/* Data flow analysis for GNU compiler. Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file contains the data flow analysis pass of the compiler. It computes data flow information which tells combine_instructions which insns to consider combining and controls register allocation. Additional data flow information that is too bulky to record is generated during the analysis, and is used at that time to create autoincrement and autodecrement addressing. The first step is dividing the function into basic blocks. find_basic_blocks does this. Then life_analysis determines where each register is live and where it is dead. ** find_basic_blocks ** find_basic_blocks divides the current function's rtl into basic blocks. It records the beginnings and ends of the basic blocks in the vectors basic_block_head and basic_block_end, and the number of blocks in n_basic_blocks. find_basic_blocks also finds any unreachable loops and deletes them. ** life_analysis ** life_analysis is called immediately after find_basic_blocks. It uses the basic block information to determine where each hard or pseudo register is live. ** live-register info ** The information about where each register is live is in two parts: the REG_NOTES of insns, and the vector basic_block_live_at_start. basic_block_live_at_start has an element for each basic block, and the element is a bit-vector with a bit for each hard or pseudo register. The bit is 1 if the register is live at the beginning of the basic block. Two types of elements can be added to an insn's REG_NOTES. A REG_DEAD note is added to an insn's REG_NOTES for any register that meets both of two conditions: The value in the register is not needed in subsequent insns and the insn does not replace the value in the register (in the case of multi-word hard registers, the value in each register must be replaced by the insn to avoid a REG_DEAD note). In the vast majority of cases, an object in a REG_DEAD note will be used somewhere in the insn. The (rare) exception to this is if an insn uses a multi-word hard register and only some of the registers are needed in subsequent insns. In that case, REG_DEAD notes will be provided for those hard registers that are not subsequently needed. Partial REG_DEAD notes of this type do not occur when an insn sets only some of the hard registers used in such a multi-word operand; omitting REG_DEAD notes for objects stored in an insn is optional and the desire to do so does not justify the complexity of the partial REG_DEAD notes. REG_UNUSED notes are added for each register that is set by the insn but is unused subsequently (if every register set by the insn is unused and the insn does not reference memory or have some other side-effect, the insn is deleted instead). If only part of a multi-word hard register is used in a subsequent insn, REG_UNUSED notes are made for the parts that will not be used. To determine which registers are live after any insn, one can start from the beginning of the basic block and scan insns, noting which registers are set by each insn and which die there. ** Other actions of life_analysis ** life_analysis sets up the LOG_LINKS fields of insns because the information needed to do so is readily available. life_analysis deletes insns whose only effect is to store a value that is never used. life_analysis notices cases where a reference to a register as a memory address can be combined with a preceding or following incrementation or decrementation of the register. The separate instruction to increment or decrement is deleted and the address is changed to a POST_INC or similar rtx. Each time an incrementing or decrementing address is created, a REG_INC element is added to the insn's REG_NOTES list. life_analysis fills in certain vectors containing information about register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length, reg_n_calls_crosses and reg_basic_block. life_analysis sets current_function_sp_is_unchanging if the function doesn't modify the stack pointer. */ #include "config.h" #include "system.h" #include "rtl.h" #include "basic-block.h" #include "insn-config.h" #include "regs.h" #include "hard-reg-set.h" #include "flags.h" #include "output.h" #include "except.h" #include "toplev.h" #include "recog.h" #include "obstack.h" #define obstack_chunk_alloc xmalloc #define obstack_chunk_free free #define XNMALLOC(TYPE, COUNT) ((TYPE *) xmalloc ((COUNT) * sizeof (TYPE))) /* The contents of the current function definition are allocated in this obstack, and all are freed at the end of the function. For top-level functions, this is temporary_obstack. Separate obstacks are made for nested functions. */ extern struct obstack *function_obstack; /* List of labels that must never be deleted. */ extern rtx forced_labels; /* Get the basic block number of an insn. This info should not be expected to remain available after the end of life_analysis. */ /* This is the limit of the allocated space in the following two arrays. */ static int max_uid_for_flow; #define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)] /* This is where the BLOCK_NUM values are really stored. This is set up by find_basic_blocks and used there and in life_analysis, and then freed. */ int *uid_block_number; /* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */ #define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)] static char *uid_volatile; /* Nonzero if the second flow pass has completed. */ int flow2_completed; /* Number of basic blocks in the current function. */ int n_basic_blocks; /* Maximum register number used in this function, plus one. */ int max_regno; /* Indexed by n, giving various register information */ varray_type reg_n_info; /* Size of the reg_n_info table. */ unsigned int reg_n_max; /* Element N is the next insn that uses (hard or pseudo) register number N within the current basic block; or zero, if there is no such insn. This is valid only during the final backward scan in propagate_block. */ static rtx *reg_next_use; /* Size of a regset for the current function, in (1) bytes and (2) elements. */ int regset_bytes; int regset_size; /* Element N is first insn in basic block N. This info lasts until we finish compiling the function. */ rtx *x_basic_block_head; /* Element N is last insn in basic block N. This info lasts until we finish compiling the function. */ rtx *x_basic_block_end; /* Element N indicates whether basic block N can be reached through a computed jump. */ char *basic_block_computed_jump_target; /* Element N is a regset describing the registers live at the start of basic block N. This info lasts until we finish compiling the function. */ regset *basic_block_live_at_start; /* Regset of regs live when calls to `setjmp'-like functions happen. */ regset regs_live_at_setjmp; /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers that have to go in the same hard reg. The first two regs in the list are a pair, and the next two are another pair, etc. */ rtx regs_may_share; /* Pointer to head of predecessor/successor block list. */ static int_list_block *flow_int_list_blocks; /* Element N is the list of successors of basic block N. */ static int_list_ptr *basic_block_succ; /* Element N is the list of predecessors of basic block N. */ static int_list_ptr *basic_block_pred; /* Element N is depth within loops of the last insn in basic block number N. Freed after life_analysis. */ static short *basic_block_loop_depth; /* Depth within loops of basic block being scanned for lifetime analysis, plus one. This is the weight attached to references to registers. */ static int loop_depth; /* During propagate_block, this is non-zero if the value of CC0 is live. */ static int cc0_live; /* During propagate_block, this contains a list of all the MEMs we are tracking for dead store elimination. ?!? Note we leak memory by not free-ing items on this list. We need to write some generic routines to operate on memory lists since cse, gcse, loop, sched, flow and possibly other passes all need to do basically the same operations on these lists. */ static rtx mem_set_list; /* Set of registers that may be eliminable. These are handled specially in updating regs_ever_live. */ static HARD_REG_SET elim_reg_set; /* Forward declarations */ static void find_basic_blocks_1 PROTO((rtx, rtx)); static void add_edge PROTO((int, int)); static void add_edge_to_label PROTO((int, rtx)); static void make_edges PROTO((int)); static void mark_label_ref PROTO((int, rtx)); static void delete_unreachable_blocks PROTO((void)); static int delete_block PROTO((int)); static void life_analysis_1 PROTO((rtx, int)); static void propagate_block PROTO((regset, rtx, rtx, int, regset, int)); static int set_noop_p PROTO((rtx)); static int noop_move_p PROTO((rtx)); static void record_volatile_insns PROTO((rtx)); static void mark_regs_live_at_end PROTO((regset)); static int insn_dead_p PROTO((rtx, regset, int, rtx)); static int libcall_dead_p PROTO((rtx, regset, rtx, rtx)); static void mark_set_regs PROTO((regset, regset, rtx, rtx, regset)); static void mark_set_1 PROTO((regset, regset, rtx, rtx, regset)); #ifdef AUTO_INC_DEC static void find_auto_inc PROTO((regset, rtx, rtx)); static int try_pre_increment_1 PROTO((rtx)); static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT)); #endif static void mark_used_regs PROTO((regset, regset, rtx, int, rtx)); void dump_flow_info PROTO((FILE *)); static void add_pred_succ PROTO ((int, int, int_list_ptr *, int_list_ptr *, int *, int *)); static int_list_ptr alloc_int_list_node PROTO ((int_list_block **)); static int_list_ptr add_int_list_node PROTO ((int_list_block **, int_list **, int)); /* CYGNUS LOCAL LRS */ void init_regset_vector PROTO ((regset *, int, struct obstack *)); static void count_reg_sets_1 PROTO ((rtx)); static void count_reg_sets PROTO ((rtx)); static void count_reg_references PROTO ((rtx)); static void notice_stack_pointer_modification PROTO ((rtx, rtx)); static void invalidate_mems_from_autoinc PROTO ((rtx)); /* Find basic blocks of the current function. F is the first insn of the function and NREGS the number of register numbers in use. */ void find_basic_blocks (f, nregs, file) rtx f; int nregs; FILE *file; { register rtx insn; register int i; rtx nonlocal_label_list = nonlocal_label_rtx_list (); /* Avoid leaking memory if this is called multiple times per compiled function. */ free_bb_memory (); /* Count the basic blocks. Also find maximum insn uid value used. */ { rtx prev_call = 0; register RTX_CODE prev_code = JUMP_INSN; register RTX_CODE code; int eh_region = 0; int call_had_abnormal_edge = 0; for (insn = f, i = 0; insn; insn = NEXT_INSN (insn)) { code = GET_CODE (insn); /* A basic block starts at label, or after something that can jump. */ if (code == CODE_LABEL || (GET_RTX_CLASS (code) == 'i' && (prev_code == JUMP_INSN || (prev_code == CALL_INSN && call_had_abnormal_edge) || prev_code == BARRIER))) { i++; /* If the previous insn was a call that did not create an abnormal edge, we want to add a nop so that the CALL_INSN itself is not at basic block end. This allows us to easily distinguish between normal calls and those which create abnormal edges in the flow graph. */ if (i > 0 && !call_had_abnormal_edge && prev_call != 0) { rtx nop = gen_rtx_USE (VOIDmode, const0_rtx); emit_insn_after (nop, prev_call); } } if (code == CALL_INSN) { rtx note = find_reg_note(insn, REG_EH_REGION, NULL_RTX); /* We change the code of the CALL_INSN, so that it won't start a new block. */ if (note && XINT (XEXP (note, 0), 0) == 0) code = INSN; else { prev_call = insn; call_had_abnormal_edge = (nonlocal_label_list != 0 || eh_region); } } else if (code != NOTE && code != BARRIER) prev_call = 0; if (code != NOTE) prev_code = code; else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG) ++eh_region; else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END) --eh_region; } } n_basic_blocks = i; max_uid_for_flow = get_max_uid (); #ifdef AUTO_INC_DEC /* Leave space for insns life_analysis makes in some cases for auto-inc. These cases are rare, so we don't need too much space. */ max_uid_for_flow += max_uid_for_flow / 10; #endif /* Allocate some tables that last till end of compiling this function and some needed only in find_basic_blocks and life_analysis. */ x_basic_block_head = XNMALLOC (rtx, n_basic_blocks); x_basic_block_end = XNMALLOC (rtx, n_basic_blocks); basic_block_succ = XNMALLOC (int_list_ptr, n_basic_blocks); basic_block_pred = XNMALLOC (int_list_ptr, n_basic_blocks); bzero ((char *)basic_block_succ, n_basic_blocks * sizeof (int_list_ptr)); bzero ((char *)basic_block_pred, n_basic_blocks * sizeof (int_list_ptr)); basic_block_computed_jump_target = (char *) oballoc (n_basic_blocks); basic_block_loop_depth = XNMALLOC (short, n_basic_blocks); uid_block_number = XNMALLOC (int, (max_uid_for_flow + 1)); uid_volatile = XNMALLOC (char, (max_uid_for_flow + 1)); bzero (uid_volatile, max_uid_for_flow + 1); find_basic_blocks_1 (f, nonlocal_label_list); } /* For communication between find_basic_blocks_1 and its subroutines. */ /* An array of CODE_LABELs, indexed by UID for the start of the active EH handler for each insn in F. */ static int *active_eh_region; static int *nested_eh_region; /* Element N nonzero if basic block N can actually be reached. */ static char *block_live_static; /* List of label_refs to all labels whose addresses are taken and used as data. */ static rtx label_value_list; /* a list of non-local labels in the function. */ static rtx nonlocal_label_list; /* Find all basic blocks of the function whose first insn is F. Store the correct data in the tables that describe the basic blocks, set up the chains of references for each CODE_LABEL, and delete any entire basic blocks that cannot be reached. NONLOCAL_LABELS is a list of non-local labels in the function. Blocks that are otherwise unreachable may be reachable with a non-local goto. */ static void find_basic_blocks_1 (f, nonlocal_labels) rtx f, nonlocal_labels; { register rtx insn; register int i; register char *block_live = (char *) alloca (n_basic_blocks); register char *block_marked = (char *) alloca (n_basic_blocks); rtx note, eh_note; enum rtx_code prev_code, code; int depth; int call_had_abnormal_edge = 0; active_eh_region = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int)); nested_eh_region = (int *) alloca ((max_label_num () + 1) * sizeof (int)); nonlocal_label_list = nonlocal_labels; label_value_list = 0; block_live_static = block_live; bzero (block_live, n_basic_blocks); bzero (block_marked, n_basic_blocks); bzero (basic_block_computed_jump_target, n_basic_blocks); bzero ((char *) active_eh_region, (max_uid_for_flow + 1) * sizeof (int)); bzero ((char *) nested_eh_region, (max_label_num () + 1) * sizeof (int)); current_function_has_computed_jump = 0; /* Initialize with just block 0 reachable and no blocks marked. */ if (n_basic_blocks > 0) block_live[0] = 1; /* Initialize the ref chain of each label to 0. Record where all the blocks start and end and their depth in loops. For each insn, record the block it is in. Also mark as reachable any blocks headed by labels that must not be deleted. */ for (eh_note = NULL_RTX, insn = f, i = -1, prev_code = JUMP_INSN, depth = 1; insn; insn = NEXT_INSN (insn)) { code = GET_CODE (insn); if (code == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG) depth++; else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END) depth--; } /* A basic block starts at label, or after something that can jump. */ else if (code == CODE_LABEL || (GET_RTX_CLASS (code) == 'i' && (prev_code == JUMP_INSN || (prev_code == CALL_INSN && call_had_abnormal_edge) || prev_code == BARRIER))) { BLOCK_HEAD (++i) = insn; BLOCK_END (i) = insn; basic_block_loop_depth[i] = depth; if (code == CODE_LABEL) { LABEL_REFS (insn) = insn; /* Any label that cannot be deleted is considered to start a reachable block. */ if (LABEL_PRESERVE_P (insn)) block_live[i] = 1; } } else if (GET_RTX_CLASS (code) == 'i') { BLOCK_END (i) = insn; basic_block_loop_depth[i] = depth; } if (GET_RTX_CLASS (code) == 'i') { /* Make a list of all labels referred to other than by jumps. */ for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_LABEL && XEXP (note, 0) != eh_return_stub_label) label_value_list = gen_rtx_EXPR_LIST (VOIDmode, XEXP (note, 0), label_value_list); } /* Keep a lifo list of the currently active exception notes. */ if (GET_CODE (insn) == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG) { if (eh_note) nested_eh_region [NOTE_BLOCK_NUMBER (insn)] = NOTE_BLOCK_NUMBER (XEXP (eh_note, 0)); else nested_eh_region [NOTE_BLOCK_NUMBER (insn)] = 0; eh_note = gen_rtx_EXPR_LIST (VOIDmode, insn, eh_note); } else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END) eh_note = XEXP (eh_note, 1); } /* If we encounter a CALL_INSN, note which exception handler it might pass control to. If doing asynchronous exceptions, record the active EH handler for every insn, since most insns can throw. */ else if (eh_note && (asynchronous_exceptions || (GET_CODE (insn) == CALL_INSN))) active_eh_region[INSN_UID (insn)] = NOTE_BLOCK_NUMBER (XEXP (eh_note, 0)); BLOCK_NUM (insn) = i; /* We change the code of the CALL_INSN, so that it won't start a new block if it doesn't throw. */ if (code == CALL_INSN) { rtx rnote = find_reg_note(insn, REG_EH_REGION, NULL_RTX); if (rnote && XINT (XEXP (rnote, 0), 0) == 0) code = INSN; } /* Record whether this call created an edge. */ if (code == CALL_INSN) call_had_abnormal_edge = (nonlocal_label_list != 0 || eh_note); if (code != NOTE) prev_code = code; } if (i + 1 != n_basic_blocks) abort (); /* Now find which basic blocks can actually be reached and put all jump insns' LABEL_REFS onto the ref-chains of their target labels. */ if (n_basic_blocks > 0) { int something_marked = 1; /* Pass over all blocks, marking each block that is reachable and has not yet been marked. Keep doing this until, in one pass, no blocks have been marked. Then blocks_live and blocks_marked are identical and correct. In addition, all jumps actually reachable have been marked. */ while (something_marked) { something_marked = 0; for (i = 0; i < n_basic_blocks; i++) if (block_live[i] && !block_marked[i]) { int_list_ptr p; block_marked[i] = 1; something_marked = 1; make_edges (i); for (p = basic_block_succ[i]; p; p = p->next) block_live[INT_LIST_VAL (p)] = 1; } } /* This should never happen. If it does that means we've computed an incorrect flow graph, which can lead to aborts/crashes later in the compiler or incorrect code generation. We used to try and continue here, but that's just asking for trouble later during the compile or at runtime. It's easier to debug the problem here than later! */ for (i = 1; i < n_basic_blocks; i++) if (block_live[i] && basic_block_pred[i] == 0) abort (); if (! reload_completed) delete_unreachable_blocks (); } } /* Record INSN's block number as BB. */ void set_block_num (insn, bb) rtx insn; int bb; { if (INSN_UID (insn) >= max_uid_for_flow) { /* Add one-eighth the size so we don't keep calling xrealloc. */ max_uid_for_flow = INSN_UID (insn) + (INSN_UID (insn) + 7) / 8; uid_block_number = (int *) xrealloc (uid_block_number, (max_uid_for_flow + 1) * sizeof (int)); } BLOCK_NUM (insn) = bb; } /* Subroutines of find_basic_blocks. */ void free_bb_memory () { free_int_list (&flow_int_list_blocks); } /* Make an edge in the cfg from block PRED to block SUCC. */ static void add_edge (pred, succ) int pred, succ; { int_list *p; for (p = basic_block_pred[succ]; p ; p = p->next) if (p->val == pred) return; add_int_list_node (&flow_int_list_blocks, basic_block_pred + succ, pred); add_int_list_node (&flow_int_list_blocks, basic_block_succ + pred, succ); } /* Make an edge in the cfg from block PRED to the block starting with label LABEL. */ static void add_edge_to_label (pred, label) int pred; rtx label; { /* If the label was never emitted, this insn is junk, but avoid a crash trying to refer to BLOCK_NUM (label). This can happen as a result of a syntax error and a diagnostic has already been printed. */ if (INSN_UID (label) == 0) return; add_edge (pred, BLOCK_NUM (label)); } /* Check expression X for label references. If one is found, add an edge from basic block PRED to the block beginning with the label. */ static void mark_label_ref (pred, x) int pred; rtx x; { register RTX_CODE code; register int i; register char *fmt; code = GET_CODE (x); if (code == LABEL_REF) { add_edge_to_label (pred, XEXP (x, 0)); return; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') mark_label_ref (pred, XEXP (x, i)); if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) mark_label_ref (pred, XVECEXP (x, i, j)); } } } /* For basic block I, make edges and mark live all blocks which are reachable from it. */ static void make_edges (i) int i; { rtx insn, x; rtx pending_eh_region = NULL_RTX; /* See if control drops into the next block. */ if (i + 1 < n_basic_blocks) { for (insn = PREV_INSN (BLOCK_HEAD (i + 1)); insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn)) ; if (insn && GET_CODE (insn) != BARRIER) add_edge (i, i + 1); } insn = BLOCK_END (i); if (GET_CODE (insn) == JUMP_INSN) mark_label_ref (i, PATTERN (insn)); /* If we have any forced labels, mark them as potentially reachable from this block. */ for (x = forced_labels; x; x = XEXP (x, 1)) if (! LABEL_REF_NONLOCAL_P (x)) add_edge_to_label (i, XEXP (x, 0)); /* Now scan the insns for this block, we may need to make edges for some of them to various non-obvious locations (exception handlers, nonlocal labels, etc). */ for (insn = BLOCK_HEAD (i); insn != NEXT_INSN (BLOCK_END (i)); insn = NEXT_INSN (insn)) { if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { rtx note; /* References to labels in non-jumping insns have REG_LABEL notes attached to them. This can happen for computed gotos; we don't care about them here since the values are also on the label_value_list and will be marked live if we find a live computed goto. This can also happen when we take the address of a label to pass as an argument to __throw. Note throw only uses the value to determine what handler should be called -- ie the label is not used as a jump target, it just marks regions in the code. In theory we should be able to ignore the REG_LABEL notes, but we have to make sure that the label and associated insns aren't marked dead, so we make the block in question live and create an edge from this insn to the label. This is not strictly correct, but it is close enough for now. See below for code that handles the eh_stub label specially. */ for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) { if (REG_NOTE_KIND (note) == REG_LABEL && XEXP (note, 0) != eh_return_stub_label) add_edge_to_label (i, XEXP (note, 0)); } /* If this is a computed jump, then mark it as reaching everything on the label_value_list and forced_labels list. */ if (computed_jump_p (insn)) { current_function_has_computed_jump = 1; for (x = label_value_list; x; x = XEXP (x, 1)) { int b = BLOCK_NUM (XEXP (x, 0)); basic_block_computed_jump_target[b] = 1; add_edge (i, b); } for (x = forced_labels; x; x = XEXP (x, 1)) { int b = BLOCK_NUM (XEXP (x, 0)); basic_block_computed_jump_target[b] = 1; add_edge (i, b); } } /* If this is a call with an EH_RETHROW note, then we know its a rethrow call, and we know exactly where this call can end up going. */ else if (GET_CODE (insn) == CALL_INSN && (note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX))) { int region = XINT (XEXP (note, 0), 0); /* if nested region is not 0, we know for sure it has been processed. If it is zero, we dont know whether its an outer region, or hasn't been seen yet, so defer it */ if (nested_eh_region[region] != 0) { /* start with the first region OUTSIDE the one specified in the rethrow parameter. (since a rethrow behaves as if a handler in the region didn't handle the exception, so the handlers for the next outer region are going to get a shot at it.*/ for ( region = nested_eh_region[region]; region; region = nested_eh_region[region]) { handler_info *ptr = get_first_handler (region); for ( ; ptr ; ptr = ptr->next) add_edge_to_label (i, ptr->handler_label); } } else { /* Push this region onto a list, and after we've done the whole procedure, we'll process everything on the list */ pending_eh_region = gen_rtx_EXPR_LIST (VOIDmode, insn, pending_eh_region); } } /* If this is a CALL_INSN, then mark it as reaching the active EH handler for this CALL_INSN. If we're handling asynchronous exceptions mark every insn as reaching the active EH handler. Also mark the CALL_INSN as reaching any nonlocal goto sites. */ else if (asynchronous_exceptions || (GET_CODE (insn) == CALL_INSN && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))) { int region = active_eh_region[INSN_UID (insn)]; note = find_reg_note(insn, REG_EH_REGION, NULL_RTX); /* Override region if we see a REG_EH_REGION note. */ if (note) region = XINT (XEXP (note, 0), 0); if (region) { handler_info *ptr; region = active_eh_region[INSN_UID (insn)]; for ( ; region; region = nested_eh_region[region]) { ptr = get_first_handler (region); for ( ; ptr ; ptr = ptr->next) add_edge_to_label (i, ptr->handler_label); } } if (! asynchronous_exceptions) { for (x = nonlocal_label_list; x; x = XEXP (x, 1)) add_edge_to_label (i, XEXP (x, 0)); } /* ??? This could be made smarter: in some cases it's possible to tell that certain calls will not do a nonlocal goto. For example, if the nested functions that do the nonlocal gotos do not have their addresses taken, then only calls to those functions or to other nested functions that use them could possibly do nonlocal gotos. */ } } } while (pending_eh_region != NULL_RTX) { rtx insn = XEXP (pending_eh_region, 0); rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX); int region = XINT (XEXP (note, 0), 0); /* start with the first region OUTSIDE the one specified in the rethrow parameter */ for ( region = nested_eh_region[region]; region; region = nested_eh_region[region]) { handler_info *ptr = get_first_handler (region); for ( ; ptr ; ptr = ptr->next) add_edge_to_label (BLOCK_NUM (insn), ptr->handler_label); } pending_eh_region = XEXP (pending_eh_region, 1); } /* We know something about the structure of the function __throw in libgcc2.c. It is the only function that ever contains eh_stub labels. It modifies its return address so that the last block returns to one of the eh_stub labels within it. So we have to make additional edges in the flow graph. */ if (i + 1 == n_basic_blocks && eh_return_stub_label != 0) add_edge_to_label (i, eh_return_stub_label); } /* Now delete the code for any basic blocks that can't be reached. They can occur because jump_optimize does not recognize unreachable loops as unreachable. */ static void delete_unreachable_blocks () { int deleted_handler = 0; int deleted = 0; int i, j; rtx insn; int *block_num_map = XNMALLOC (int, n_basic_blocks); for (i = n_basic_blocks - 1; i >= 0; i--) if (! block_live_static[i]) deleted_handler |= delete_block (i); for (i = 0; i < n_basic_blocks; i++) if (block_live_static[i]) block_num_map[i] = i - deleted; else { deleted++; block_num_map[i] = -1; } /* Eliminate all traces of the deleted blocks by renumbering the remaining ones. */ for (i = j = 0; i < n_basic_blocks; i++) { int_list_ptr p; if (block_num_map[i] == -1) continue; for (p = basic_block_pred[i]; p; p = p->next) INT_LIST_VAL (p) = block_num_map[INT_LIST_VAL (p)]; for (p = basic_block_succ[i]; p; p = p->next) INT_LIST_VAL (p) = block_num_map[INT_LIST_VAL (p)]; if (i != j) { rtx tmp = BLOCK_HEAD (i); for (;;) { BLOCK_NUM (tmp) = j; if (tmp == BLOCK_END (i)) break; tmp = NEXT_INSN (tmp); } BLOCK_HEAD (j) = BLOCK_HEAD (i); BLOCK_END (j) = BLOCK_END (i); basic_block_pred[j] = basic_block_pred[i]; basic_block_succ[j] = basic_block_succ[i]; basic_block_loop_depth[j] = basic_block_loop_depth[i]; basic_block_computed_jump_target[j] = basic_block_computed_jump_target[i]; } j++; } n_basic_blocks -= deleted; free (block_num_map); /* If we deleted an exception handler, we may have EH region begin/end blocks to remove as well. */ if (deleted_handler) for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END) { int num = CODE_LABEL_NUMBER (insn); /* A NULL handler indicates a region is no longer needed, unless its the target of a rethrow. */ if (get_first_handler (num) == NULL && !rethrow_used (num)) { NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; } } } } /* Delete the insns in a (non-live) block. We physically delete every non-note insn except the start and end (so BLOCK_HEAD/END needn't be updated), we turn the latter into NOTE_INSN_DELETED notes. We use to "delete" the insns by turning them into notes, but we may be deleting lots of insns that subsequent passes would otherwise have to process. Secondly, lots of deleted blocks in a row can really slow down propagate_block since it will otherwise process insn-turned-notes multiple times when it looks for loop begin/end notes. Return nonzero if we deleted an exception handler. */ static int delete_block (i) int i; { int deleted_handler = 0; rtx insn; rtx kept_head = 0; rtx kept_tail = 0; /* If the head of this block is a CODE_LABEL, then it might be the label for an exception handler which can't be reached. We need to remove the label from the exception_handler_label list and remove the associated NOTE_EH_REGION_BEG and NOTE_EH_REGION_END notes. */ insn = BLOCK_HEAD (i); if (GET_CODE (insn) == CODE_LABEL) { rtx x, *prev = &exception_handler_labels; for (x = exception_handler_labels; x; x = XEXP (x, 1)) { if (XEXP (x, 0) == insn) { /* Found a match, splice this label out of the EH label list. */ *prev = XEXP (x, 1); XEXP (x, 1) = NULL_RTX; XEXP (x, 0) = NULL_RTX; /* Remove the handler from all regions */ remove_handler (insn); deleted_handler = 1; break; } prev = &XEXP (x, 1); } } /* Walk the insns of the block, building a chain of NOTEs that need to be kept. */ insn = BLOCK_HEAD (i); for (;;) { if (GET_CODE (insn) == BARRIER) abort (); else if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED) { if (kept_head == 0) kept_head = kept_tail = insn; else { NEXT_INSN (kept_tail) = insn; PREV_INSN (insn) = kept_tail; kept_tail = insn; } } if (insn == BLOCK_END (i)) break; insn = NEXT_INSN (insn); } insn = NEXT_INSN (insn); /* BARRIERs are between basic blocks, not part of one. Delete