/* More subroutines needed by GCC output code on some machines. */ /* Compile this one with gcc. */ /* Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* As a special exception, if you link this library with other files, some of which are compiled with GCC, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ /* It is incorrect to include config.h here, because this file is being compiled for the target, and hence definitions concerning only the host do not apply. */ #include "tconfig.h" /* We disable this when inhibit_libc, so that gcc can still be built without needing header files first. */ /* ??? This is not a good solution, since prototypes may be required in some cases for correct code. See also frame.c. */ #include "machmode.h" #include "defaults.h" #include /* Don't use `fancy_abort' here even if config.h says to use it. */ #ifdef abort #undef abort #endif #if (SUPPORTS_WEAK == 1) && (defined (ASM_OUTPUT_DEF) || defined (ASM_OUTPUT_WEAK_ALIAS)) #define WEAK_ALIAS #endif /* In a cross-compilation situation, default to inhibiting compilation of routines that use libc. */ /* Permit the tm.h file to select the endianness to use just for this file. This is used when the endianness is determined when the compiler is run. */ #ifndef LIBGCC2_WORDS_BIG_ENDIAN #define LIBGCC2_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN #endif #ifndef LIBGCC2_LONG_DOUBLE_TYPE_SIZE #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE LONG_DOUBLE_TYPE_SIZE #endif /* In the first part of this file, we are interfacing to calls generated by the compiler itself. These calls pass values into these routines which have very specific modes (rather than very specific types), and these compiler-generated calls also expect any return values to have very specific modes (rather than very specific types). Thus, we need to avoid using regular C language type names in this part of the file because the sizes for those types can be configured to be anything. Instead we use the following special type names. */ typedef unsigned int UQItype __attribute__ ((mode (QI))); typedef int SItype __attribute__ ((mode (SI))); typedef unsigned int USItype __attribute__ ((mode (SI))); typedef int DItype __attribute__ ((mode (DI))); typedef unsigned int UDItype __attribute__ ((mode (DI))); typedef float SFtype __attribute__ ((mode (SF))); typedef float DFtype __attribute__ ((mode (DF))); #if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96 typedef float XFtype __attribute__ ((mode (XF))); #endif #if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128 typedef float TFtype __attribute__ ((mode (TF))); #endif typedef int word_type __attribute__ ((mode (__word__))); /* Make sure that we don't accidentally use any normal C language built-in type names in the first part of this file. Instead we want to use *only* the type names defined above. The following macro definitions insure that if we *do* accidentally use some normal C language built-in type name, we will get a syntax error. */ #define char bogus_type #define short bogus_type #define int bogus_type #define long bogus_type #define unsigned bogus_type #define float bogus_type #define double bogus_type #define SI_TYPE_SIZE (sizeof (SItype) * BITS_PER_UNIT) /* DIstructs are pairs of SItype values in the order determined by LIBGCC2_WORDS_BIG_ENDIAN. */ #if LIBGCC2_WORDS_BIG_ENDIAN struct