rubyx/lib/arm/constants.rb
Torsten Ruger ad3040a846 add position_chaning to event interface
by reacting to the change _before it happens, we can move any BinaryCode out of the way

So when Instruction are inserted and code gets inserted, we don't need to set up the correct listener explicitly (which is tricky across mathods and changing chains), but instead just move anything that is in the way along
2018-06-09 08:10:41 +03:00

136 lines
4.2 KiB
Ruby

module Arm
module Constants
OPCODES = {
:adc => 0b0101, :add => 0b0100,
:and => 0b0000, :bic => 0b1110,
:eor => 0b0001, :orr => 0b1100,
:rsb => 0b0011, :rsc => 0b0111,
:sbc => 0b0110, :sub => 0b0010,
:mul => 0b0000 , # reverse engineered, shoud check
# for these Rn is sbz (should be zero)
:mov => 0b1101,
:mvn => 0b1111,
# for these Rd is sbz and S=1
:cmn => 0b1011,
:cmp => 0b1010,
:teq => 0b1001,
:tst => 0b1000,
:b => 0b1010,
:call=> 0b1011
}
#return the bit patter that the cpu uses for the current instruction @attributes[:opcode]
def op_bit_code
bit_code = OPCODES[opcode]
bit_code or raise "no code found for #{opcode} #{inspect}"
end
#codition codes can be applied to many instructions and thus save branches
# :al => always , :eq => equal and so on
# eq mov if equal :moveq r1 r2 (also exists as function) will only execute
# if the last operation was 0
COND_CODES = {
:al => 0b1110, :eq => 0b0000,
:ne => 0b0001, :cs => 0b0010,
:mi => 0b0100, :hi => 0b1000,
:cc => 0b0011, :pl => 0b0101,
:ls => 0b1001, :vc => 0b0111,
:lt => 0b1011, :le => 0b1101,
:ge => 0b1010, :gt => 0b1100,
:vs => 0b0110
}
# return the bit pattern for the @attributes[:condition_code] variable,
# which signals the conditional code
def cond_bit_code
COND_CODES[@attributes[:condition_code]] or throw "no code found for #{@attributes[:condition_code]}"
end
REGISTERS = { 'r0' => 0, 'r1' => 1, 'r2' => 2, 'r3' => 3, 'r4' => 4, 'r5' => 5,
'r6' => 6, 'r7' => 7, 'r8' => 8, 'r9' => 9, 'r10' => 10, 'r11' => 11,
'r12' => 12, 'r13' => 13, 'r14' => 14, 'r15' => 15, 'a1' => 0, 'a2' => 1,
'a3' => 2, 'a4' => 3, 'v1' => 4, 'v2' => 5, 'v3' => 6, 'v4' => 7, 'v5' => 8,
'v6' => 9, 'rfp' => 9, 'sl' => 10, 'fp' => 11, 'ip' => 12, 'sp' => 13,
'lr' => 14, 'pc' => 15 }
def reg r_name
code = reg_code r_name
raise "no such register #{r_name}" unless code
Arm::Risc.new(r_name.to_sym , code )
end
def reg_code r_name
raise "double r #{r_name}" if( :rr1 == r_name)
if r_name.is_a? ::Risc::RiscValue
r_name = r_name.symbol
end
if r_name.is_a? Fixnum
r_name = "r#{r_name}"
end
r = REGISTERS[r_name.to_s]
raise "no reg #{r_name}" if r == nil
r
end
def calculate_u8_with_rr(arg)
parts = arg.to_s(2).rjust(32,'0').scan(/^(0*)(.+?)0*$/).flatten
pre_zeros = parts[0].length
imm_len = parts[1].length
if ((pre_zeros+imm_len) % 2 == 1)
u8_imm = (parts[1]+'0').to_i(2)
imm_len += 1
else
u8_imm = parts[1].to_i(2)
end
if u8_imm.fits_u8?
# can do!
rot_imm = (pre_zeros+imm_len) / 2
if (rot_imm > 15)
return nil
end
return u8_imm | (rot_imm << 8)
else
return nil
end
end
Risc::RiscValue.class_eval do
def reg_no
@symbol.to_s[1 .. -1].to_i
end
end
#slighly wrong place for this code, but since the module gets included in instructions anyway . . .
# implement the barrel shifter on the operand (which is set up before as an integer)
def shift_handling
op = 0
#codes that one can shift, first two probably most common.
# l (in lsr) means logical, ie unsigned, a (in asr) is arithmetic, ie signed
shift_codes = {'lsl' => 0b000, 'lsr' => 0b010, 'asr' => 0b100, 'ror' => 0b110, 'rrx' => 0b110}
shift_codes.each do |short, bin|
long = "shift_#{short}".to_sym
if shif = @attributes[long]
# TODO need more tests
if (shif.is_a?(Numeric))
raise "0 < shift <= 32 #{shif} #{inspect}" if (shif >= 32) or( shif < 0)
op |= shift(bin , 4 )
op |= shift(shif , 4+3)
else
bin |= 0x1;
op |= shift(bin , 4 )
op |= shift(shif.reg_no , 8)
end
break
end
end
return op
end
# arm intrucioons are pretty sensible, and always 4 bytes (thumb not supported)
def byte_length
4
end
alias :padded_length :byte_length
end
end