a BARRIER if the preceding jump is deleted. We cannot alter a BARRIER into a NOTE because it is too short; but we can really delete it because it is not part of a basic block. */ if (insn != 0 && GET_CODE (insn) == BARRIER) insn = NEXT_INSN (insn); /* Now unchain all of the block, and put the chain of kept notes in its place. */ if (kept_head == 0) { NEXT_INSN (PREV_INSN (BLOCK_HEAD (i))) = insn; if (insn != 0) PREV_INSN (insn) = PREV_INSN (BLOCK_HEAD (i)); else set_last_insn (PREV_INSN (BLOCK_HEAD(i))); } else { NEXT_INSN (PREV_INSN (BLOCK_HEAD (i))) = kept_head; if (insn != 0) PREV_INSN (insn) = kept_tail; PREV_INSN (kept_head) = PREV_INSN (BLOCK_HEAD (i)); NEXT_INSN (kept_tail) = insn; /* This must happen after NEXT_INSN (kept_tail) has been reinitialized since set_last_insn will abort if it detects a non-NULL NEXT_INSN field in its argument. */ if (insn == NULL_RTX) set_last_insn (kept_tail); } /* Each time we delete some basic blocks, see if there is a jump around them that is being turned into a no-op. If so, delete it. */ if (block_live_static[i - 1]) { register int j; for (j = i + 1; j < n_basic_blocks; j++) if (block_live_static[j]) { rtx label; insn = BLOCK_END (i - 1); if (GET_CODE (insn) == JUMP_INSN /* An unconditional jump is the only possibility we must check for, since a conditional one would make these blocks live. */ && simplejump_p (insn) && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1) && INSN_UID (label) != 0 && BLOCK_NUM (label) == j) { PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; if (GET_CODE (NEXT_INSN (insn)) != BARRIER) abort (); delete_insn (NEXT_INSN (insn)); } break; } } return deleted_handler; } /* Perform data flow analysis. F is the first insn of the function and NREGS the number of register numbers in use. */ void life_analysis (f, nregs, file) rtx f; int nregs; FILE *file; { #ifdef ELIMINABLE_REGS register size_t i; static struct {int from, to; } eliminables[] = ELIMINABLE_REGS; #endif /* Record which registers will be eliminated. We use this in mark_used_regs. */ CLEAR_HARD_REG_SET (elim_reg_set); #ifdef ELIMINABLE_REGS for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++) SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from); #else SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM); #endif /* We want alias analysis information for local dead store elimination. */ init_alias_analysis (); life_analysis_1 (f, nregs); end_alias_analysis (); if (file) dump_flow_info (file); free_basic_block_vars (1); } /* Free the variables allocated by find_basic_blocks. KEEP_HEAD_END_P is non-zero if BLOCK_HEAD and BLOCK_END are not to be freed. */ void free_basic_block_vars (keep_head_end_p) int keep_head_end_p; { if (basic_block_loop_depth) { free (basic_block_loop_depth); basic_block_loop_depth = 0; } if (uid_block_number) { free (uid_block_number); uid_block_number = 0; } if (uid_volatile) { free (uid_volatile); uid_volatile = 0; } if (! keep_head_end_p && x_basic_block_head) { free (x_basic_block_head); x_basic_block_head = 0; free (x_basic_block_end); x_basic_block_end = 0; } } /* Return nonzero if the destination of SET equals the source. */ static int set_noop_p (set) rtx set; { rtx src = SET_SRC (set); rtx dst = SET_DEST (set); if (GET_CODE (src) == REG && GET_CODE (dst) == REG && REGNO (src) == REGNO (dst)) return 1; if (GET_CODE (src) != SUBREG || GET_CODE (dst) != SUBREG || SUBREG_WORD (src) != SUBREG_WORD (dst)) return 0; src = SUBREG_REG (src); dst = SUBREG_REG (dst); if (GET_CODE (src) == REG && GET_CODE (dst) == REG && REGNO (src) == REGNO (dst)) return 1; return 0; } /* Return nonzero if an insn consists only of SETs, each of which only sets a value to itself. */ static int noop_move_p (insn) rtx insn; { rtx pat = PATTERN (insn); /* Insns carrying these notes are useful later on. */ if (find_reg_note (insn, REG_EQUAL, NULL_RTX)) return 0; if (GET_CODE (pat) == SET && set_noop_p (pat)) return 1; if (GET_CODE (pat) == PARALLEL) { int i; /* If nothing but SETs of registers to themselves, this insn can also be deleted. */ for (i = 0; i < XVECLEN (pat, 0); i++) { rtx tem = XVECEXP (pat, 0, i); if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER) continue; if (GET_CODE (tem) != SET || ! set_noop_p (tem)) return 0; } return 1; } return 0; } static void notice_stack_pointer_modification (x, pat) rtx x; rtx pat ATTRIBUTE_UNUSED; { if (x == stack_pointer_rtx /* The stack pointer is only modified indirectly as the result of a push until later in flow. See the comments in rtl.texi regarding Embedded Side-Effects on Addresses. */ || (GET_CODE (x) == MEM && (GET_CODE (XEXP (x, 0)) == PRE_DEC || GET_CODE (XEXP (x, 0)) == PRE_INC || GET_CODE (XEXP (x, 0)) == POST_DEC || GET_CODE (XEXP (x, 0)) == POST_INC) && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx)) current_function_sp_is_unchanging = 0; } /* Record which insns refer to any volatile memory or for any reason can't be deleted just because they are dead stores. Also, delete any insns that copy a register to itself. And see if the stack pointer is modified. */ static void record_volatile_insns (f) rtx f; { rtx insn; for (insn = f; insn; insn = NEXT_INSN (insn)) { enum rtx_code code1 = GET_CODE (insn); if (code1 == CALL_INSN) INSN_VOLATILE (insn) = 1; else if (code1 == INSN || code1 == JUMP_INSN) { if (GET_CODE (PATTERN (insn)) != USE && volatile_refs_p (PATTERN (insn))) INSN_VOLATILE (insn) = 1; /* A SET that makes space on the stack cannot be dead. (Such SETs occur only for allocating variable-size data, so they will always have a PLUS or MINUS according to the direction of stack growth.) Even if this function never uses this stack pointer value, signal handlers do! */ else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET && SET_DEST (PATTERN (insn)) == stack_pointer_rtx #ifdef STACK_GROWS_DOWNWARD && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS #else && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS #endif && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx) INSN_VOLATILE (insn) = 1; /* Delete (in effect) any obvious no-op moves. */ else if (noop_move_p (insn)) { PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; } } /* Check if insn modifies the stack pointer. */ if ( current_function_sp_is_unchanging && GET_RTX_CLASS (GET_CODE (insn)) == 'i') note_stores (PATTERN (insn), notice_stack_pointer_modification); } } /* Mark those regs which are needed at the end of the function as live at the end of the last basic block. */ static void mark_regs_live_at_end (set) regset set; { int i; #ifdef EXIT_IGNORE_STACK if (! EXIT_IGNORE_STACK || (! FRAME_POINTER_REQUIRED && ! current_function_calls_alloca && flag_omit_frame_pointer) || current_function_sp_is_unchanging) #endif /* If exiting needs the right stack value, consider the stack pointer live at the end of the function. */ SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM); /* Mark the frame pointer is needed at the end of the function. If we end up eliminating it, it will be removed from the live list of each basic block by reload. */ SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM); #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM /* If they are different, also mark the hard frame pointer as live */ SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM); #endif /* Mark all global registers and all registers used by the epilogue as being live at the end of the function since they may be referenced by our caller. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (global_regs[i] #ifdef EPILOGUE_USES || EPILOGUE_USES (i) #endif ) SET_REGNO_REG_SET (set, i); } /* Determine which registers are live at the start of each basic block of the function whose first insn is F. NREGS is the number of registers used in F. We allocate the vector basic_block_live_at_start and the regsets that it points to, and fill them with the data. regset_size and regset_bytes are also set here. */ static void life_analysis_1 (f, nregs) rtx f; int nregs; { int first_pass; int changed; /* For each basic block, a bitmask of regs live on exit from the block. */ regset *basic_block_live_at_end; /* For each basic block, a bitmask of regs live on entry to a successor-block of this block. If this does not match basic_block_live_at_end, that must be updated, and the block must be rescanned. */ regset *basic_block_new_live_at_end; /* For each basic block, a bitmask of regs whose liveness at the end of the basic block can make a difference in which regs are live on entry to the block. These are the regs that are set within the basic block, possibly excluding those that are used after they are set. */ regset *basic_block_significant; register int i; char save_regs_ever_live[FIRST_PSEUDO_REGISTER]; struct obstack flow_obstack; gcc_obstack_init (&flow_obstack); max_regno = nregs; /* The post-reload life analysis have (on a global basis) the same registers live as was computed by reload itself. Otherwise elimination offsets and such may be incorrect. Reload will make some registers as live even though they do not appear in the rtl. */ if (reload_completed) bcopy (regs_ever_live, save_regs_ever_live, (sizeof (regs_ever_live))); bzero (regs_ever_live, sizeof regs_ever_live); /* Allocate and zero out many data structures that will record the data from lifetime analysis. */ allocate_for_life_analysis (); reg_next_use = (rtx *) alloca (nregs * sizeof (rtx)); bzero ((char *) reg_next_use, nregs * sizeof (rtx)); /* Set up several regset-vectors used internally within this function. Their meanings are documented above, with their declarations. */ basic_block_live_at_end = (regset *) alloca (n_basic_blocks * sizeof (regset)); /* Don't use alloca since that leads to a crash rather than an error message if there isn't enough space. Don't use oballoc since we may need to allocate other things during this function on the temporary obstack. */ init_regset_vector (basic_block_live_at_end, n_basic_blocks, &flow_obstack); basic_block_new_live_at_end = (regset *) alloca (n_basic_blocks * sizeof (regset)); init_regset_vector (basic_block_new_live_at_end, n_basic_blocks, &flow_obstack); basic_block_significant = (regset *) alloca (n_basic_blocks * sizeof (regset)); init_regset_vector (basic_block_significant, n_basic_blocks, &flow_obstack); /* Assume that the stack pointer is unchanging if alloca hasn't been used. This will be cleared by record_volatile_insns if it encounters an insn which modifies the stack pointer. */ current_function_sp_is_unchanging = !current_function_calls_alloca; record_volatile_insns (f); if (n_basic_blocks > 0) { mark_regs_live_at_end (basic_block_live_at_end[n_basic_blocks - 1]); COPY_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1], basic_block_live_at_end[n_basic_blocks - 1]); } /* Propagate life info through the basic blocks around the graph of basic blocks. This is a relaxation process: each time a new register is live at the end of the basic block, we must scan the block to determine which registers are, as a consequence, live at the beginning of that block. These registers must then be marked live at the ends of all the blocks that can transfer control to that block. The process continues until it reaches a fixed point. */ first_pass = 1; changed = 1; while (changed) { changed = 0; for (i = n_basic_blocks - 1; i >= 0; i--) { int consider = first_pass; int must_rescan = first_pass; register int j; if (!first_pass) { /* Set CONSIDER if this block needs thinking about at all (that is, if the regs live now at the end of it are not the same as were live at the end of it when we last thought about it). Set must_rescan if it needs to be thought about instruction by instruction (that is, if any additional reg that is live at the end now but was not live there before is one of the significant regs of this basic block). */ EXECUTE_IF_AND_COMPL_IN_REG_SET (basic_block_new_live_at_end[i], basic_block_live_at_end[i], 0, j, { consider = 1; if (REGNO_REG_SET_P (basic_block_significant[i], j)) { must_rescan = 1; goto done; } }); done: if (! consider) continue; } /* The live_at_start of this block may be changing, so another pass will be required after this one. */ changed = 1; if (! must_rescan) { /* No complete rescan needed; just record those variables newly known live at end as live at start as well. */ IOR_AND_COMPL_REG_SET (basic_block_live_at_start[i], basic_block_new_live_at_end[i], basic_block_live_at_end[i]); IOR_AND_COMPL_REG_SET (basic_block_live_at_end[i], basic_block_new_live_at_end[i], basic_block_live_at_end[i]); } else { /* Update the basic_block_live_at_start by propagation backwards through the block. */ COPY_REG_SET (basic_block_live_at_end[i], basic_block_new_live_at_end[i]); COPY_REG_SET (basic_block_live_at_start[i], basic_block_live_at_end[i]); propagate_block (basic_block_live_at_start[i], BLOCK_HEAD (i), BLOCK_END (i), 0, first_pass ? basic_block_significant[i] : (regset) 0, i); } { int_list_ptr p; /* Update the basic_block_new_live_at_end's of all the blocks that reach this one. */ for (p = basic_block_pred[i]; p; p = p->next) { register int from_block = INT_LIST_VAL (p); IOR_REG_SET (basic_block_new_live_at_end[from_block], basic_block_live_at_start[i]); } } #ifdef USE_C_ALLOCA alloca (0); #endif } first_pass = 0; } /* The only pseudos that are live at the beginning of the function are those that were not set anywhere in the function. local-alloc doesn't know how to handle these correctly, so mark them as not local to any one basic block. */ if (n_basic_blocks > 0) EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[0], FIRST_PSEUDO_REGISTER, i, { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; }); /* Now the life information is accurate. Make one more pass over each basic block to delete dead stores, create autoincrement addressing and record how many times each register is used, is set, or dies. To save time, we operate directly in basic_block_live_at_end[i], thus destroying it (in fact, converting it into a copy of basic_block_live_at_start[i]). This is ok now because basic_block_live_at_end[i] is no longer used past this point. */ for (i = 0; i < n_basic_blocks; i++) { propagate_block (basic_block_live_at_end[i], BLOCK_HEAD (i), BLOCK_END (i), 1, (regset) 0, i); #ifdef USE_C_ALLOCA alloca (0); #endif } #if 0 /* Something live during a setjmp should not be put in a register on certain machines which restore regs from stack frames rather than from the jmpbuf. But we don't need to do this for the user's variables, since ANSI says only volatile variables need this. */ #ifdef LONGJMP_RESTORE_FROM_STACK EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp, FIRST_PSEUDO_REGISTER, i, { if (regno_reg_rtx[i] != 0 && ! REG_USERVAR_P (regno_reg_rtx[i])) { REG_LIVE_LENGTH (i) = -1; REG_BASIC_BLOCK (i) = -1; } }); #endif #endif /* We have a problem with any pseudoreg that lives across the setjmp. ANSI says that if a user variable does not change in value between the setjmp and the longjmp, then the longjmp preserves it. This includes longjmp from a place where the pseudo appears dead. (In principle, the value still exists if it is in scope.) If the pseudo