DIstruct {SItype high, low;}; #else struct DIstruct {SItype low, high;}; #endif /* We need this union to unpack/pack DImode values, since we don't have any arithmetic yet. Incoming DImode parameters are stored into the `ll' field, and the unpacked result is read from the struct `s'. */ typedef union { struct DIstruct s; DItype ll; } DIunion; #if (defined (L_udivmoddi4) || defined (L_muldi3) || defined (L_udiv_w_sdiv)\ || defined (L_divdi3) || defined (L_udivdi3) \ || defined (L_moddi3) || defined (L_umoddi3)) #include "longlong.h" #endif /* udiv or mul */ extern DItype __fixunssfdi (SFtype a); extern DItype __fixunsdfdi (DFtype a); #if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96 extern DItype __fixunsxfdi (XFtype a); #endif #if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128 extern DItype __fixunstfdi (TFtype a); #endif #if defined (L_negdi2) || defined (L_divdi3) || defined (L_moddi3) #if defined (L_divdi3) || defined (L_moddi3) static inline #endif DItype __negdi2 (DItype u) { DIunion w; DIunion uu; uu.ll = u; w.s.low = -uu.s.low; w.s.high = -uu.s.high - ((USItype) w.s.low > 0); return w.ll; } #endif /* Unless shift functions are defined whith full ANSI prototypes, parameter b will be promoted to int if word_type is smaller than an int. */ #ifdef L_lshrdi3 DItype __lshrdi3 (DItype u, word_type b) { DIunion w; word_type bm; DIunion uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (SItype) * BITS_PER_UNIT) - b; if (bm <= 0) { w.s.high = 0; w.s.low = (USItype)uu.s.high >> -bm; } else { USItype carries = (USItype)uu.s.high << bm; w.s.high = (USItype)uu.s.high >> b; w.s.low = ((USItype)uu.s.low >> b) | carries; } return w.ll; } #endif #ifdef L_ashldi3 DItype __ashldi3 (DItype u, word_type b) { DIunion w; word_type bm; DIunion uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (SItype) * BITS_PER_UNIT) - b; if (bm <= 0) { w.s.low = 0; w.s.high = (USItype)uu.s.low << -bm; } else { USItype carries = (USItype)uu.s.low >> bm; w.s.low = (USItype)uu.s.low << b; w.s.high = ((USItype)uu.s.high << b) | carries; } return w.ll; } #endif #ifdef L_ashrdi3 DItype __ashrdi3 (DItype u, word_type b) { DIunion w; word_type bm; DIunion uu; if (b == 0) return u; uu.ll = u; bm = (sizeof (SItype) * BITS_PER_UNIT) - b; if (bm <= 0) { /* w.s.high = 1..1 or 0..0 */ w.s.high = uu.s.high >> (sizeof (SItype) * BITS_PER_UNIT - 1); w.s.low = uu.s.high >> -bm; } else { USItype carries = (USItype)uu.s.high << bm; w.s.high = uu.s.high >> b; w.s.low = ((USItype)uu.s.low >> b) | carries; } return w.ll; } #endif #ifdef L_ffsdi2 DItype __ffsdi2 (DItype u) { DIunion uu, w; uu.ll = u; w.s.high = 0; w.s.low = ffs (uu.s.low); if (w.s.low != 0) return w.ll; w.s.low = ffs (uu.s.high); if (w.s.low != 0) { w.s.low += BITS_PER_UNIT * sizeof (SItype); return w.ll; } return w.ll; } #endif #ifdef L_muldi3 DItype __muldi3 (DItype u, DItype v) { DIunion w; DIunion uu, vv; uu.ll = u, vv.ll = v; w.ll = __umulsidi3 (uu.s.low, vv.s.low); w.s.high += ((USItype) uu.s.low * (USItype) vv.s.high + (USItype) uu.s.high * (USItype) vv.s.low); return w.ll; } #endif #ifdef L_udiv_w_sdiv #if defined (sdiv_qrnnd) USItype __udiv_w_sdiv (USItype *rp, USItype a1, USItype a0, USItype d) { USItype q, r; USItype c0, c1, b1; if ((SItype) d >= 0) { if (a1 < d - a1 - (a0 >> (SI_TYPE_SIZE - 1))) { /* dividend, divisor, and quotient are nonnegative */ sdiv_qrnnd (q, r, a1, a0, d); } else { /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */ sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (SI_TYPE_SIZE - 1)); /* Divide (c1*2^32 + c0) by d */ sdiv_qrnnd (q, r, c1, c0, d); /* Add 2^31 to quotient */ q += (USItype) 1 << (SI_TYPE_SIZE - 1); } } else { b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */ c1 = a1 >> 1; /* A/2 */ c0 = (a1 << (SI_TYPE_SIZE - 1)) + (a0 >> 1); if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */ { sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */ if ((d & 1) != 0) { if (r >= q) r = r - q; else if (q - r <= d) { r = r - q + d; q--; } else { r = r - q + 2*d; q -= 2; } } } else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */ { c1 = (b1 - 1) - c1; c0 = ~c0; /* logical NOT */ sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ q = ~q; /* (A/2)/b1 */ r = (b1 - 1) - r; r = 2*r + (a0 & 1); /* A/(2*b1) */ if ((d & 1) != 0) { if (r >= q) r = r - q; else if (q - r <= d) { r = r - q + d; q--; } else { r = r - q + 2*d; q -= 2; } } } else /* Implies c1 = b1 */ { /* Hence a1 = d - 1 = 2*b1 - 1 */ if (a0 >= -d) { q = -1; r = a0 + d; } else { q = -2; r = a0 + 2*d; } } } *rp = r; return q; } #else /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */ USItype __udiv_w_sdiv (USItype *rp __attribute__ ((__unused__)), USItype a1 __attribute__ ((__unused__)), USItype a0 __attribute__ ((__unused__)), USItype d __attribute__ ((__unused__))) { return 0; } #endif #endif #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) #define L_udivmoddi4 #endif #ifdef L_udivmoddi4 static const UQItype __clz_tab[] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, }; #if (defined (L_udivdi3) || defined (L_divdi3) || \ defined (L_umoddi3) || defined (L_moddi3)) static inline #endif UDItype __udivmoddi4 (UDItype n, UDItype d, UDItype *rp) { DIunion ww; DIunion nn, dd; DIunion rr; USItype d0, d1, n0, n1, n2; USItype q0, q1; USItype b, bm; nn.ll = n; dd.ll = d; d0 = dd.s.low; d1 = dd.s.high; n0 = nn.s.low; n1 = nn.s.high; #if !UDIV_NEEDS_NORMALIZATION if (d1 == 0) { if (d0 > n1) { /* 0q = nn / 0D */ udiv_qrnnd (q0, n0, n1, n0, d0); q1 = 0; /* Remainder in n0. */ } else { /* qq = NN / 0d */ if (d0 == 0) d0 = 1 / d0; /* Divide intentionally by zero. */ udiv_qrnnd (q1, n1, 0, n1, d0); udiv_qrnnd (q0, n0, n1, n0, d0); /* Remainder in n0. */ } if (rp != 0) { rr.s.low = n0; rr.s.high = 0; *rp = rr.ll; } } #else /* UDIV_NEEDS_NORMALIZATION */ if (d1 == 0) { if (d0 > n1) { /* 0q = nn / 0D */ count_leading_zeros (bm, d0); if (bm != 0) { /* Normalize, i.e. make the most significant bit of the denominator set. */ d0 = d0 << bm; n1 = (n1 << bm) | (n0 >> (SI_TYPE_SIZE - bm)); n0 = n0 << bm; } udiv_qrnnd (q0, n0, n1, n0, d0); q1 = 0; /* Remainder in n0 >> bm. */ } else { /* qq = NN / 0d */ if (d0 == 0) d0 = 1 / d0; /* Divide intentionally by zero. */ count_leading_zeros (bm, d0); if (bm == 0) { /* From (n1 >= d0) /\ (the most significant bit of d0 is set), conclude (the most significant bit of n1 is set) /\ (the leading quotient digit q1 = 1). This special case is necessary, not an optimization. (Shifts counts of SI_TYPE_SIZE are undefined.) */ n1 -= d0; q1 = 1; } else { /* Normalize. */ b = SI_TYPE_SIZE - bm; d0 = d0 << bm; n2 = n1 >> b; n1 = (n1 << bm) | (n0 >> b); n0 = n0 << bm; udiv_qrnnd (q1, n1, n2, n1, d0); } /* n1 != d0... */ udiv_qrnnd (q0, n0, n1, n0, d0); /* Remainder