector; u8 *data; u16 size; // Adjust sector id for current save slot sector = sectorId + gLastWrittenSector; sector %= NUM_SECTORS_PER_SLOT; sector += NUM_SECTORS_PER_SLOT * (gSaveCounter % NUM_SAVE_SLOTS); // Get current save data data = locations[sectorId].data; size = locations[sectorId].size; // Clear temp save sector for (i = 0; i < SECTOR_SIZE; i++) ((u8 *)gReadWriteSector)[i] = 0; // Set footer data gReadWriteSector->id = sectorId; gReadWriteSector->security = SECTOR_SECURITY_NUM; gReadWriteSector->counter = gSaveCounter; // Copy current data to temp buffer for writing for (i = 0; i < size; i++) gReadWriteSector->data[i] = data[i]; gReadWriteSector->checksum = CalculateChecksum(data, size); return TryWriteSector(sector, gReadWriteSector->data); } static u8 HandleWriteSectorNBytes(u8 sectorId, u8 *data, u16 size) { u16 i; struct SaveSector *sector = &gSaveDataBuffer; // Clear temp save sector for (i = 0; i < SECTOR_SIZE; i++) ((u8 *)sector)[i] = 0; sector->security = SECTOR_SECURITY_NUM; // Copy data to temp buffer for writing for (i = 0; i < size; i++) sector->data[i] = data[i]; sector->id = CalculateChecksum(data, size); // though this appears to be incorrect, it might be some sector checksum instead of a whole save checksum and only appears to be relevent to HOF data, if used. return TryWriteSector(sectorId, sector->data); } static u8 TryWriteSector(u8 sector, u8 *data) { if (ProgramFlashSectorAndVerify(sector, data)) // is damaged? { // Failed SetDamagedSectorBits(ENABLE, sector); return SAVE_STATUS_ERROR; } else { // Succeeded SetDamagedSectorBits(DISABLE, sector); return SAVE_STATUS_OK; } } static u32 RestoreSaveBackupVarsAndIncrement(const struct SaveSectorLocation *locations) { gReadWriteSector = &gSaveDataBuffer; gLastKnownGoodSector = gLastWrittenSector; gLastSaveCounter = gSaveCounter; gLastWrittenSector++; gLastWrittenSector %= NUM_SECTORS_PER_SLOT; gSaveCounter++; gIncrementalSectorId = 0; gDamagedSaveSectors = 0; return 0; } static u32 RestoreSaveBackupVars(const struct SaveSectorLocation *locations) { gReadWriteSector = &gSaveDataBuffer; gLastKnownGoodSector = gLastWrittenSector; gLastSaveCounter = gSaveCounter; gIncrementalSectorId = 0; gDamagedSaveSectors = 0; return 0; } static u8 HandleWriteIncrementalSector(u16 numSectors, const struct SaveSectorLocation *locations) { u8 status; if (gIncrementalSectorId < numSectors - 1) { status = SAVE_STATUS_OK; HandleWriteSector(gIncrementalSectorId, locations); gIncrementalSectorId++; if (gDamagedSaveSectors) { status = SAVE_STATUS_ERROR; gLastWrittenSector = gLastKnownGoodSector; gSaveCounter = gLastSaveCounter; } } else { // Exceeded max sector, finished status = SAVE_STATUS_ERROR; } return status; } static u8 HandleReplaceSectorAndVerify(u16 sectorId, const struct SaveSectorLocation *locations) { u8 status = SAVE_STATUS_OK; HandleReplaceSector(sectorId - 1, locations); if (gDamagedSaveSectors) { status = SAVE_STATUS_ERROR; gLastWrittenSector = gLastKnownGoodSector; gSaveCounter = gLastSaveCounter; } return status; } // Similar to HandleWriteSector, but fully erases the sector