goes in a hard reg, some other value may occupy that hard reg where this pseudo is dead, thus clobbering the pseudo. Conclusion: such a pseudo must not go in a hard reg. */ EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp, FIRST_PSEUDO_REGISTER, i, { if (regno_reg_rtx[i] != 0) { REG_LIVE_LENGTH (i) = -1; REG_BASIC_BLOCK (i) = -1; } }); /* Restore regs_ever_live that was provided by reload. */ if (reload_completed) bcopy (save_regs_ever_live, regs_ever_live, (sizeof (regs_ever_live))); free_regset_vector (basic_block_live_at_end, n_basic_blocks); free_regset_vector (basic_block_new_live_at_end, n_basic_blocks); free_regset_vector (basic_block_significant, n_basic_blocks); basic_block_live_at_end = (regset *)0; basic_block_new_live_at_end = (regset *)0; basic_block_significant = (regset *)0; obstack_free (&flow_obstack, NULL_PTR); } /* Subroutines of life analysis. */ /* Allocate the permanent data structures that represent the results of life analysis. Not static since used also for stupid life analysis. */ void allocate_for_life_analysis () { register int i; /* Recalculate the register space, in case it has grown. Old style vector oriented regsets would set regset_{size,bytes} here also. */ allocate_reg_info (max_regno, FALSE, FALSE); /* Because both reg_scan and flow_analysis want to set up the REG_N_SETS information, explicitly reset it here. The allocation should have already happened on the previous reg_scan pass. Make sure in case some more registers were allocated. */ for (i = 0; i < max_regno; i++) REG_N_SETS (i) = 0; basic_block_live_at_start = (regset *) oballoc (n_basic_blocks * sizeof (regset)); init_regset_vector (basic_block_live_at_start, n_basic_blocks, function_obstack); regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (function_obstack); CLEAR_REG_SET (regs_live_at_setjmp); } /* Make each element of VECTOR point at a regset. The vector has NELTS elements, and space is allocated from the ALLOC_OBSTACK obstack. */ /* CYGNUS LOCAL LRS */ void init_regset_vector (vector, nelts, alloc_obstack) regset *vector; int nelts; struct obstack *alloc_obstack; { register int i; for (i = 0; i < nelts; i++) { vector[i] = OBSTACK_ALLOC_REG_SET (alloc_obstack); CLEAR_REG_SET (vector[i]); } } /* Release any additional space allocated for each element of VECTOR point other than the regset header itself. The vector has NELTS elements. */ void free_regset_vector (vector, nelts) regset *vector; int nelts; { register int i; for (i = 0; i < nelts; i++) FREE_REG_SET (vector[i]); } /* Compute the registers live at the beginning of a basic block from those live at the end. When called, OLD contains those live at the end. On return, it contains those live at the beginning. FIRST and LAST are the first and last insns of the basic block. FINAL is nonzero if we are doing the final pass which is not for computing the life info (since that has already been done) but for acting on it. On this pass, we delete dead stores, set up the logical links and dead-variables lists of instructions, and merge instructions for autoincrement and autodecrement addresses. SIGNIFICANT is nonzero only the first time for each basic block. If it is nonzero, it points to a regset in which we store a 1 for each register that is set within the block. BNUM is the number of the basic block. */ static void propagate_block (old, first, last, final, significant, bnum) register regset old; rtx first; rtx last; int final; regset significant; int bnum; { register rtx insn; rtx prev; regset live; regset dead; /* The loop depth may change in the middle of a basic block. Since we scan from end to beginning, we start with the depth at the end of the current basic block, and adjust as we pass ends and starts of loops. */ loop_depth = basic_block_loop_depth[bnum]; dead = ALLOCA_REG_SET (); live = ALLOCA_REG_SET (); cc0_live = 0; mem_set_list = NULL_RTX; /* Include any notes at the end of the block in the scan. This is in case the block ends with a call to setjmp. */ while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE) { /* Look for loop boundaries, we are going forward here. */ last = NEXT_INSN (last); if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG) loop_depth++; else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END) loop_depth--; } if (final) { register int i; /* Process the regs live at the end of the block. Mark them as not local to any one basic block. */ EXECUTE_IF_SET_IN_REG_SET (old, 0, i, { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; }); } /* Scan the block an insn at a time from end to beginning. */ for (insn = last; ; insn = prev) { prev = PREV_INSN (insn); if (GET_CODE (insn) == NOTE) { /* Look for loop boundaries, remembering that we are going backwards. */ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END) loop_depth++; else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG) loop_depth--; /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error. Abort now rather than setting register status incorrectly. */ if (loop_depth == 0) abort (); /* If this is a call to `setjmp' et al, warn if any non-volatile datum is live. */ if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP) IOR_REG_SET (regs_live_at_setjmp, old); } /* Update the life-status of regs for this insn. First DEAD gets which regs are set in this insn then LIVE gets which regs are used in this insn. Then the regs live before the insn are those live after, with DEAD regs turned off, and then LIVE regs turned on. */ else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { register int i; rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX); int insn_is_dead = (insn_dead_p (PATTERN (insn), old, 0, REG_NOTES (insn)) /* Don't delete something that refers to volatile storage! */ && ! INSN_VOLATILE (insn)); int libcall_is_dead = (insn_is_dead && note != 0 && libcall_dead_p (PATTERN (insn), old, note, insn)); /* If an instruction consists of just dead store(s) on final pass, "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED. We could really delete it with delete_insn, but that can cause trouble for first or last insn in a basic block. */ if (final && insn_is_dead) { PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; /* CC0 is now known to be dead. Either this insn used it, in which case it doesn't anymore, or clobbered it, so the next insn can't use it. */ cc0_live = 0; /* If this insn is copying the return value from a library call, delete the entire library call. */ if (libcall_is_dead) { rtx first = XEXP (note, 0); rtx p = insn; while (INSN_DELETED_P (first)) first = NEXT_INSN (first); while (p != first) { p = PREV_INSN (p); PUT_CODE (p, NOTE); NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (p) = 0; } } goto flushed; } CLEAR_REG_SET (dead); CLEAR_REG_SET (live); /* See if this is an increment or decrement that can be merged into a following memory address. */ #ifdef AUTO_INC_DEC { register rtx x = single_set (insn); /* Does this instruction increment or decrement a register? */ if (!reload_completed && final && x != 0 && GET_CODE (SET_DEST (x)) == REG && (GET_CODE (SET_SRC (x)) == PLUS || GET_CODE (SET_SRC (x)) == MINUS) && XEXP (SET_SRC (x), 0) == SET_DEST (x) && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT /* Ok, look for a following memory ref we can combine with. If one is found, change the memory ref to a PRE_INC or PRE_DEC, cancel this insn, and return 1. Return 0 if nothing has been done. */ && try_pre_increment_1 (insn)) goto flushed; } #endif /* AUTO_INC_DEC */ /* If this is not the final pass, and this insn is copying the value of a library call and it's dead, don't scan the insns that perform the library call, so that the call's arguments are not marked live. */ if (libcall_is_dead) { /* Mark the dest reg as `significant'. */ mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant); insn = XEXP (note, 0); prev = PREV_INSN (insn); } else if (GET_CODE (PATTERN (insn)) == SET && SET_DEST (PATTERN (insn)) == stack_pointer_rtx && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT) /* We have an insn to pop a constant amount off the stack. (Such insns use PLUS regardless of the direction of the stack, and any insn to adjust the stack by a constant is always a pop.) These insns, if not dead stores, have no effect on life. */ ; else { /* Any regs live at the time of a call instruction must not go in a register clobbered by calls. Find all regs now live and record this for them. */ if (GET_CODE (insn) == CALL_INSN && final) EXECUTE_IF_SET_IN_REG_SET (old, 0, i, { REG_N_CALLS_CROSSED (i)++; }); /* LIVE gets the regs used in INSN; DEAD gets those set by it. Dead insns don't make anything live. */ mark_set_regs (old, dead, PATTERN (insn), final ? insn : NULL_RTX, significant); /* If an insn doesn't use CC0, it becomes dead since we assume that every insn clobbers it. So show it dead here; mark_used_regs will set it live if it is referenced. */ cc0_live = 0; if (! insn_is_dead) mark_used_regs (old, live, PATTERN (insn), final, insn); /* Sometimes we may have inserted something before INSN (such as a move) when we make an auto-inc. So ensure we will scan those insns. */ #ifdef AUTO_INC_DEC prev = PREV_INSN (insn); #endif if (! insn_is_dead && GET_CODE (insn) == CALL_INSN) { register int i; rtx note; for (note = CALL_INSN_FUNCTION_USAGE (insn); note; note = XEXP (note, 1)) if (GET_CODE (XEXP (note, 0)) == USE) mark_used_regs (old, live, SET_DEST (XEXP (note, 0)), final, insn); /* Each call clobbers all call-clobbered regs that are not global or fixed. Note that the function-value reg is a call-clobbered reg, and mark_set_regs has already had a chance to handle it. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (call_used_regs[i] && ! global_regs[i] && ! fixed_regs[i]) SET_REGNO_REG_SET (dead, i); /* The stack ptr is used (honorarily) by a CALL insn. */ SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM); /* Calls may also reference any of the global registers, so they are made live. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (global_regs[i]) mark_used_regs (old, live, gen_rtx_REG (reg_raw_mode[i], i), final, insn); /* Calls also clobber memory. */ mem_set_list = NULL_RTX; } /* Update OLD for the registers used or set. */ AND_COMPL_REG_SET (old, dead); IOR_REG_SET (old, live); } /* On final pass, update counts of how many insns each reg is live at. */ if (final) EXECUTE_IF_SET_IN_REG_SET (old, 0, i, { REG_LIVE_LENGTH (i)++; }); } flushed: ; if (insn == first) break; } FREE_REG_SET (dead); FREE_REG_SET (live); } /* Return 1 if X (the body of an insn, or part of it) is just dead stores (SET expressions whose destinations are registers dead after the insn). NEEDED is the regset that says which regs are alive after the insn. Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. If X is the entire body of an insn, NOTES contains the reg notes pertaining to the insn. */ static int insn_dead_p (x, needed, call_ok, notes) rtx x; regset needed; int call_ok; rtx notes ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (x); #ifdef AUTO_INC_DEC /* If flow is invoked after reload, we must take existing AUTO_INC expresions into account. */ if (reload_completed) { for ( ; notes; notes = XEXP (notes, 1)) { if (REG_NOTE_KIND (notes) == REG_INC) { int regno = REGNO (XEXP (notes, 0)); /* Don't delete insns to set global regs. */ if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno]) || REGNO_REG_SET_P (needed, regno)) return 0; } } } #endif /* If setting something that's a reg or part of one, see if that register's altered value will be live. */ if (code == SET) { rtx r = SET_DEST (x); /* A SET that is a subroutine call cannot be dead. */ if (! call_ok && GET_CODE (SET_SRC (x)) == CALL) return 0; #ifdef HAVE_cc0 if (GET_CODE (r) == CC0) return ! cc0_live; #endif if (GET_CODE (r) == MEM && ! MEM_VOLATILE_P (r)) { rtx temp; /* Walk the set of memory locations we are currently tracking and see if one is an identical match to this memory location. If so, this memory write is dead (remember, we're walking backwards from the end of the block to the start. */ temp = mem_set_list; while (temp) { if (rtx_equal_p (XEXP (temp, 0), r)) return 1; temp = XEXP (temp, 1); } } while (GET_CODE (r) == SUBREG || GET_CODE (r) == STRICT_LOW_PART || GET_CODE (r) == ZERO_EXTRACT) r = SUBREG_REG (r); if (GET_CODE (r) == REG) { int regno = REGNO (r); /* Don't delete insns to set global regs. */ if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno]) /* Make sure insns to set frame pointer aren't deleted. */ || regno == FRAME_POINTER_REGNUM #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM #endif #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM /* Make sure insns to set arg pointer are never deleted (if the arg pointer isn't fixed, there will be a USE for it, so we can treat it normally). */ || (regno == ARG_POINTER_REGNUM && fixed_regs[regno]) #endif || REGNO_REG_SET_P (needed, regno)) return 0; /* If this is a hard register, verify that subsequent words are not needed. */ if (regno < FIRST_PSEUDO_REGISTER) { int n = HARD_REGNO_NREGS (regno, GET_MODE (r)); while (--n > 0) if (REGNO_REG_SET_P (needed, regno+n)) return 0; } return 1; } } /* If performing several activities, insn is dead if each activity is individually dead. Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE that's inside a PARALLEL doesn't make the insn worth keeping. */ else if (code == PARALLEL) { int i = XVECLEN (x, 0); for (i--; i >= 0; i--) if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER && GET_CODE (XVECEXP (x, 0, i)) != USE && ! insn_dead_p (XVECEXP (x, 0, i), needed, call_ok, NULL_RTX)) return 0; return 1; } /* A CLOBBER of a pseudo-register that is dead serves no purpose. That is not necessarily true for hard registers. */ else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER && ! REGNO_REG_SET_P (needed, REGNO (XEXP (x, 0)))) return 1; /* We do not check other CLOBBER or USE here. An insn consisting of just a CLOBBER or just a USE should not be deleted. */ return 0; } /* If X is the pattern of the last insn in a libcall, and assuming X is dead, return 1 if the entire library call is dead. This is true if X copies a register (hard or pseudo) and if the hard return reg of the call insn is dead. (The caller should have tested the destination of X already for death.) If this insn doesn't just copy a register, then we don't have an ordinary libcall. In that case, cse could not have managed to substitute the source for the dest later on, so we can assume the libcall is dead. NEEDED is the bit vector of pseudoregs live before this insn. NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */ static int libcall_dead_p (x, needed, note, insn) rtx x; regset needed; rtx note; rtx insn; { register RTX_CODE code = GET_CODE (x); if (code == SET) { register rtx r = SET_SRC (x); if (GET_CODE (r) == REG) { rtx call = XEXP (note, 0); rtx call_pat; register int i; /* Find the call insn. */ while (call != insn && GET_CODE (call) != CALL_INSN) call = NEXT_INSN (call); /* If there is none, do nothing special, since ordinary death handling can understand these insns. */ if (call == insn) return 0; /* See if the hard reg holding the value is dead. If this is a PARALLEL, find the call within it. */ call_pat = PATTERN (call); if (GET_CODE (call_pat) == PARALLEL) { for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--) if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL) break; /* This may be a library call that is returning a value via invisible pointer. Do nothing special, since ordinary death handling can understand these insns. */ if (i < 0) return 0; call_pat = XVECEXP (call_pat, 0, i); } return insn_dead_p (call_pat, needed, 1, REG_NOTES (call)); } } return 1; } /* Return 1 if register REGNO was used before it was set, i.e. if it is live at function entry. Don't count global register variables, variables in registers that can be used for function arg passing, or variables in fixed hard registers. */ int regno_uninitialized (regno) int regno; { if (n_basic_blocks == 0 || (regno < FIRST_PSEUDO_REGISTER && (global_regs[regno] || fixed_regs[regno] || FUNCTION_ARG_REGNO_P (regno)))) return 0; return REGNO_REG_SET_P (basic_block_live_at_start[0], regno); } /* 1 if register REGNO was alive at a place where `setjmp' was called and was set more than once or is an argument. Such regs may be clobbered by `longjmp'. */ int regno_clobbered_at_setjmp (regno) int regno; { if (n_basic_blocks == 0) return 0; return ((REG_N_SETS (regno) > 1 || REGNO_REG_SET_P (basic_block_live_at_start[0], regno)) && REGNO_REG_SET_P (regs_live_at_setjmp, regno)); } /* INSN references memory, possibly using autoincrement addressing modes. Find any entries on the mem_set_list that need to be invalidated due to an address change. */ static void invalidate_mems_from_autoinc (insn) rtx insn; { rtx note = REG_NOTES (insn); for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) { if (REG_NOTE_KIND (note) == REG_INC) { rtx temp = mem_set_list; rtx prev = NULL_RTX; while (temp) { if (reg_overlap_mentioned_p (XEXP (note, 0), XEXP (temp, 0))) { /* Splice temp out of list. */ if (prev) XEXP (prev, 1) = XEXP (temp, 1); else mem_set_list = XEXP (temp, 1); } else prev = temp; temp = XEXP (temp, 1); } } } } /* Process the registers that are set within X. Their bits are set to 1 in the regset DEAD, because they are dead prior to this insn. If INSN is nonzero, it is the insn being processed and the fact that it is nonzero implies this is the FINAL pass in propagate_block. In this case, various info about register usage is stored, LOG_LINKS fields of insns are set up. */ static void mark_set_regs (needed, dead, x, insn, significant) regset needed; regset dead; rtx x; rtx insn; regset significant; { register RTX_CODE code = GET_CODE (x); if (code == SET || code == CLOBBER) mark_set_1 (needed, dead, x, insn, significant); else if (code == PARALLEL) { register int i; for (i = XVECLEN (x, 0) - 1; i >= 0; i--) { code = GET_CODE (XVECEXP (x, 0, i)); if (code == SET || code == CLOBBER) mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant); } } } /* Process a single SET rtx, X. */ static void mark_set_1 (needed, dead, x, insn, significant) regset needed; regset dead; rtx x; rtx insn; regset significant; { register int regno; register rtx reg = SET_DEST (x); /* Some targets place small structures in registers for return values of functions. We have to detect this case specially here to get correct flow information. */ if (GET_CODE (reg) == PARALLEL && GET_MODE (reg) == BLKmode) { register int i; for (i = XVECLEN (reg, 0) - 1; i >= 0; i--) mark_set_1 (needed, dead, XVECEXP (reg, 0, i), insn, significant); return; } /* Modifying just one hardware register of a multi-reg value or just a byte field of a register does not mean the value from before this insn is now dead. But it does mean liveness of that register at the end of the block is significant. Within mark_set_1, however, we treat it as if the register is indeed modified. mark_used_regs will, however, also treat this register as being used. Thus, we treat these insns as setting a new value for the register as a function of its old value. This cases LOG_LINKS to be made appropriately and this will help combine. */ while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT || GET_CODE (reg) == SIGN_EXTRACT || GET_CODE (reg) == STRICT_LOW_PART) reg = XEXP (reg, 0); /* If this set is a MEM, then it kills any aliased writes. If this set is a REG, then it kills any MEMs which use the reg. */ if (GET_CODE (reg) == MEM || GET_CODE (reg) == REG) { rtx temp = mem_set_list; rtx prev = NULL_RTX; while (temp) { if ((GET_CODE (reg) == MEM && output_dependence (XEXP (temp, 0), reg)) || (GET_CODE (reg) == REG && reg_overlap_mentioned_p (reg, XEXP (temp, 0)))) { /* Splice this entry out of the list. */ if (prev) XEXP (prev, 1) = XEXP (temp, 1); else mem_set_list = XEXP (temp, 1); } else prev = temp; temp = XEXP (temp, 1); } } /* If the memory reference had embedded side effects (autoincrement address modes. Then we may need to kill some entries on the memory set list. */ if (insn && GET_CODE (reg) == MEM) invalidate_mems_from_autoinc (insn); if (GET_CODE (reg) == MEM && ! side_effects_p (reg) /* There are no REG_INC notes for SP, so we can't assume we'll see everything that invalidates it. To be safe, don't eliminate any stores though SP; none of them should be redundant anyway. */ && ! reg_mentioned_p (stack_pointer_rtx, reg)) mem_set_list = gen_rtx_EXPR_LIST (VOIDmode, reg, mem_set_list); if (GET_CODE (reg) == REG && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM) #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM && regno != HARD_FRAME_POINTER_REGNUM #endif #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno]) #endif && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])) /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */ { int some_needed = REGNO_REG_SET_P (needed, regno); int some_not_needed = ! some_needed; /* Mark it as a significant register for this basic block. */ if (significant) SET_REGNO_REG_SET (significant, regno); /* Mark it as dead before this insn. */ SET_REGNO_REG_SET (dead, regno); /* A hard reg in a wide mode may really be multiple registers. If so, mark all of them just like the first. */ if (regno < FIRST_PSEUDO_REGISTER) { int n; /* Nothing below is needed for the stack pointer; get out asap. Eg, log links aren't needed, since combine won't use them. */ if (regno == STACK_POINTER_REGNUM) return; n = HARD_REGNO_NREGS (regno, GET_MODE (reg)); while (--n > 0) { int regno_n = regno + n; int needed_regno = REGNO_REG_SET_P (needed, regno_n); if (significant) SET_REGNO_REG_SET (significant, regno_n); SET_REGNO_REG_SET (dead, regno_n); some_needed |= needed_regno; some_not_needed |= ! needed_regno; } } /* Additional data to record if this is the final pass. */ if (insn) { register rtx y = reg_next_use[regno]; register int blocknum = BLOCK_NUM (insn); /* If this is a hard reg, record this function uses the reg. */ if (regno < FIRST_PSEUDO_REGISTER) { register int i; int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg)); for (i = regno; i < endregno; i++) { /* The next use is no longer "next", since a store intervenes. */ reg_next_use[i] = 0; regs_ever_live[i] = 1; REG_N_SETS (i)++; } } else { /* The next use is no longer "next", since a store intervenes. */ reg_next_use[regno] = 0; /* Keep track of which basic blocks each reg appears in. */ if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN) REG_BASIC_BLOCK (regno) = blocknum; else if (REG_BASIC_BLOCK (regno) != blocknum) REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL; /* Count (weighted) references, stores, etc. This counts a register twice if it is modified, but that is correct. */ REG_N_SETS (regno)++; REG_N_REFS (regno) += loop_depth; /* The insns where a reg is live are normally counted elsewhere, but we want the count to include the insn where the reg is set, and the normal counting mechanism would not count it. */ REG_LIVE_LENGTH (regno)++; } if (! some_not_needed) { /* Make a logical link from the next following insn that uses this register, back to this insn. The following insns have already been processed. We don't build a LOG_LINK for hard registers containing in ASM_OPERANDs. If these registers get replaced, we might wind up changing the semantics of the insn, even if reload can make what appear to be valid assignments later. */ if (y && (BLOCK_NUM (y) == blocknum) && (regno >= FIRST_PSEUDO_REGISTER || asm_noperands (PATTERN (y)) < 0)) LOG_LINKS (y) = gen_rtx_INSN_LIST (VOIDmode, insn, LOG_LINKS (y)); } else if (! some_needed) { /* Note that dead stores have already been deleted when possible If we get here, we have found a dead store that cannot be eliminated (because the same insn does something useful). Indicate this by marking the reg being set as dying here. */ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn)); REG_N_DEATHS (REGNO (reg))++; } else { /* This is a case where we have a multi-word hard register and some, but not all, of the words of the register are needed in subsequent insns. Write REG_UNUSED notes for those parts that were not needed. This case should be rare. */ int i; for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; i >= 0; i--) if (!REGNO_REG_SET_P (needed, regno + i)) REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_UNUSED, gen_rtx_REG (reg_raw_mode[regno + i], regno + i), REG_NOTES (insn)); } } } else if (GET_CODE (reg) == REG) reg_next_use[regno] = 0; /* If this is the last pass and this is a SCRATCH, show it will be dying here and count it. */ else if (GET_CODE (reg) == SCRATCH && insn != 0) { REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn)); } } #ifdef AUTO_INC_DEC /* X is a MEM found in INSN. See if we can convert it into an auto-increment reference. */ static void find_auto_inc (needed, x, insn) regset needed; rtx x; rtx insn; { rtx addr = XEXP (x, 0); HOST_WIDE_INT offset = 0; rtx set; /* Here we detect use of an index register which might be good for postincrement, postdecrement, preincrement, or predecrement. */ if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT) offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0); if (GET_CODE (addr) == REG) { register rtx y; register int size = GET_MODE_SIZE (GET_MODE (x)); rtx use; rtx incr; int regno = REGNO (addr); /* Is the next use an increment that might make auto-increment? */ if ((incr = reg_next_use[regno]) != 0 && (set = single_set (incr)) != 0 && GET_CODE (set) == SET && BLOCK_NUM (incr) == BLOCK_NUM (insn) /* Can't add side effects to jumps; if reg is spilled and reloaded, there's no way to store back the altered value. */ && GET_CODE (insn) != JUMP_INSN && (y = SET_SRC (set), GET_CODE (y) == PLUS) && XEXP (y, 0) == addr && GET_CODE (XEXP (y, 1)) == CONST_INT && ((HAVE_POST_INCREMENT && (INTVAL (XEXP (y, 1)) == size && offset == 0)) || (HAVE_POST_DECREMENT && (INTVAL (XEXP (y, 1)) == - size && offset == 0)) || (HAVE_PRE_INCREMENT && (INTVAL (XEXP (y, 1)) == size && offset == size)) || (HAVE_PRE_DECREMENT && (INTVAL (XEXP (y, 1)) == - size && offset == - size))) /* Make sure this reg appears only once in this insn. */ && (use = find_use_as_address (PATTERN (insn), addr, offset), use != 0 && use != (rtx) 1)) { rtx q = SET_DEST (set); enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size ? (offset ? PRE_INC : POST_INC) : (offset ? PRE_DEC : POST_DEC)); if (dead_or_set_p (incr, addr)) { /* This is the simple case. Try to make the auto-inc. If we can't, we are done. Otherwise, we will do any needed updates below. */ if (! validate_change (insn, &XEXP (x, 0), gen_rtx_fmt_e (inc_code, Pmode, addr), 0)) return; } else if (GET_CODE (q) == REG /* PREV_INSN used here to check the semi-open interval [insn,incr). */ && ! reg_used_between_p (q, PREV_INSN (insn), incr) /* We must also check for sets of q as q may be a call clobbered hard register and there may be a call between PREV_INSN (insn) and incr. */ && ! reg_set_between_p (q, PREV_INSN (insn), incr)) { /* We have *p followed sometime later by q = p+size. Both p and q must be live afterward, and q is not used between INSN and its assignment. Change it to q = p, ...*q..., q = q+size. Then fall into the usual case. */ rtx insns, temp; start_sequence (); emit_move_insn (q, addr); insns = get_insns (); end_sequence (); /* If anything in INSNS have UID's that don't fit within the extra space we allocate earlier, we can't make this auto-inc. This should never happen. */ for (temp = insns; temp; temp = NEXT_INSN (temp)) { if (INSN_UID (temp) > max_uid_for_flow) return; BLOCK_NUM (temp) = BLOCK_NUM (insn); } /* If we can't make the auto-inc, or can't make the replacement into Y, exit. There's no point in making the change below if we can't do the auto-inc and doing so is not correct in the pre-inc case. */ validate_change (insn, &XEXP (x, 0), gen_rtx_fmt_e (inc_code, Pmode, q), 1); validate_change (incr, &XEXP (y, 0), q, 1); if (! apply_change_group ()) return; /* We now know we'll be doing this change, so emit the new insn(s) and do the updates. */ emit_insns_before (insns, insn); if (BLOCK_HEAD (BLOCK_NUM (insn)) == insn) BLOCK_HEAD (BLOCK_NUM (insn)) = insns; /* INCR will become a NOTE and INSN won't contain a use of ADDR. If a use of ADDR was just placed in the insn before INSN, make that the next use. Otherwise, invalidate it. */ if (GET_CODE (PREV_INSN (insn)) == INSN && GET_CODE (PATTERN (PREV_INSN (insn))) == SET && SET_SRC (PATTERN (PREV_INSN (insn))) == addr) reg_next_use[regno] = PREV_INSN (insn); else reg_next_use[regno] = 0; addr = q; regno = REGNO (q); /* REGNO is now used in INCR which is below INSN, but it previously wasn't live here. If we don't mark it as needed, we'll put a REG_DEAD note for it on this insn, which is incorrect. */ SET_REGNO_REG_SET (needed, regno); /* If there are any calls between INSN and INCR, show that REGNO now crosses them. */ for (temp = insn; temp != incr; temp = NEXT_INSN (temp)) if (GET_CODE (temp) == CALL_INSN) REG_N_CALLS_CROSSED (regno)++; } else return; /* If we haven't returned, it means we were able to make the auto-inc, so update the status. First, record that this insn has an implicit side effect. */ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, addr, REG_NOTES (insn)); /* Modify the old increment-insn to simply copy the already-incremented value of our register. */ if (! validate_change (incr, &SET_SRC (set), addr, 0)) abort (); /* If that makes it a no-op (copying the register into itself) delete it so it won't appear to be a "use" and a "set" of this register. */ if (SET_DEST (set) == addr) { PUT_CODE (incr, NOTE); NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (incr) = 0; } if (regno >= FIRST_PSEUDO_REGISTER) { /* Count an extra reference to the reg. When a reg is incremented, spilling it is worse, so we want to make that less likely. */ REG_N_REFS (regno) += loop_depth; /* Count the increment as a setting of the register, even though it isn't a SET in rtl. */ REG_N_SETS (regno)++; } } } } #endif /* AUTO_INC_DEC */ /* Scan expression X and store a 1-bit in LIVE for each reg it uses. This is done assuming the registers needed from X are those that have 1-bits in NEEDED. On the final pass, FINAL is 1. This means try for autoincrement and count the uses and deaths of each pseudo-reg. INSN is the containing instruction. If INSN is dead, this function is not called. */ static void mark_used_regs (needed, live, x, final, insn) regset needed; regset live; rtx x; int final; rtx insn; { register RTX_CODE code; register int regno; int i; retry: code = GET_CODE (x); switch (code) { case LABEL_REF: case SYMBOL_REF: case CONST_INT: case CONST: case CONST_DOUBLE: case PC: case ADDR_VEC: case ADDR_DIFF_VEC: return; #ifdef HAVE_cc0 case CC0: cc0_live = 1; return; #endif case CLOBBER: /* If we are clobbering a MEM, mark any registers inside the address as being used. */ if (GET_CODE (XEXP (x, 0)) == MEM) mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn); return; case MEM: /* Invalidate the data for the last MEM stored, but only if MEM is something that can be stored into. */ if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))) ; /* needn't clear the memory set list */ else { rtx temp = mem_set_list; rtx prev = NULL_RTX; while (temp) { if (anti_dependence (XEXP (temp, 0), x)) { /* Splice temp out of the list. */ if (prev) XEXP (prev, 1) = XEXP (temp, 1); else mem_set_list = XEXP (temp, 1); } else prev = temp; temp = XEXP (temp, 1); } } /* If the memory reference had embedded side effects (autoincrement address modes. Then we may need to kill some entries on the memory set list. */ if (insn) invalidate_mems_from_autoinc (insn); #ifdef AUTO_INC_DEC if (final) find_auto_inc (needed, x, insn); #endif break; case SUBREG: if (GET_CODE (SUBREG_REG (x)) == REG && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER && (GET_MODE_SIZE (GET_MODE (x)) != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))) REG_CHANGES_SIZE (REGNO (SUBREG_REG (x))) = 1; /* While we're here, optimize this case. */ x = SUBREG_REG (x); /* In case the SUBREG is not of a register, don't optimize */ if (GET_CODE (x) != REG) { mark_used_regs (needed, live, x, final, insn); return; } /* ... fall through ... */ case REG: /* See a register other than being set => mark it as needed. */ regno = REGNO (x); { int some_needed = REGNO_REG_SET_P (needed, regno); int some_not_needed = ! some_needed; SET_REGNO_REG_SET (live, regno); /* A hard reg in a wide mode may really be multiple registers. If so, mark all of them just like the first. */ if (regno < FIRST_PSEUDO_REGISTER) { int n; /* For stack ptr or fixed arg pointer, nothing below can be necessary, so waste no more time. */ if (regno == STACK_POINTER_REGNUM #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM #endif #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM || (regno == ARG_POINTER_REGNUM && fixed_regs[regno]) #endif || regno == FRAME_POINTER_REGNUM) { /* If this is a register we are going to try to eliminate, don't mark it live here. If we are successful in eliminating it, it need not be live unless it is used for pseudos, in which case it will have been set live when it was allocated to the pseudos. If the register will not be eliminated, reload will set it live at that point. */ if (! TEST_HARD_REG_BIT (elim_reg_set, regno)) regs_ever_live[regno] = 1; return; } /* No death notes for global register variables; their values are live after this function exits. */ if (global_regs[regno]) { if (final) reg_next_use[regno] = insn; return; } n = HARD_REGNO_NREGS (regno, GET_MODE (x)); while (--n > 0) { int regno_n = regno + n; int needed_regno = REGNO_REG_SET_P (needed, regno_n); SET_REGNO_REG_SET (live, regno_n); some_needed |= needed_regno; some_not_needed |= ! needed_regno; } } if (final) { /* Record where each reg is used, so when the reg is set we know the next insn that uses it. */ reg_next_use[regno] = insn; if (regno < FIRST_PSEUDO_REGISTER) { /* If a hard reg is being used, record that this function does use it. */ i = HARD_REGNO_NREGS (regno, GET_MODE (x)); if (i == 0) i = 1; do regs_ever_live[regno + --i] = 1; while (i > 0); } else { /* Keep track of which basic block each reg appears in. */ register int blocknum = BLOCK_NUM (insn); if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN) REG_BASIC_BLOCK (regno) = blocknum; else if (REG_BASIC_BLOCK (regno) != blocknum) REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL; /* Count (weighted) number of uses of each reg. */ REG_N_REFS (regno) += loop_depth; } /* Record and count the insns in which a reg dies. If it is used in this insn and was dead below the insn then it dies in this insn. If it was set in this insn, we do not make a REG_DEAD note; likewise if we already made such a note. */ if (some_not_needed && ! dead_or_set_p (insn, x) #if 0 && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno]) #endif ) { /* Check for the case where the register dying partially overlaps the register set by this insn. */ if (regno < FIRST_PSEUDO_REGISTER && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1) { int n = HARD_REGNO_NREGS (regno, GET_MODE (x)); while (--n >= 0) some_needed |= dead_or_set_regno_p (insn, regno + n); } /* If none of the words in X is needed, make a REG_DEAD note. Otherwise, we must make partial REG_DEAD notes. */ if (! some_needed) { REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, x, REG_NOTES (insn)); REG_N_DEATHS (regno)++; } else { int i; /* Don't make a REG_DEAD note for a part of a register that is set in the insn. */ for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1; i >= 0; i--) if (!REGNO_REG_SET_P (needed, regno + i) && ! dead_or_set_regno_p (insn, regno + i)) REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, gen_rtx_REG (reg_raw_mode[regno + i], regno + i), REG_NOTES (insn)); } } } } return; case SET: { register rtx testreg = SET_DEST (x); int mark_dest = 0; /* If storing into MEM, don't show it as being used. But do show the address as being used. */ if (GET_CODE (testreg) == MEM) { #ifdef AUTO_INC_DEC if (final) find_auto_inc (needed, testreg, insn); #endif mark_used_regs (needed, live, XEXP (testreg, 0), final, insn); mark_used_regs (needed, live, SET_SRC (x), final, insn); return; } /* Storing in STRICT_LOW_PART is like storing in a reg in that this SET might be dead, so ignore it in TESTREG. but in some other ways it is like using the reg. Storing in a SUBREG or a bit field is like storing the entire register in that if the register's value is not used then this SET is not needed. */ while (GET_CODE (testreg) == STRICT_LOW_PART || GET_CODE (testreg) == ZERO_EXTRACT || GET_CODE (testreg) == SIGN_EXTRACT || GET_CODE (testreg) == SUBREG) { if (GET_CODE (testreg) == SUBREG && GET_CODE (SUBREG_REG (testreg)) == REG && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER && (GET_MODE_SIZE (GET_MODE (testreg)) != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg))))) REG_CHANGES_SIZE (REGNO (SUBREG_REG (testreg))) = 1; /* Modifying a single register in an alternate mode does not use any of the old value. But these other ways of storing in a register do use the old value. */ if (GET_CODE (testreg) == SUBREG && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg))) ; else mark_dest = 1; testreg = XEXP (testreg, 0); } /* If this is a store into a register, recursively scan the value being stored. */ if ((GET_CODE (testreg) == PARALLEL && GET_MODE (testreg) == BLKmode) || (GET_CODE (testreg) == REG && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM) #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM && regno != HARD_FRAME_POINTER_REGNUM #endif #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno]) #endif )) /* We used to exclude global_regs here, but that seems wrong. Storing in them is like storing in mem. */ { mark_used_regs (needed, live, SET_SRC (x), final, insn); if (mark_dest) mark_used_regs (needed, live, SET_DEST (x), final, insn); return; } } break; case RETURN: /* If exiting needs the right stack value, consider this insn as using the stack pointer. In any event, consider it as using all global registers and all registers used by return. */ #ifdef EXIT_IGNORE_STACK if (! EXIT_IGNORE_STACK || (! FRAME_POINTER_REQUIRED && ! current_function_calls_alloca && flag_omit_frame_pointer) || current_function_sp_is_unchanging) #endif SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (global_regs[i] #ifdef EPILOGUE_USES || EPILOGUE_USES (i) #endif ) SET_REGNO_REG_SET (live, i); break; case ASM_OPERANDS: case UNSPEC_VOLATILE: case TRAP_IF: case ASM_INPUT: { /* Traditional and volatile asm instructions must be considered to use and clobber all hard registers, all pseudo-registers and all of memory. So must TRAP_IF and UNSPEC_VOLATILE operations. Consider for instance a volatile asm that changes the fpu rounding mode. An insn should not be moved across this even if it only uses pseudo-regs because it might give an incorrectly rounded result. ?!? Unfortunately, marking all hard registers as live causes massive problems for the register allocator and marking all pseudos as live creates mountains of uninitialized variable warnings. So for now, just clear the memory set list and mark any regs we can find in ASM_OPERANDS as used. */ if (code != ASM_OPERANDS || MEM_VOLATILE_P (x)) mem_set_list = NULL_RTX; /* For all ASM_OPERANDS, we must traverse the vector of input operands. We can not just fall through here since then we would be confused by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate traditional asms unlike their normal usage. */ if (code == ASM_OPERANDS) { int j; for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++) mark_used_regs (needed, live, ASM_OPERANDS_INPUT (x, j), final, insn); } break; } default: break; } /* Recursively scan the operands of this expression. */ { register char *fmt = GET_RTX_FORMAT (code); register int i; for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { /* Tail recursive case: save a function call level. */ if (i == 0) { x = XEXP (x, 0); goto retry; } mark_used_regs (needed, live, XEXP (x, i), final, insn); } else if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn); } } } } #ifdef AUTO_INC_DEC static int try_pre_increment_1 (insn) rtx insn; { /* Find the next use of this reg. If in same basic block, make it do pre-increment or pre-decrement if appropriate. */ rtx x = single_set (insn); HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1) * INTVAL (XEXP (SET_SRC (x), 1))); int regno = REGNO (SET_DEST (x)); rtx y = reg_next_use[regno]; if (y != 0 && BLOCK_NUM (y) == BLOCK_NUM (insn) /* Don't do this if the reg dies, or gets set in y; a standard addressing mode would be better. */ && ! dead_or_set_p (y, SET_DEST (x)) && try_pre_increment (y, SET_DEST (x), amount)) { /* We have found a suitable auto-increment and already changed insn Y to do it. So flush this increment-instruction. */ PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; /* Count a reference to this reg for the increment insn we are deleting. When a reg is incremented. spilling it is worse, so we want to make that less likely. */ if (regno >= FIRST_PSEUDO_REGISTER) { REG_N_REFS (regno) += loop_depth; REG_N_SETS (regno)++; } return 1; } return 0; } /* Try to change INSN so that it does pre-increment or pre-decrement addressing on register REG in order to add AMOUNT to REG. AMOUNT is negative for pre-decrement. Returns 1 if the change could be made. This checks all about the validity of the result of modifying INSN. */ static int try_pre_increment (insn, reg, amount) rtx insn, reg; HOST_WIDE_INT amount; { register rtx use; /* Nonzero if we can try to make a pre-increment or pre-decrement. For example, addl $4,r1; movl (r1),... can become movl +(r1),... */ int pre_ok = 0; /* Nonzero if we can try to make a post-increment or post-decrement. For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,... It is possible for both PRE_OK and POST_OK to be nonzero if the machine supports both pre-inc and post-inc, or both pre-dec and post-dec. */ int post_ok = 0; /* Nonzero if the opportunity actually requires post-inc or post-dec. */ int do_post = 0; /* From the sign of increment, see which possibilities are conceivable on this target machine. */ if (HAVE_PRE_INCREMENT && amount > 0) pre_ok = 1; if (HAVE_POST_INCREMENT && amount > 0) post_ok = 1; if (HAVE_PRE_DECREMENT && amount < 0) pre_ok = 1; if (HAVE_POST_DECREMENT && amount < 0) post_ok = 1; if (! (pre_ok || post_ok)) return 0; /* It is not safe to add a side effect to a jump insn because if the incremented register is spilled and must be reloaded there would be no way to store the incremented value back in memory. */ if (GET_CODE (insn) == JUMP_INSN) return 0; use = 0; if (pre_ok) use = find_use_as_address (PATTERN (insn), reg, 0); if (post_ok && (use == 0 || use == (rtx) 1)) { use = find_use_as_address (PATTERN (insn), reg, -amount); do_post = 1; } if (use == 0 || use == (rtx) 1) return 0; if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount)) return 0; /* See if this combination of instruction and addressing mode exists. */ if (! validate_change (insn, &XEXP (use, 0), gen_rtx_fmt_e (amount > 0 ? (do_post ? POST_INC : PRE_INC) : (do_post ? POST_DEC : PRE_DEC), Pmode, reg), 0)) return 0; /* Record that this insn now has an implicit side effect on X. */ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg, REG_NOTES (insn)); return 1; } #endif /* AUTO_INC_DEC */ /* Find the place in the rtx X where REG is used as a memory address. Return the MEM rtx that so uses it. If PLUSCONST is nonzero, search instead for a memory address equivalent to (plus REG (const_int PLUSCONST)). If such an address does not appear, return 0. If REG appears more than once, or is used other than in such an address, return (rtx)1. */ rtx find_use_as_address (x, reg, plusconst) register rtx x; rtx reg; HOST_WIDE_INT plusconst; { enum rtx_code code = GET_CODE (x); char *fmt = GET_RTX_FORMAT (code); register int i; register rtx value = 0; register rtx tem; if (code == MEM && XEXP (x, 0) == reg && plusconst == 0) return x; if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS && XEXP (XEXP (x, 0), 0) == reg && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst) return x; if (code == SIGN_EXTRACT || code == ZERO_EXTRACT) { /* If REG occurs inside a MEM used in a bit-field reference, that is unacceptable. */ if (find_use_as_address (XEXP (x, 0), reg, 0) != 0) return (rtx) (HOST_WIDE_INT) 1; } if (x == reg) return (rtx) (HOST_WIDE_INT) 1; for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { tem = find_use_as_address (XEXP (x, i), reg, plusconst); if (value == 0) value = tem; else if (tem != 0) return (rtx) (HOST_WIDE_INT) 1; } if (fmt[i] == 'E') { register int j; for (j = XVECLEN (x, i) - 1; j >= 0; j--) { tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst); if (value == 0) value = tem; else if (tem != 0) return (rtx) (HOST_WIDE_INT) 1; } } } return value; } /* Write information about registers and basic blocks into FILE. This is part of making a debugging dump. */ void dump_flow_info (file) FILE *file; { register int i; static char *reg_class_names[] = REG_CLASS_NAMES; fprintf (file, "%d registers.