in n0 >> bm. */ } if (rp != 0) { rr.s.low = n0 >> bm; rr.s.high = 0; *rp = rr.ll; } } #endif /* UDIV_NEEDS_NORMALIZATION */ else { if (d1 > n1) { /* 00 = nn / DD */ q0 = 0; q1 = 0; /* Remainder in n1n0. */ if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { /* 0q = NN / dd */ count_leading_zeros (bm, d1); if (bm == 0) { /* From (n1 >= d1) /\ (the most significant bit of d1 is set), conclude (the most significant bit of n1 is set) /\ (the quotient digit q0 = 0 or 1). This special case is necessary, not an optimization. */ /* The condition on the next line takes advantage of that n1 >= d1 (true due to program flow). */ if (n1 > d1 || n0 >= d0) { q0 = 1; sub_ddmmss (n1, n0, n1, n0, d1, d0); } else q0 = 0; q1 = 0; if (rp != 0) { rr.s.low = n0; rr.s.high = n1; *rp = rr.ll; } } else { USItype m1, m0; /* Normalize. */ b = SI_TYPE_SIZE - bm; d1 = (d1 << bm) | (d0 >> b); d0 = d0 << bm; n2 = n1 >> b; n1 = (n1 << bm) | (n0 >> b); n0 = n0 << bm; udiv_qrnnd (q0, n1, n2, n1, d1); umul_ppmm (m1, m0, q0, d0); if (m1 > n1 || (m1 == n1 && m0 > n0)) { q0--; sub_ddmmss (m1, m0, m1, m0, d1, d0); } q1 = 0; /* Remainder in (n1n0 - m1m0) >> bm. */ if (rp != 0) { sub_ddmmss (n1, n0, n1, n0, m1, m0); rr.s.low = (n1 << b) | (n0 >> bm); rr.s.high = n1 >> bm; *rp = rr.ll; } } } } ww.s.low = q0; ww.s.high = q1; return ww.ll; } #endif #ifdef L_divdi3 UDItype __udivmoddi4 (); DItype __divdi3 (DItype u, DItype v) { word_type c = 0; DIunion uu, vv; DItype w; uu.ll = u; vv.ll = v; if (uu.s.high < 0) c = ~c, uu.ll = __negdi2 (uu.ll); if (vv.s.high < 0) c = ~c, vv.ll = __negdi2 (vv.ll); w = __udivmoddi4 (uu.ll, vv.ll, (UDItype *) 0); if (c) w = __negdi2 (w); return w; } #endif #ifdef L_moddi3 UDItype __udivmoddi4 (); DItype __moddi3 (DItype u, DItype v) { word_type c = 0; DIunion uu, vv; DItype w; uu.ll = u; vv.ll = v; if (uu.s.high < 0) c = ~c, uu.ll = __negdi2 (uu.ll); if (vv.s.high < 0) vv.ll = __negdi2 (vv.ll); (void) __udivmoddi4 (uu.ll, vv.ll, &w); if (c) w = __negdi2 (w); return w; } #endif #ifdef L_umoddi3 UDItype __udivmoddi4 (); UDItype __umoddi3 (UDItype u, UDItype v) { UDItype w; (void) __udivmoddi4 (u, v, &w); return w; } #endif #ifdef L_udivdi3 UDItype __udivmoddi4 (); UDItype __udivdi3 (UDItype n, UDItype d) { return __udivmoddi4 (n, d, (UDItype *) 0); } #endif #ifdef L_cmpdi2 word_type __cmpdi2 (DItype a, DItype b) { DIunion au, bu; au.ll = a, bu.ll = b; if (au.s.high < bu.s.high) return 0; else if (au.s.high > bu.s.high) return 2; if ((USItype) au.s.low < (USItype) bu.s.low) return 0; else if ((USItype) au.s.low > (USItype) bu.s.low) return 2; return 1; } #endif #ifdef L_ucmpdi2 word_type __ucmpdi2 (DItype a, DItype b) { DIunion au, bu; au.ll = a, bu.ll = b; if ((USItype) au.s.high < (USItype) bu.s.high) return 0; else if ((USItype) au.s.high > (USItype) bu.s.high) return 2; if ((USItype) au.s.low < (USItype) bu.s.low) return 0; else if ((USItype) au.s.low > (USItype) bu.s.low) return 2; return 1; } #endif #if defined(L_fixunstfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128) #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) DItype __fixunstfdi (TFtype a) { TFtype b; UDItype v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to DItype!), and shift it into the high word. */ v = (USItype) b; v <<= WORD_SIZE; /* Remove high part from the TFtype, leaving the low part as flonum. */ a -= (TFtype)v; /* Convert