first, and skips writing the first security byte static u8 HandleReplaceSector(u16 sectorId, const struct SaveSectorLocation *locations) { u16 i; u16 sector; u8 *data; u16 size; u8 status; // Adjust sector id for current save slot sector = sectorId + gLastWrittenSector; sector %= NUM_SECTORS_PER_SLOT; sector += NUM_SECTORS_PER_SLOT * (gSaveCounter % NUM_SAVE_SLOTS); // Get current save data data = locations[sectorId].data; size = locations[sectorId].size; // Clear temp save sector. for (i = 0; i < SECTOR_SIZE; i++) ((u8 *)gReadWriteSector)[i] = 0; // Set footer data gReadWriteSector->id = sectorId; gReadWriteSector->security = SECTOR_SECURITY_NUM; gReadWriteSector->counter = gSaveCounter; // Copy current data to temp buffer for writing for (i = 0; i < size; i++) gReadWriteSector->data[i] = data[i]; gReadWriteSector->checksum = CalculateChecksum(data, size); // Erase old save data EraseFlashSector(sector); status = SAVE_STATUS_OK; // Write new save data up to security field for (i = 0; i < SECTOR_SECURITY_OFFSET; i++) { if (ProgramFlashByte(sector, i, ((u8 *)gReadWriteSector)[i])) { status = SAVE_STATUS_ERROR; break; } } if (status == SAVE_STATUS_ERROR) { // Writing save data failed SetDamagedSectorBits(ENABLE, sector); return SAVE_STATUS_ERROR; } else { // Writing save data succeeded, write security and counter status = SAVE_STATUS_OK; // Write security (skipping the first byte) and counter fields. // The byte of security that is skipped is instead written by WriteSectorSecurityByte or WriteSectorSecurityByte_NoOffset for (i = 0; i < SECTOR_SIZE - (SECTOR_SECURITY_OFFSET + 1); i++) { if (ProgramFlashByte(sector, SECTOR_SECURITY_OFFSET + 1 + i, ((u8 *)gReadWriteSector)[SECTOR_SECURITY_OFFSET + 1 + i])) { status = SAVE_STATUS_ERROR; break; } } if (status == SAVE_STATUS_ERROR) { // Writing security/counter failed SetDamagedSectorBits(ENABLE, sector); return SAVE_STATUS_ERROR; } else { // Succeeded SetDamagedSectorBits(DISABLE, sector); return SAVE_STATUS_OK; } } } static u8 WriteSectorSecurityByte_NoOffset(u16 sectorId, const struct SaveSectorLocation *locations) { // Adjust sector id for current save slot // This first line lacking -1 is the only difference from WriteSectorSecurityByte u16 sector = sectorId + gLastWrittenSector; sector %= NUM_SECTORS_PER_SLOT; sector += NUM_SECTORS_PER_SLOT * (gSaveCounter % NUM_SAVE_SLOTS); // Write just the first byte of the security field, which was skipped by HandleReplaceSector if (ProgramFlashByte(sector, SECTOR_SECURITY_OFFSET, SECTOR_SECURITY_NUM & 0xFF)) { // Sector is damaged, so enable the bit in gDamagedSaveSectors and restore the last written sector and save counter. SetDamagedSectorBits(ENABLE, sector); gLastWrittenSector = gLastKnownGoodSector; gSaveCounter = gLastSaveCounter; return SAVE_STATUS_ERROR; } else { // Succeeded SetDamagedSectorBits(DISABLE, sector); return SAVE_STATUS_OK; } } static u8 CopySectorSecurityByte(u16 sectorId, const struct SaveSectorLocation *locations) { // Adjust sector id for current save slot u16 sector = sectorId + gLastWrittenSector - 1; sector %= NUM_SECTORS_PER_SLOT; sector += NUM_SECTORS_PER_SLOT * (gSaveCounter % NUM_SAVE_SLOTS); // Copy just the first byte of the security field from the read/write buffer if (ProgramFlashByte(sector, SECTOR_SECURITY_OFFSET, ((u8 *)gReadWriteSector)[SECTOR_SECURITY_OFFSET])) { // Sector is damaged, so enable the bit in gDamagedSaveSectors and restore the last written sector and save counter. SetDamagedSectorBits(ENABLE, sector); gLastWrittenSector = gLastKnownGoodSector; gSaveCounter = gLastSaveCounter; return SAVE_STATUS_ERROR; } else { // Succeded SetDamagedSectorBits(DISABLE, sector); return SAVE_STATUS_OK; } } static u8 WriteSectorSecurityByte(u16 sectorId, const struct SaveSectorLocation *locations) { // Adjust sector id for current save slot u16 sector = sectorId + gLastWrittenSector - 1; sector %= NUM_SECTORS_PER_SLOT; sector += NUM_SECTORS_PER_SLOT * (gSaveCounter % NUM_SAVE_SLOTS); // Write just the first byte of the security field, which was skipped by HandleReplaceSector if (ProgramFlashByte(sector, SECTOR_SECURITY_OFFSET, SECTOR_SECURITY_NUM & 0xFF)) { // Sector is damaged, so enable the bit in gDamagedSaveSectors and restore the last written sector and save counter. SetDamagedSectorBits(ENABLE, sector); gLastWrittenSector = gLastKnownGoodSector; gSaveCounter = gLastSaveCounter; return SAVE_STATUS_ERROR; } else { // Succeeded SetDamagedSectorBits(DISABLE, sector); return SAVE_STATUS_OK; } } static u8 TryLoadSaveSlot(u16 sectorId, struct SaveSectorLocation *locations) { u8 status; gReadWriteSector = &gSaveDataBuffer; if (sectorId != FULL_SAVE_SLOT) { // This function may not be used with a specific sector id status = SAVE_STATUS_ERROR; } else { status = GetSaveValidStatus(locations); CopySaveSlotData(FULL_SAVE_SLOT, locations); } return status; } // sectorId arg is ignored, this always reads the full save slot static u8 CopySaveSlotData(u16 sectorId, struct SaveSectorLocation *locations) { u16 i; u16 checksum; u16 slotOffset = NUM_SECTORS_PER_SLOT * (gSaveCounter % NUM_SAVE_SLOTS); u16 id; for (i = 0; i < NUM_SECTORS_PER_SLOT; i++) { ReadFlashSector(i + slotOffset, gReadWriteSector); id = gReadWriteSector->id; if (id == 0) gLastWrittenSector = i; checksum = CalculateChecksum(gReadWriteSector->data, locations[id].size); // Only copy data for sectors whose security and checksum fields are correct if (gReadWriteSector->security == SECTOR_SECURITY_NUM && gReadWriteSector->checksum == checksum) { u16 j; for (j = 0; j < locations[id].size; j++) ((u8 *)locations[id].data)[j] = gReadWriteSector->data[j]; } } return SAVE_STATUS_OK; } static u8 GetSaveValidStatus(const struct SaveSectorLocation *locations) { u16 i; u16 checksum; u32 saveSlot1Counter = 0; u32 saveSlot2Counter = 0; u32 validSectorFlags = 0; bool8 securityPassed = FALSE; u8 saveSlot1Status; u8 saveSlot2Status; // Check save slot 1 for (i = 0; i < NUM_SECTORS_PER_SLOT; i++) { ReadFlashSector(i, gReadWriteSector); if (gReadWriteSector->security == SECTOR_SECURITY_NUM) { securityPassed = TRUE; checksum = CalculateChecksum(gReadWriteSector->data, locations[gReadWriteSector->id].size); if (gReadWriteSector->checksum == checksum) { saveSlot1Counter = gReadWriteSector->counter; validSectorFlags |= 1 << gReadWriteSector->id; } } } if (securityPassed) { if (validSectorFlags == (1 << NUM_SECTORS_PER_SLOT) - 1) saveSlot1Status = SAVE_STATUS_OK; else saveSlot1Status = SAVE_STATUS_ERROR; } else { // No sectors in slot 1 have the security number, treat it as empty saveSlot1Status = SAVE_STATUS_EMPTY; } validSectorFlags = 0; securityPassed = FALSE; // Check save slot 2 for (i = 0; i < NUM_SECTORS_PER_SLOT; i++) { ReadFlashSector(i + NUM_SECTORS_PER_SLOT, gReadWriteSector); if (gReadWriteSector->security == SECTOR_SECURITY_NUM) { securityPassed = TRUE; checksum = CalculateChecksum(gReadWriteSector->data, locations[gReadWriteSector->id].size); if (gReadWriteSector->checksum == checksum) { saveSlot2Counter = gReadWriteSector->counter; validSectorFlags |= 1 << gReadWriteSector->id; } } } if (securityPassed) { if (validSectorFlags == (1 << NUM_SECTORS_PER_SLOT) - 1) saveSlot2Status = SAVE_STATUS_OK; else saveSlot2Status = SAVE_STATUS_ERROR; } else { // No sectors in slot 2 have the security number, treat it as empty. saveSlot2Status = SAVE_STATUS_EMPTY; } if (saveSlot1Status == SAVE_STATUS_OK && saveSlot2Status == SAVE_STATUS_OK) { if ((saveSlot1Counter == -1 && saveSlot2Counter == 0) || (saveSlot1Counter == 0 && saveSlot2Counter == -1)) { if ((unsigned)(saveSlot1Counter + 1) < (unsigned)(saveSlot2Counter + 1)) gSaveCounter = saveSlot2Counter; else gSaveCounter = saveSlot1Counter; } else { if (saveSlot1Counter < saveSlot2Counter) gSaveCounter = saveSlot2Counter; else gSaveCounter = saveSlot1Counter; } return SAVE_STATUS_OK; } // One or both save slots are not OK if (saveSlot1Status == SAVE_STATUS_OK) { gSaveCounter = saveSlot1Counter; if (saveSlot2Status == SAVE_STATUS_ERROR) return SAVE_STATUS_ERROR; // Slot 2 errored return SAVE_STATUS_OK; // Slot 1 is OK, slot 2 is empty } if (saveSlot2Status == SAVE_STATUS_OK) { gSaveCounter = saveSlot2Counter; if (saveSlot1Status == SAVE_STATUS_ERROR) return SAVE_STATUS_ERROR; // Slot 1 errored return SAVE_STATUS_OK; // Slot 2 is OK, slot 1 is empty } // Neither slot is OK, check if both are empty if (saveSlot1Status == SAVE_STATUS_EMPTY && saveSlot2Status == SAVE_STATUS_EMPTY) { gSaveCounter = 0; gLastWrittenSector = 0; return SAVE_STATUS_EMPTY; } // Both slots errored gSaveCounter = 0; gLastWrittenSector = 0; return SAVE_STATUS_CORRUPT; } static u8 TryLoadSaveSector(u8 sectorId, u8 *data, u16 size) { u16 i; struct SaveSector *sector = &gSaveDataBuffer; ReadFlashSector(sectorId, sector); if (sector->security == SECTOR_SECURITY_NUM) { u16 checksum = CalculateChecksum(sector->data, size); if (sector->id == checksum) { // Security and checksum are correct, copy data for (i = 0; i < size; i++) data[i] = sector->data[i]; return SAVE_STATUS_OK; } else { // Incorrect checksum return SAVE_STATUS_CORRUPT; } } else { // Incorrect security value return SAVE_STATUS_EMPTY; } } // Return value always ignored static bool8 ReadFlashSector(u8 sectorId, struct SaveSector *sector) { ReadFlash(sectorId, 0, sector->data, SECTOR_SIZE); return TRUE; } static