\n", max_regno); for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (REG_N_REFS (i)) { enum reg_class class, altclass; fprintf (file, "\nRegister %d used %d times across %d insns", i, REG_N_REFS (i), REG_LIVE_LENGTH (i)); if (REG_BASIC_BLOCK (i) >= 0) fprintf (file, " in block %d", REG_BASIC_BLOCK (i)); if (REG_N_SETS (i)) fprintf (file, "; set %d time%s", REG_N_SETS (i), (REG_N_SETS (i) == 1) ? "" : "s"); if (REG_USERVAR_P (regno_reg_rtx[i])) fprintf (file, "; user var"); if (REG_N_DEATHS (i) != 1) fprintf (file, "; dies in %d places", REG_N_DEATHS (i)); if (REG_N_CALLS_CROSSED (i) == 1) fprintf (file, "; crosses 1 call"); else if (REG_N_CALLS_CROSSED (i)) fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i)); if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD) fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i)); class = reg_preferred_class (i); altclass = reg_alternate_class (i); if (class != GENERAL_REGS || altclass != ALL_REGS) { if (altclass == ALL_REGS || class == ALL_REGS) fprintf (file, "; pref %s", reg_class_names[(int) class]); else if (altclass == NO_REGS) fprintf (file, "; %s or none", reg_class_names[(int) class]); else fprintf (file, "; pref %s, else %s", reg_class_names[(int) class], reg_class_names[(int) altclass]); } if (REGNO_POINTER_FLAG (i)) fprintf (file, "; pointer"); fprintf (file, ".\n"); } fprintf (file, "\n%d basic blocks.\n", n_basic_blocks); dump_bb_data (file, basic_block_pred, basic_block_succ, 1); } /* Like print_rtl, but also print out live information for the start of each basic block. */ void print_rtl_with_bb (outf, rtx_first) FILE *outf; rtx rtx_first; { register rtx tmp_rtx; if (rtx_first == 0) fprintf (outf, "(nil)\n"); else { int i, bb; enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB }; int max_uid = get_max_uid (); int *start = (int *) alloca (max_uid * sizeof (int)); int *end = (int *) alloca (max_uid * sizeof (int)); enum bb_state *in_bb_p = (enum bb_state *) alloca (max_uid * sizeof (enum bb_state)); for (i = 0; i < max_uid; i++) { start[i] = end[i] = -1; in_bb_p[i] = NOT_IN_BB; } for (i = n_basic_blocks-1; i >= 0; i--) { rtx x; start[INSN_UID (BLOCK_HEAD (i))] = i; end[INSN_UID (BLOCK_END (i))] = i; for (x = BLOCK_HEAD (i); x != NULL_RTX; x = NEXT_INSN (x)) { in_bb_p[ INSN_UID(x)] = (in_bb_p[ INSN_UID(x)] == NOT_IN_BB) ? IN_ONE_BB : IN_MULTIPLE_BB; if (x == BLOCK_END (i)) break; } } for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx)) { int did_output; if ((bb = start[INSN_UID (tmp_rtx)]) >= 0) { fprintf (outf, ";; Start of basic block %d, registers live:", bb); EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[bb], 0, i, { fprintf (outf, " %d", i); if (i < FIRST_PSEUDO_REGISTER) fprintf (outf, " [%s]", reg_names[i]); }); putc ('\n', outf); } if (in_bb_p[ INSN_UID(tmp_rtx)] == NOT_IN_BB && GET_CODE (tmp_rtx) != NOTE && GET_CODE (tmp_rtx) != BARRIER) fprintf (outf, ";; Insn is not within a basic block\n"); else if (in_bb_p[ INSN_UID(tmp_rtx)] == IN_MULTIPLE_BB) fprintf (outf, ";; Insn is in multiple basic blocks\n"); did_output = print_rtl_single (outf, tmp_rtx); if ((bb = end[INSN_UID (tmp_rtx)]) >= 0) fprintf (outf, ";; End of basic block %d\n", bb); if (did_output) putc ('\n', outf); } } } /* Integer list support. */ /* Allocate a node from list *HEAD_PTR. */ static int_list_ptr alloc_int_list_node (head_ptr) int_list_block **head_ptr; { struct int_list_block *first_blk = *head_ptr; if (first_blk == NULL || first_blk->nodes_left <= 0) { first_blk = (struct int_list_block *) xmalloc (sizeof (struct int_list_block)); first_blk->nodes_left = INT_LIST_NODES_IN_BLK; first_blk->next = *head_ptr; *head_ptr = first_blk; } first_blk->nodes_left--; return &first_blk->nodes[first_blk->nodes_left]; } /* Pointer to head of predecessor/successor block list. */ static int_list_block *pred_int_list_blocks; /* Add a new node to integer list LIST with value VAL. LIST is a pointer to a list object to allow for different implementations. If *LIST is initially NULL, the list is empty. The caller must not care whether the element is added to the front or to the end of the list (to allow for different implementations). */ static int_list_ptr add_int_list_node (blk_list, list, val) int_list_block **blk_list; int_list **list; int val; { int_list_ptr p = alloc_int_list_node (blk_list); p->val = val; p->next = *list; *list = p; return p; } /* Free the blocks of lists at BLK_LIST. */ void free_int_list (blk_list) int_list_block **blk_list; { int_list_block *p, *next; for (p = *blk_list; p != NULL; p = next) { next = p->next; free (p); } /* Mark list as empty for the next function we compile. */ *blk_list = NULL; } /* Predecessor/successor computation. */ /* Mark PRED_BB a precessor of SUCC_BB, and conversely SUCC_BB a successor of PRED_BB. */ static void add_pred_succ (pred_bb, succ_bb, s_preds, s_succs, num_preds, num_succs) int pred_bb; int succ_bb; int_list_ptr *s_preds; int_list_ptr *s_succs; int *num_preds; int *num_succs; { if (succ_bb != EXIT_BLOCK) { add_int_list_node (&pred_int_list_blocks, &s_preds[succ_bb], pred_bb); num_preds[succ_bb]++; } if (pred_bb != ENTRY_BLOCK) { add_int_list_node (&pred_int_list_blocks, &s_succs[pred_bb], succ_bb); num_succs[pred_bb]++; } } /* Compute the predecessors and successors for each block. */ /* CYGNUS LOCAL edge splitting/law */ int compute_preds_succs (s_preds, s_succs, num_preds, num_succs, split_edges) int_list_ptr *s_preds; int_list_ptr *s_succs; int *num_preds; int *num_succs; int split_edges; { int bb; int changed = 0; bzero ((char *) s_preds, n_basic_blocks * sizeof (int_list_ptr)); bzero ((char *) s_succs, n_basic_blocks * sizeof (int_list_ptr)); bzero ((char *) num_preds, n_basic_blocks * sizeof (int)); bzero ((char *) num_succs, n_basic_blocks * sizeof (int)); /* It's somewhat stupid to simply copy the information. The passes which use this function ought to be changed to refer directly to basic_block_succ and its relatives. */ for (bb = 0; bb < n_basic_blocks; bb++) { rtx jump = BLOCK_END (bb); enum rtx_code code = GET_CODE (jump); int_list_ptr p; for (p = basic_block_succ[bb]; p; p = p->next) add_pred_succ (bb, INT_LIST_VAL (p), s_preds, s_succs, num_preds, num_succs); /* If this is a RETURN insn or a conditional jump in the last basic block, or a non-jump insn in the last basic block, then this block reaches the exit block. */ if ((code == JUMP_INSN && GET_CODE (PATTERN (jump)) == RETURN) || (((code == JUMP_INSN && condjump_p (jump) && !simplejump_p (jump)) || code != JUMP_INSN) && bb == n_basic_blocks - 1)) add_pred_succ (bb, EXIT_BLOCK, s_preds, s_succs, num_preds, num_succs); } add_pred_succ (ENTRY_BLOCK, 0, s_preds, s_succs, num_preds, num_succs); #if 0 /* CYGNUS LOCAL edge-splitting/law */ /* Now see what edges we should split. */ if (split_edges) { /* Array indexed by block number to determine if an in-edge to the block has been split. Used to prevent more than one in-edge to any given block from being split. */ char *split_edge_to_block = (char *) alloca (n_basic_blocks); bzero (split_edge_to_block, n_basic_blocks); for (bb = 0; bb < n_basic_blocks; bb++) { /* Find a block that has more than one successor. */ if (num_succs[bb] > 1) { int_list_ptr p; /* Now look at each successor block to see which have more than one predecessor block. */ for (p = s_succs[bb]; p != NULL; p = p->next) { int pred_bb = INT_LIST_VAL (p); /* If our block falls into this successor (ie no jump), then we can split this edge since the existance of this block will not introduce any new jumps. */ if (split_edge_to_block[pred_bb] == 0 && basic_block_drops_in[pred_bb] && num_preds[pred_bb] > 1 && bb + 1 == pred_bb) { rtx insn, jump, label, olabel; jump = BLOCK_END (bb); /* Try to find the conditional jump at the end of the current block. If it's not a conditional jump, then do not try and split the edge. */ if (GET_CODE (jump) != JUMP_INSN || !condjump_p (jump)) continue; label = gen_label_rtx (); /* This code knows that find_basic_blocks always creates a new basic block when it encounters a label. The label will be deleted by a later pass if it is never used as a jump target. */ label = emit_label_after (label, BLOCK_END (bb)); LABEL_NUSES (label) = 0; split_edge_to_block[pred_bb] = 1; changed = 1; } /* If our block jumps to this successor, and the successor can only be reached via jumps, then we can split this edge too since the jump from this block to the successor can be redirected to a dummy block before the successor (which then makes the successor a fall through). */ else if (split_edge_to_block[pred_bb] == 0 && num_preds[pred_bb] > 1 && !basic_block_drops_in[pred_bb]) { rtx insn, jump, label, olabel; jump = BLOCK_END (bb); /* Try to find the conditional jump at the end of the current block. If it's not a conditional jump, then do not try and split the edge. */ if (GET_CODE (jump) != JUMP_INSN || !condjump_p (jump)) continue; /* Make sure we've found the right edge to split. */ if (JUMP_LABEL (jump) != BLOCK_HEAD (pred_bb)) continue; /* Redirect the jump from this block to its sucessor to use a new label. */ label = gen_label_rtx (); insn = emit_label_after (label, PREV_INSN (BLOCK_HEAD (pred_bb))); LABEL_NUSES (insn) = 0; /* Make sure redirect_jump does not delete this label. */ olabel = JUMP_LABEL (jump); LABEL_NUSES (olabel)++; redirect_jump (jump, label); JUMP_LABEL (jump) = label; /* Fix the reference count. */ LABEL_NUSES (olabel)--; split_edge_to_block[pred_bb] = 1; changed = 1; } /* One might consider splitting other edges, but doing so introduces new jumps in the code, and thus the cost of the jump has to be weighed against the additional redundancies we're likely to find. */ } } } } #endif return changed; } /* END CYGNUS LOCAL */ void dump_bb_data (file, preds, succs, live_info) FILE *file; int_list_ptr *preds; int_list_ptr *succs; int live_info; { int bb; int_list_ptr p; fprintf (file, "BB data\n\n"); for (bb = 0; bb < n_basic_blocks; bb++) { fprintf (file, "BB %d, start %d, end %d\n", bb, INSN_UID (BLOCK_HEAD (bb)), INSN_UID (BLOCK_END (bb))); fprintf (file, " preds:"); for (p = preds[bb]; p != NULL; p = p->next) { int pred_bb = INT_LIST_VAL (p); if (pred_bb == ENTRY_BLOCK) fprintf (file, " entry"); else fprintf (file, " %d", pred_bb); } fprintf (file, "\n"); fprintf (file, " succs:"); for (p = succs[bb]; p != NULL; p = p->next) { int succ_bb = INT_LIST_VAL (p); if (succ_bb == EXIT_BLOCK) fprintf (file, " exit"); else fprintf (file, " %d", succ_bb); } if (live_info) { int regno; fprintf (file, "\nRegisters live at start:"); for (regno = 0; regno < max_regno; regno++) if (REGNO_REG_SET_P (basic_block_live_at_start[bb], regno)) fprintf (file, " %d", regno); fprintf (file, "\n"); } fprintf (file, "\n"); } fprintf (file, "\n"); } /* Free basic block data storage. */ void free_bb_mem () { free_int_list (&pred_int_list_blocks); } /* Compute dominator relationships. */ void compute_dominators (dominators, post_dominators, s_preds, s_succs) sbitmap *dominators; sbitmap *post_dominators; int_list_ptr *s_preds; int_list_ptr *s_succs; { int bb, changed, passes; sbitmap *temp_bitmap; temp_bitmap = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks); sbitmap_vector_ones (dominators, n_basic_blocks); sbitmap_vector_ones (post_dominators, n_basic_blocks); sbitmap_vector_zero (temp_bitmap, n_basic_blocks); sbitmap_zero (dominators[0]); SET_BIT (dominators[0], 0); sbitmap_zero (post_dominators[n_basic_blocks-1]); SET_BIT (post_dominators[n_basic_blocks-1], 0); passes = 0; changed = 1; while (changed) { changed = 0; for (bb = 1; bb < n_basic_blocks; bb++) { sbitmap_intersect_of_predecessors (temp_bitmap[bb], dominators, bb, s_preds); SET_BIT (temp_bitmap[bb], bb); changed |= sbitmap_a_and_b (dominators[bb], dominators[bb], temp_bitmap[bb]); sbitmap_intersect_of_successors (temp_bitmap[bb], post_dominators, bb, s_succs); SET_BIT (temp_bitmap[bb], bb); changed |= sbitmap_a_and_b (post_dominators[bb], post_dominators[bb], temp_bitmap[bb]); } passes++; } free (temp_bitmap); } /* CYGNUS LOCAL law */ /* This is a fairly simple block merge optimization pass. We search for block pairs where the first block is succeeded by only the second block and the second block is preceeded only by the first block. If the blocks are not adjacent, then it must be the case that the first block jumps to the second. With a little work the two blocks can be merged into a single larger block. The primary benefit of performing this optimization is better local optimization within the merged block. This optimization will also save a jump if the second block ended with an unconditional branch. Many improvements could be made to this pass to turn it into a real block scheduler. Probably the most important components would be a branch predictor and code to convert from a block list to an insn chain by modfiying/adding/removing jumps as needed. Given a reducible flow graph (or sub-graph if the whole graph is not reducible) we would perform a DFS traversal of the nodes using the predictor to select a path at each conditional jump. First perform the DFS traversal starting at the header for inner natural loops. As each loop is traversed, reduce it to a single node and work outward. Process all natural loops in this manner. Once all loops are reduced perform the DFS traversal on the remaining flow graph. The net result would be a block ordering which should minimize branch penalties for the predicted path through a function. As a side effect blocks which are not part of a loop would be removed from the loop. */ void merge_blocks (f) rtx f; { int_list_ptr *s_preds, *s_succs; int *num_preds, *num_succs; int n_blocks_merged, bb, i; sbitmap headers, trailers; /* Don't try to perform this after the last CSE pass. It's not worth the effort to try and maintain all the data structures that have to be preserved after that point. Most of the benefits come from the first couple passes anyway. */ if (reload_completed) return; /* ??? This does not work when EH is enabled. The g++.eh/spec2.C test fails on a solaris2 host if this optimization is performed. 1) The tests for moving a block decide it is safe if it contains no EH region. This isn't sufficient, and may be unnecessary. We can't merge two blocks if the pred and succ are in different EH regions. Otherwise, a throw may end up in the wrong catch clause. 2) Calls that throw end a block, and if the call returns a value, the call may end up in a different block than the insn which stores the return value into a pseudo. This may not be safe for machines using SMALL_REGISTER_CLASSES. 