that to fixed (but not to DItype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (USItype) (- a); else v += (USItype) a; return v; } #endif #if defined(L_fixtfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128) DItype __fixtfdi (TFtype a) { if (a < 0) return - __fixunstfdi (-a); return __fixunstfdi (a); } #endif #if defined(L_fixunsxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96) #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) DItype __fixunsxfdi (XFtype a) { XFtype b; UDItype v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to DItype!), and shift it into the high word. */ v = (USItype) b; v <<= WORD_SIZE; /* Remove high part from the XFtype, leaving the low part as flonum. */ a -= (XFtype)v; /* Convert that to fixed (but not to DItype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (USItype) (- a); else v += (USItype) a; return v; } #endif #if defined(L_fixxfdi) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96) DItype __fixxfdi (XFtype a) { if (a < 0) return - __fixunsxfdi (-a); return __fixunsxfdi (a); } #endif #ifdef L_fixunsdfdi #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) DItype __fixunsdfdi (DFtype a) { DFtype b; UDItype v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to DItype!), and shift it into the high word. */ v = (USItype) b; v <<= WORD_SIZE; /* Remove high part from the DFtype, leaving the low part as flonum. */ a -= (DFtype)v; /* Convert that to fixed (but not to DItype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (USItype) (- a); else v += (USItype) a; return v; } #endif #ifdef L_fixdfdi DItype __fixdfdi (DFtype a) { if (a < 0) return - __fixunsdfdi (-a); return __fixunsdfdi (a); } #endif #ifdef L_fixunssfdi #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) DItype __fixunssfdi (SFtype original_a) { /* Convert the SFtype to a DFtype, because that is surely not going to lose any bits. Some day someone else can write a faster version that avoids converting to DFtype, and verify it really works right. */ DFtype a = original_a; DFtype b; UDItype v; if (a < 0) return 0; /* Compute high word of result, as a flonum. */ b = (a / HIGH_WORD_COEFF); /* Convert that to fixed (but not to DItype!), and shift it into the high word. */ v = (USItype) b; v <<= WORD_SIZE; /* Remove high part from the DFtype, leaving the low part as flonum. */ a -= (DFtype)v; /* Convert that to fixed (but not to DItype!) and add it in. Sometimes A comes out negative. This is significant, since A has more bits than a long int does. */ if (a < 0) v -= (USItype) (- a); else v += (USItype) a; return v; } #endif #ifdef L_fixsfdi DItype __fixsfdi (SFtype a) { if (a < 0) return - __fixunssfdi (-a); return __fixunssfdi (a); } #endif #if defined(L_floatdixf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96) #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDItype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) XFtype __floatdixf (DItype u) { XFtype d; d = (SItype) (u >> WORD_SIZE); d *= HIGH_HALFWORD_COEFF; d *= HIGH_HALFWORD_COEFF; d += (USItype) (u & (HIGH_WORD_COEFF - 1)); return d; } #endif #if defined(L_floatditf) && (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128) #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDItype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) TFtype __floatditf (DItype u) { TFtype d; d = (SItype) (u >> WORD_SIZE); d *= HIGH_HALFWORD_COEFF; d *= HIGH_HALFWORD_COEFF; d += (USItype) (u & (HIGH_WORD_COEFF - 1)); return d; } #endif #ifdef L_floatdidf #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDItype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) DFtype __floatdidf (DItype u) { DFtype d; d = (SItype) (u >> WORD_SIZE); d *= HIGH_HALFWORD_COEFF; d *= HIGH_HALFWORD_COEFF; d += (USItype) (u & (HIGH_WORD_COEFF - 1)); return d; } #endif #ifdef L_floatdisf #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT) #define HIGH_HALFWORD_COEFF (((UDItype) 1) << (WORD_SIZE / 2)) #define HIGH_WORD_COEFF (((UDItype) 1) << WORD_SIZE) #define DI_SIZE (sizeof (DItype) * BITS_PER_UNIT) /* Define codes for all the float formats that we know of. Note that this is copied from real.h. */ #define UNKNOWN_FLOAT_FORMAT 0 #define IEEE_FLOAT_FORMAT 1 #define VAX_FLOAT_FORMAT 2 #define IBM_FLOAT_FORMAT 3 /* Default to IEEE float if not specified. Nearly all machines use it. */ #ifndef HOST_FLOAT_FORMAT #define HOST_FLOAT_FORMAT IEEE_FLOAT_FORMAT #endif #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT #define DF_SIZE 53 #define SF_SIZE 24 #endif #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT #define DF_SIZE 56 #define SF_SIZE 24 #endif #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT #define DF_SIZE 56 #define SF_SIZE 24 #endif SFtype __floatdisf (DItype u) { /* Do the calculation in DFmode so that we don't lose any of the precision of the high word while multiplying it. */ DFtype f; /* Protect against double-rounding error. Represent any low-order bits, that might be truncated in DFmode, by a bit that won't be lost. The bit can go in anywhere below the rounding position of the SFmode. A fixed mask and bit position handles all usual configurations. It doesn't handle the case of 128-bit DImode, however. */ if (DF_SIZE < DI_SIZE && DF_SIZE > (DI_SIZE - DF_SIZE + SF_SIZE)) { #define REP_BIT ((USItype) 1 << (DI_SIZE - DF_SIZE)) if (! (- ((DItype) 1 << DF_SIZE) < u && u < ((DItype) 1 << DF_SIZE))) { if ((USItype) u & (REP_BIT - 1)) u |= REP_BIT; } } f = (SItype) (u >> WORD_SIZE); f *= HIGH_HALFWORD_COEFF; f *= HIGH_HALFWORD_COEFF; f += (USItype) (u & (HIGH_WORD_COEFF - 1)); return (SFtype) f; } #endif #if defined(L_fixunsxfsi) && LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 96 /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include USItype __fixunsxfsi (XFtype a) { if (a >= - (DFtype) LONG_MIN) return (SItype) (a + LONG_MIN) - LONG_MIN; return (SItype) a; } #endif #ifdef L_fixunsdfsi /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include USItype __fixunsdfsi (DFtype a) { if (a >= - (DFtype) LONG_MIN) return (SItype) (a + LONG_MIN) - LONG_MIN; return (SItype) a; } #endif #ifdef L_fixunssfsi /* Reenable the normal types, in case limits.h needs them. */ #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double #undef MIN #undef MAX #include USItype __fixunssfsi (SFtype a) { if (a >= - (SFtype) LONG_MIN) return (SItype) (a + LONG_MIN) - LONG_MIN; return (SItype) a; } #endif /* From here on down, the routines use normal data types. */ #define SItype bogus_type #define USItype bogus_type #define DItype bogus_type #define UDItype bogus_type #define SFtype bogus_type #define DFtype bogus_type #undef char #undef short #undef int #undef long #undef unsigned #undef float #undef double