u16 CalculateChecksum(void *data, u16 size) { u16 i; u32 checksum = 0; for (i = 0; i < (size / 4); i++) { checksum += *((u32 *)data); data += sizeof(u32); } return ((checksum >> 16) + checksum); } static void UpdateSaveAddresses(void) { int i = SECTOR_ID_SAVEBLOCK2; gRamSaveSectorLocations[i].data = (void*)(gSaveBlock2Ptr) + sSaveSlotLayout[i].offset; gRamSaveSectorLocations[i].size = sSaveSlotLayout[i].size; for (i = SECTOR_ID_SAVEBLOCK1_START; i <= SECTOR_ID_SAVEBLOCK1_END; i++) { gRamSaveSectorLocations[i].data = (void*)(gSaveBlock1Ptr) + sSaveSlotLayout[i].offset; gRamSaveSectorLocations[i].size = sSaveSlotLayout[i].size; } for (; i <= SECTOR_ID_PKMN_STORAGE_END; i++) //setting i to SECTOR_ID_PKMN_STORAGE_START does not match { gRamSaveSectorLocations[i].data = (void*)(gPokemonStoragePtr) + sSaveSlotLayout[i].offset; gRamSaveSectorLocations[i].size = sSaveSlotLayout[i].size; } } u8 HandleSavingData(u8 saveType) { u8 i; u32 *backupVar = gTrainerHillVBlankCounter; u8 *tempAddr; gTrainerHillVBlankCounter = NULL; UpdateSaveAddresses(); switch (saveType) { case SAVE_HALL_OF_FAME_ERASE_BEFORE: // Unused. Erases the special save sectors (HOF, Trainer Hill, Recorded Battle) // before overwriting HOF. for (i = SECTOR_ID_HOF_1; i < SECTORS_COUNT; i++) EraseFlashSector(i); // fallthrough case SAVE_HALL_OF_FAME: if (GetGameStat(GAME_STAT_ENTERED_HOF) < 999) IncrementGameStat(GAME_STAT_ENTERED_HOF); // Write the full save slot first CopyPartyAndObjectsToSave(); WriteSaveSectorOrSlot(FULL_SAVE_SLOT, gRamSaveSectorLocations); // Save the Hall of Fame tempAddr = gDecompressionBuffer; HandleWriteSectorNBytes(SECTOR_ID_HOF_1, tempAddr, SECTOR_DATA_SIZE); HandleWriteSectorNBytes(SECTOR_ID_HOF_2, tempAddr + SECTOR_DATA_SIZE, SECTOR_DATA_SIZE); break; case SAVE_NORMAL: default: CopyPartyAndObjectsToSave(); WriteSaveSectorOrSlot(FULL_SAVE_SLOT, gRamSaveSectorLocations); break; case SAVE_LINK: case SAVE_LINK2: // Used by link / Battle Frontier // Write only SaveBlocks 1 and 2 (skips the PC) CopyPartyAndObjectsToSave(); for(i = SECTOR_ID_SAVEBLOCK2; i <= SECTOR_ID_SAVEBLOCK1_END; i++) HandleReplaceSector(i, gRamSaveSectorLocations); for(i = SECTOR_ID_SAVEBLOCK2; i <= SECTOR_ID_SAVEBLOCK1_END; i++) WriteSectorSecurityByte_NoOffset(i, gRamSaveSectorLocations); break; case SAVE_OVERWRITE_DIFFERENT_FILE: // Erase Hall of Fame for (i = SECTOR_ID_HOF_1; i < SECTORS_COUNT; i++) EraseFlashSector(i); // Overwrite save slot CopyPartyAndObjectsToSave(); WriteSaveSectorOrSlot(FULL_SAVE_SLOT, gRamSaveSectorLocations); break; } gTrainerHillVBlankCounter = backupVar; return 0; } u8 TrySavingData(u8 saveType) { if (gFlashMemoryPresent != TRUE) { gSaveAttemptStatus = SAVE_STATUS_ERROR; return SAVE_STATUS_ERROR; } HandleSavingData(saveType); if (!gDamagedSaveSectors) { gSaveAttemptStatus = SAVE_STATUS_OK; return SAVE_STATUS_OK; } else { DoSaveFailedScreen(saveType); gSaveAttemptStatus = SAVE_STATUS_ERROR; return SAVE_STATUS_ERROR; } } bool8 LinkFullSave_Init(void) { if (gFlashMemoryPresent != TRUE) return TRUE; UpdateSaveAddresses(); CopyPartyAndObjectsToSave(); RestoreSaveBackupVarsAndIncrement(gRamSaveSectorLocations); return