rubyx/lib/slot_machine/instruction/slot_definition.rb

111 lines
4.1 KiB
Ruby

module Mom
# A SlotDefinition defines a slot. A bit like a variable name but for objects.
#
# PS: for the interested: A "developement" of Smalltalk was the
# prototype based language (read: JavaScript equivalent)
# called Self https://en.wikipedia.org/wiki/Self_(programming_language)
#
# SlotDefinitions are the instance names of objects. But since the language is dynamic
# what is it that we can say about instance names at runtime?
# Start with a known object like the Message (in register one), we know all it's
# variables. But there is a Message in there, and for that we know the instances
# too. And off course for _all_ objects we know where the type is.
#
# The definiion is an array of symbols that we can resolve to SlotLoad
# Instructions. Or in the case of constants to ConstantLoad
#
class SlotDefinition
attr_reader :known_object , :slots
# is an array of symbols, that specifies the first the object, and then the Slot.
# The first element is either a known type name (Capitalized symbol of the class name) ,
# or the symbol :message
# And subsequent symbols must be instance variables on the previous type.
# Examples: [:message , :receiver] or [:Space , :next_message]
def initialize( object , slots)
raise "No slots #{object}" unless slots
slots = [slots] unless slots.is_a?(Array)
@known_object , @slots = object , slots
raise "Not known #{slots}" unless object
end
def to_s
names = [known_name] + @slots
"[#{names.join(', ')}]"
end
def known_name
case known_object
when Constant , Parfait::Object
known_object.class.short_name
when Risc::Label
known_object.to_s
when Symbol
known_object
else
"unknown"
end
end
# load the slots into a register
# the code is added to compiler
# the register returned
def to_register(compiler, source)
if known_object.respond_to?(:ct_type)
type = known_object.ct_type
elsif(known_object.respond_to?(:get_type))
type = known_object.get_type
else
type = :Object
end
right = compiler.use_reg( type )
case known_object
when Constant
parfait = known_object.to_parfait(compiler)
const = Risc.load_constant(source, parfait , right)
compiler.add_code const
if slots.length == 1
raise "only type allowed for constants, not #{slots[0]}" unless slots[0] == :type
compiler.add_code Risc::SlotToReg.new( source , right , Parfait::TYPE_INDEX, right)
end
raise "Can't have slots into Constants #{slots}" if slots.length > 1
when Parfait::Object , Risc::Label
const = const = Risc.load_constant(source, known_object , right)
compiler.add_code const
if slots.length > 0
# desctructively replace the existing value to be loaded if more slots
compiler.add_code Risc.slot_to_reg( source , right ,slots[0], right)
end
when Symbol
return sym_to_risc(compiler , source)
else
raise "We have a #{self} #{known_object}"
end
if slots.length > 1
# desctructively replace the existing value to be loaded if more slots
index = Risc.resolve_to_index(slots[0] , slots[1] ,compiler)
compiler.add_code Risc::SlotToReg.new( source , right ,index, right)
if slots.length > 2
raise "3 slots only for type #{slots}" unless slots[2] == :type
compiler.add_code Risc::SlotToReg.new( source , right , Parfait::TYPE_INDEX, right)
end
end
return const.register
end
# resolve the slots one by one to slot_to_reg instructions using the
# type information inferred from their names / type hierachy
def sym_to_risc(compiler , source)
slots = @slots.dup
raise "Not Message #{@known_object}" unless @known_object == :message
left = Risc.message_reg
left = left.resolve_and_add( slots.shift , compiler)
reg = compiler.current.register
while( !slots.empty? )
left = left.resolve_and_add( slots.shift , compiler)
end
return reg
end
end
end