3) throw/catch edges should be distinguished from branch/fallthrough edges, and different heuristics should be applied to them. */ if (flag_exceptions) return; /* First break the program into basic blocks. */ find_basic_blocks (f, max_reg_num (), NULL); /* If we have only a single block, then there's nothing to do. */ if (n_basic_blocks <= 1) { /* Free storage allocated by find_basic_blocks. */ free_basic_block_vars (0); return; } /* We need predecessor/successor lists as well as pred/succ counts for each basic block. */ s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr)); s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr)); num_preds = (int *) alloca (n_basic_blocks * sizeof (int)); num_succs = (int *) alloca (n_basic_blocks * sizeof (int)); compute_preds_succs (s_preds, s_succs, num_preds, num_succs, 0); /* We only need to note which blocks are headers and which blocks are trailers. The pred/succ lists encode the actual chain from one block to the next. */ headers = sbitmap_alloc (n_basic_blocks); trailers = sbitmap_alloc (n_basic_blocks); sbitmap_zero (headers); sbitmap_zero (trailers); n_blocks_merged = 0; /* Walk over each block looking for mergeable blocks. */ for (bb = 0; bb < n_basic_blocks; bb++) { int succ_bb; rtx temp; /* If this block has more than one successor, then there's nothing more to do. */ if (num_succs[bb] != 1) continue; succ_bb = INT_LIST_VAL (s_succs[bb]); /* If the successor block is the exit block, then there's nothing more to do, similarly if the successor block is the last block. */ if (succ_bb == EXIT_BLOCK || succ_bb == n_basic_blocks - 1) continue; /* If the successor has more than one precedessor, then there's nothing more to do. */ if (num_preds[succ_bb] > 1) continue; /* If the successor block is the next block, then there's nothing to do. */ if (bb + 1 == succ_bb) continue; /* If the successor block has an EH region begin/end note, then we can not perform this optimization. */ temp = BLOCK_HEAD (succ_bb); while (temp) { if (GET_CODE (temp) == NOTE && (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG || NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END)) break; if (temp == BLOCK_END (succ_bb)) break; temp = NEXT_INSN (temp); } /* If we stopped on an EH note, then there's nothing we can do. */ if (temp && GET_CODE (temp) == NOTE && (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG || NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END)) continue; /* We must keep a tablejump/switch insn immediately in front of its associated jump table. They should actually be a single block which would avoid this hair. But I'm not going to try and tackle that problem right now. For now we just special case handling of this situation and avoid doing anything with such blocks. Luckily the tablejump and jump table itself must be adjacent. This property makes it relatively easy to detect this case. */ temp = BLOCK_END (succ_bb); /* A tablejump will "jump" to the next instruction, which is the jump table itself. */ if (temp && GET_CODE (temp) == JUMP_INSN && JUMP_LABEL (temp) && JUMP_LABEL (temp) == next_nonnote_insn (temp)) { rtx next = next_nonnote_insn (JUMP_LABEL (temp)); /* Now see if the next insn is a jump table, if it is, then we do not want to merge this block. */ if (next && GET_CODE (next) == JUMP_INSN && (GET_CODE (PATTERN (next)) == ADDR_VEC || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)) continue; } /* If BB is not already in a chain, then it becomes a chain header. */ if (!TEST_BIT (trailers, bb)) SET_BIT (headers, bb); /* SUCC_BB could have been marked as a header already. It is no longer a header, so clear the bit. */ RESET_BIT (headers, succ_bb); /* SUCC_BB is in a chain now. */ SET_BIT (trailers, succ_bb); n_blocks_merged++; } /* Now rearrange insn chain to reflect the desired block ordering. When the merged block does not end with an unconditional branch, we must insert an unconditional branch to the fallthrough path of successor block to preserve program correctness. We only perform a very limited number of transformations on the block ordering, so this code is relatively simple right now. */ if (n_blocks_merged != 0) { for (i = 0; i < n_basic_blocks; i++) { int_list_ptr ps; int current_block, trailer_block; /* There's nothing to do if this is not a chain header. */ if (! TEST_BIT (headers, i)) continue; /* Splice the insn chain so that the trailer block(s) immediately follow the header block. */ ps = s_succs[i]; current_block = i; while (ps && TEST_BIT (trailers, INT_LIST_VAL (ps))) { rtx start, end, next, oldlabel, insertpoint; trailer_block = INT_LIST_VAL (ps); /* Find the start/end points for the insns to move. */ start = BLOCK_HEAD (trailer_block); end = BLOCK_END (trailer_block); /* If the next nonnote insn after the end of the trailer block is a BARRIER, then we copy it too. */ next = next_nonnote_insn (end); if (next && GET_CODE (next) == BARRIER) end = next; /* We insert insns from the trailer block after the BARRIER which follows thisn block. */ insertpoint = BLOCK_END (current_block); next = next_nonnote_insn (insertpoint); if (next && GET_CODE (next) == BARRIER) insertpoint = next; /* Move block and loop notes out of the chain so that we do not disturb their order. */ /* ??? A slightly better solution would be to squeeze out all non-nested notes, and adjust the block trees appropriately. Even better would be to have a tighter connection between block trees and rtl so that this is not necessary. */ start = squeeze_notes (start, end); /* Scramble the insn chain. */ reorder_insns (start, end, insertpoint); /* If the last copied insn was not a BARRIER, then we must insert a jump from the end of TRAILER_BLOCK to the start of TRAILER_BLOCK + 1 to preserve the meaning of the code. */ if (GET_CODE (end) != BARRIER) { rtx jump, insn, label; start = BLOCK_HEAD (trailer_block + 1); /* Make sure the start of the block which used to follow the trailer block starts with a CODE_LABEL. */ if (GET_CODE (start) != CODE_LABEL) { label = gen_label_rtx (); LABEL_NUSES (label) = 1; BLOCK_HEAD (trailer_block + 1) = emit_label_after (label, PREV_INSN (start)); } else { label = start; LABEL_NUSES (label)++; } jump = emit_jump_insn_after (gen_jump (label), BLOCK_END (trailer_block)); BLOCK_END (trailer_block) = jump; JUMP_LABEL (jump) = label; emit_barrier_after (jump); } /* Now remove the redundant JUMP at the end of the previous basic block. */ delete_jump (BLOCK_END (current_block)); /* Continue the loop in case we merged more than two blocks into a single chain. */ current_block = trailer_block; ps = s_succs[current_block]; } } } /* There is one important case the above code does not handle. If the last block is only reachable by one predecessor, then the predecessor should be tacked onto the head of the last block. If the predecessor block was a trailer, then we should walk up to the head of its block list. Not yet implemented. */ if (num_preds[n_basic_blocks - 1] == 1 && num_succs[INT_LIST_VAL (s_preds[n_basic_blocks - 1])] == 1) { rtx start, end, insertpoint; int pred = INT_LIST_VAL (s_preds[n_basic_blocks - 1]); /* If the predecessor is a trailer block, or it alrady is the immediate predecessor of the last block, then there is nothing to do. */ if (!TEST_BIT (trailers, pred) && pred != n_basic_blocks - 2) { rtx temp; /* Find the start/end points for the insns to move. We leave the jump to the last block in its original position. */ start = BLOCK_HEAD (pred); end = BLOCK_END (pred); /* If the predecessor block has an EH region begin/end note, then we can not perform this optimization. */ temp = start; while (temp) { if (GET_CODE (temp) == NOTE && (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG || NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END)) break; if (temp == BLOCK_END (pred)) break; temp = NEXT_INSN (temp); } /* If we stopped on an EH note, then there's nothing we can do. */ if (start != end && ! (temp && GET_CODE (temp) == NOTE && (NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_BEG || NOTE_LINE_NUMBER (temp) == NOTE_INSN_EH_REGION_END))) { /* For simplicity we'll leave any CODE_LABEL and JUMP in their original location. If they are dead, then they'll be deleted by the jump optimizer. If not branches which reach the label will be threaded to the epilogue, which makes the label and jump dead anyway. */ if (GET_CODE (start) == CODE_LABEL) start = NEXT_INSN (start); /* The first check is necessary in case the block contains only the CODE_LABEL skipped above and only one other instruction. */ if (start != end && next_nonnote_insn (start) != end) { end = PREV_INSN (end); /* We insert insns from the predecessor block after the CODE_LABEL which starts the final block. */ insertpoint = BLOCK_HEAD (n_basic_blocks - 1); start = squeeze_notes (start, end); /* Scramble the insn chain. */ reorder_insns (start, end, insertpoint); } } } } /* Now that we have maximal blocks, it would be a good time to run natural loop analysis and rip out blocks that are physically inside loops, but not part of the loop itself. */ /* Free storage allocated by find_basic_blocks. */ free_basic_block_vars (0); free_bb_mem (); } /* END CYGNUS LOCAL */ /* Count for a single SET rtx, X. */ static void count_reg_sets_1 (x) rtx x; { register int regno; register rtx reg = SET_DEST (x); /* Find the register that's set/clobbered. */ while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT || GET_CODE (reg) == SIGN_EXTRACT || GET_CODE (reg) == STRICT_LOW_PART) reg = XEXP (reg, 0); if (GET_CODE (reg) == PARALLEL && GET_MODE (reg) == BLKmode) { register int i; for (i = XVECLEN (reg, 0) - 1; i >= 0; i--) count_reg_sets_1 (XVECEXP (reg, 0, i)); return; } if (GET_CODE (reg) == REG) { regno = REGNO (reg); if (regno >= FIRST_PSEUDO_REGISTER) { /* Count (weighted) references, stores, etc. This counts a register twice if it is modified, but that is correct. */ REG_N_SETS (regno)++; REG_N_REFS (regno) += loop_depth; } } } /* Increment REG_N_SETS for each SET or CLOBBER found in X; also increment REG_N_REFS by the current loop depth for each SET or CLOBBER found. */ static void count_reg_sets (x) rtx x; { register RTX_CODE code = GET_CODE (x); if (code == SET || code == CLOBBER) count_reg_sets_1 (x); else if (code == PARALLEL) { register int i; for (i = XVECLEN (x, 0) - 1; i >= 0; i--) { code = GET_CODE (XVECEXP (x, 0, i)); if (code == SET || code == CLOBBER) count_reg_sets_1 (XVECEXP (x, 0, i)); } } } /* Increment REG_N_REFS by the current loop depth each register reference found in X. */ static void count_reg_references (x) rtx x; { register RTX_CODE code; retry: code = GET_CODE (x); switch (code) { case LABEL_REF: case SYMBOL_REF: case CONST_INT: case CONST: case CONST_DOUBLE: case PC: case ADDR_VEC: case ADDR_DIFF_VEC: case ASM_INPUT: return; #ifdef HAVE_cc0 case CC0: return; #endif case CLOBBER: /* If we are clobbering a MEM, mark any registers inside the address as being used. */ if (GET_CODE (XEXP (x, 0)) == MEM) count_reg_references (XEXP (XEXP (x, 0), 0)); return; case SUBREG: /* While we're here, optimize this case. */ x = SUBREG_REG (x); /* In case the SUBREG is not of a register, don't optimize */ if (GET_CODE (x) != REG) { count_reg_references (x); return; } /* ... fall through ... */ case REG: if (REGNO (x) >= FIRST_PSEUDO_REGISTER) REG_N_REFS (REGNO (x)) += loop_depth; return; case SET: { register rtx testreg = SET_DEST (x); int mark_dest = 0; /* If storing into MEM, don't show it as being used. But do show the address as being used. */ if (GET_CODE (testreg) == MEM) { count_reg_references (XEXP (testreg, 0)); count_reg_references (SET_SRC (x)); return; } /* Storing in STRICT_LOW_PART is like storing in a reg in that this SET might be dead, so ignore it in TESTREG. but in some other ways it is like using the reg. Storing in a SUBREG or a bit field is like storing the entire register in that if the register's value is not used then this SET is not needed. */ while (GET_CODE (testreg) == STRICT_LOW_PART || GET_CODE (testreg) == ZERO_EXTRACT || GET_CODE (testreg) == SIGN_EXTRACT || GET_CODE (testreg) == SUBREG) { /* Modifying a single register in an alternate mode does not use any of the old value. But these other ways of storing in a register do use the old value. */ if (GET_CODE (testreg) == SUBREG && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg))) ; else mark_dest = 1; testreg = XEXP (testreg, 0); } /* If this is a store into a register, recursively scan the value being stored. */ if ((GET_CODE (testreg) == PARALLEL && GET_MODE (testreg) == BLKmode) || GET_CODE (testreg) == REG) { count_reg_references (SET_SRC (x)); if (mark_dest) count_reg_references (SET_DEST (x)); return; } } break; default: break; } /* Recursively scan the operands of this expression. */ { register char *fmt = GET_RTX_FORMAT (code); register int i; for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { /* Tail recursive case: save a function call level. */ if (i == 0) { x = XEXP (x, 0); goto retry; } count_reg_references (XEXP (x, i)); } else if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) count_reg_references (XVECEXP (x, i, j)); } } } } /* Recompute register set/reference counts immediately prior to register allocation. This avoids problems with set/reference counts changing to/from values which have special meanings to the register allocators. Additionally, the reference counts are the primary component used by the register allocators to prioritize pseudos for allocation to hard regs. More accurate reference counts generally lead to better register allocation. F is the first insn to be scanned. LOOP_STEP denotes how much loop_depth should be incremented per loop nesting level in order to increase the ref count more for references in a loop. It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and possibly other information which is used by the register allocators. */ void recompute_reg_usage (f, loop_step) rtx f; int loop_step; { rtx insn; int i, max_reg; /* Clear out the old data. */ max_reg = max_reg_num (); for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++) { REG_N_SETS (i) = 0; REG_N_REFS (i) = 0; } /* Scan each insn in the chain and count how many times each register is set/used. */ loop_depth = 1; for (insn = f; insn; insn = NEXT_INSN (insn)) { /* Keep track of loop depth. */ if (GET_CODE (insn) == NOTE) { /* Look for loop boundaries. */ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END) loop_depth -= loop_step; else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG) loop_depth += loop_step; /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error. Abort now rather than setting register status incorrectly. */ if (loop_depth == 0) abort (); } else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { rtx links; /* This call will increment REG_N_SETS for each SET or CLOBBER of a register in INSN. It will also increment REG_N_REFS by the loop depth for each set of a register in INSN. */ count_reg_sets (PATTERN (insn)); /* count_reg_sets does not detect autoincrement address modes, so detect them here by looking at the notes attached to INSN. */ for (links = REG_NOTES (insn); links; links = XEXP (links, 1)) { if (REG_NOTE_KIND (links) == REG_INC) /* Count (weighted) references, stores, etc. This counts a register twice if it is modified, but that is correct. */ REG_N_SETS (REGNO (XEXP (links, 0)))++; } /* This call will increment REG_N_REFS by the current loop depth for each reference to a register in INSN. */ count_reg_references (PATTERN (insn)); /* count_reg_references will not include counts for arguments to function calls, so detect them here by examining the CALL_INSN_FUNCTION_USAGE data. */ if (GET_CODE (insn) == CALL_INSN) { rtx note; for (note = CALL_INSN_FUNCTION_USAGE (insn); note; note = XEXP (note, 1)) if (GET_CODE (XEXP (note, 0)) == USE) count_reg_references (SET_DEST (XEXP (note, 0))); } } } }