FALSE; } bool8 LinkFullSave_WriteSector(void) { u8 status = HandleWriteIncrementalSector(NUM_SECTORS_PER_SLOT, gRamSaveSectorLocations); if (gDamagedSaveSectors) DoSaveFailedScreen(SAVE_NORMAL); // In this case "error" either means that an actual error was encountered // or that the given max sector has been reached (meaning it has finished successfully). // If there was an actual error the save failed screen above will also be shown. if (status == SAVE_STATUS_ERROR) return TRUE; else return FALSE; } bool8 LinkFullSave_ReplaceLastSector(void) { HandleReplaceSectorAndVerify(NUM_SECTORS_PER_SLOT, gRamSaveSectorLocations); if (gDamagedSaveSectors) DoSaveFailedScreen(SAVE_NORMAL); return FALSE; } bool8 LinkFullSave_SetLastSectorSecurity(void) { CopySectorSecurityByte(NUM_SECTORS_PER_SLOT, gRamSaveSectorLocations); if (gDamagedSaveSectors) DoSaveFailedScreen(SAVE_NORMAL); return FALSE; } u8 WriteSaveBlock2(void) { if (gFlashMemoryPresent != TRUE) return TRUE; UpdateSaveAddresses(); CopyPartyAndObjectsToSave(); RestoreSaveBackupVars(gRamSaveSectorLocations); // Because RestoreSaveBackupVars is called immediately prior, gIncrementalSectorId will always be 0 below, // so this function only saves the first sector (SECTOR_ID_SAVEBLOCK2) HandleReplaceSectorAndVerify(gIncrementalSectorId + 1, gRamSaveSectorLocations); return FALSE; } // Used in conjunction with WriteSaveBlock2 to write both for certain link saves. // This will be called repeatedly in a task, writing each sector of SaveBlock1 incrementally. // It returns TRUE when finished. bool8 WriteSaveBlock1Sector(void) { u8 finished = FALSE; u16 sectorId = ++gIncrementalSectorId; // Because WriteSaveBlock2 will have been called prior, this will be SECTOR_ID_SAVEBLOCK1_START if (sectorId <= SECTOR_ID_SAVEBLOCK1_END) { // Write a single sector of SaveBlock1 HandleReplaceSectorAndVerify(gIncrementalSectorId + 1, gRamSaveSectorLocations); WriteSectorSecurityByte(sectorId, gRamSaveSectorLocations); } else { // Beyond SaveBlock1, don't write the sector. // Does write 1 byte of the next sector's security field, but as these // are the same for all valid sectors it doesn't matter. WriteSectorSecurityByte(sectorId, gRamSaveSectorLocations); finished = TRUE; } if (gDamagedSaveSectors) DoSaveFailedScreen(SAVE_LINK); return finished; } u8 LoadGameSave(u8 saveType) { u8 status; if (gFlashMemoryPresent != TRUE) { gSaveFileStatus = SAVE_STATUS_NO_FLASH; return SAVE_STATUS_ERROR; } UpdateSaveAddresses(); switch (saveType) { case SAVE_NORMAL: default: status = TryLoadSaveSlot(FULL_SAVE_SLOT, gRamSaveSectorLocations); CopyPartyAndObjectsFromSave(); gSaveFileStatus = status; gGameContinueCallback = 0; break; case SAVE_HALL_OF_FAME: status = TryLoadSaveSector(SECTOR_ID_HOF_1, gDecompressionBuffer, SECTOR_DATA_SIZE); if (status == SAVE_STATUS_OK) status = TryLoadSaveSector(SECTOR_ID_HOF_2, &gDecompressionBuffer[SECTOR_DATA_SIZE], SECTOR_DATA_SIZE); break; } return status; } u16 GetSaveBlocksPointersBaseOffset(void) { u16 i, slotOffset; struct SaveSector* sector; sector = gReadWriteSector = &gSaveDataBuffer; if (gFlashMemoryPresent != TRUE) return 0; UpdateSaveAddresses(); GetSaveValidStatus(gRamSaveSectorLocations); slotOffset = NUM_SECTORS_PER_SLOT * (gSaveCounter % NUM_SAVE_SLOTS); for (i = 0; i < NUM_SECTORS_PER_SLOT; i++) { ReadFlashSector(i + slotOffset, gReadWriteSector); // Base offset for SaveBlock2 is calculated using the trainer id if (gReadWriteSector->id == SECTOR_ID_SAVEBLOCK2) return sector->data[offsetof(struct SaveBlock2, playerTrainerId[0])] + sector->data[offsetof(struct SaveBlock2, playerTrainerId[1])] + sector->data[offsetof(struct SaveBlock2, playerTrainerId[2])] + sector->data[offsetof(struct SaveBlock2, playerTrainerId[3])]; } return 0; } u32 TryReadSpecialSaveSector(u8 sector, u8* dst) { s32 i; s32 size; u8* savData; if (sector != SECTOR_ID_TRAINER_HILL && sector != SECTOR_ID_RECORDED_BATTLE) return SAVE_STATUS_ERROR; ReadFlash(sector, 0, (u8 *)&gSaveDataBuffer, SECTOR_SIZE); if (*(u32*)(&gSaveDataBuffer.data[0]) != SPECIAL_SECTOR_SENTINEL) return SAVE_STATUS_ERROR; // Copies whole save sector except u32 counter i = 0; size = SECTOR_COUNTER_OFFSET - 1; savData = &gSaveDataBuffer.data[4]; // data[4] to skip past SPECIAL_SECTOR_SENTINEL for (; i <= size; i++) dst[i] = savData[i]; return SAVE_STATUS_OK; } u32 TryWriteSpecialSaveSector(u8 sector, u8* src) { s32 i; s32 size; u8* savData; void* savDataBuffer; if (sector != SECTOR_ID_TRAINER_HILL && sector != SECTOR_ID_RECORDED_BATTLE) return SAVE_STATUS_ERROR; savDataBuffer = &gSaveDataBuffer; *(u32*)(savDataBuffer) = SPECIAL_SECTOR_SENTINEL; // Copies whole save sector except u32 counter i = 0; size = SECTOR_COUNTER_OFFSET - 1; savData = &gSaveDataBuffer.data[4]; // data[4] to skip past SPECIAL_SECTOR_SENTINEL for (; i <= size; i++) savData[i] = src[i]; if (ProgramFlashSectorAndVerify(sector, savDataBuffer) != 0) return SAVE_STATUS_ERROR; return SAVE_STATUS_OK; } #define tState data[0] #define tTimer data[1] #define tInBattleTower data[2] // Note that this is very different from TrySavingData(SAVE_LINK). // Most notably it does save the PC data. void Task_LinkFullSave(u8 taskId) { s16* data = gTasks[taskId].data; switch (tState) { case 0: gSoftResetDisabled = TRUE; tState = 1; break; case 1: SetLinkStandbyCallback(); tState = 2; break; case 2: if (IsLinkTaskFinished()) { if (!tInBattleTower) SaveMapView(); tState = 3; } break; case 3: if (!tInBattleTower) SetContinueGameWarpStatusToDynamicWarp(); LinkFullSave_Init(); tState = 4; break; case 4: if (++tTimer == 5) { tTimer = 0; tState = 5; } break; case 5: if (LinkFullSave_WriteSector()) tState = 6; else tState = 4; // Not finished, delay again break; case 6: LinkFullSave_ReplaceLastSector(); tState = 7; break; case 7: if (!tInBattleTower) ClearContinueGameWarpStatus2(); SetLinkStandbyCallback(); tState = 8; break; case 8: if (IsLinkTaskFinished()) { LinkFullSave_SetLastSectorSecurity(); tState = 9; } break; case 9: SetLinkStandbyCallback(); tState = 10; break; case 10: if (IsLinkTaskFinished()) tState++; break; case 11: if (++tTimer > 5) { gSoftResetDisabled = FALSE; DestroyTask(taskId); } break; } }