rubyx/lib/risc/register_value.rb
Torsten Ruger 8d3a1954fa close #21
Mostly replaced Fixnum with integer
also in the rx-file dependency
all travis and testing with 2.4+
2019-02-07 18:24:35 +02:00

243 lines
8.6 KiB
Ruby

module Risc
# RegisterValue is like a variable name, a storage location.
# The location is a register off course.
# The type is always known, and sometimes the value too
# Or something about the value, like some instances types
#
# When participating in the builder dsl, a builder may be set to get the
# results of dsl operations (like <<) back to the builder
class RegisterValue
attr_reader :symbol , :type , :extra
attr_reader :builder
# The first arg is a symbol :r0 - :r12
# Second arg is the type, which may be given as the symbol of the class name
# (internally we store the actual type instance, resolving any symbols)
# A third value may give extra information. This is a hash, where keys may
# be :value, or :value_XX or :type_XX to indicate value or type information
# for an XX instance
def initialize( reg , type , extra = {})
extra = {} unless extra
raise "Not Hash #{extra}" unless extra.is_a?(Hash)
raise "not reg #{reg}" unless self.class.look_like_reg( reg )
raise "No type " unless type
type = Parfait.object_space.get_type_by_class_name(type) if type.is_a?(Symbol)
@type = type
@symbol = reg
@extra = extra
end
def class_name
return :fixnum unless @type
@type.class_name
end
# allows to set the builder, which is mainly done by the builder
# but sometimes, eg in exit, one nneds to create the reg by hand and set
# return the RegisterValue for chaining in assignment
def set_builder( builder )
@builder = builder
self
end
# using the registers type, resolve the slot to an index
# Using the index and the register, add a SlotToReg to the instruction
def resolve_and_add(slot , compiler)
index = resolve_index( slot )
new_left = get_new_left( slot , compiler )
compiler.add_code Risc::SlotToReg.new( "SlotLoad #{type}[#{slot}]" , self ,index, new_left)
new_left
end
# resolve the given slot name (instance variable name) to an index using the type
# RegisterValue has the current type, so we just look up the index in the type
def resolve_index(slot)
#puts "TYPE #{type} obj:#{object} var:#{slot} comp:#{compiler}"
index = type.variable_index(slot)
raise "Index not found for #{slot} in #{type} of type #{@type}" unless index
return index
end
# reduce integer to fixnum and add instruction if builder is used
def reduce_int
reduce = Risc.slot_to_reg( "int -> fix" , self , Parfait::Integer.integer_index , self)
builder.add_code(reduce) if builder
reduce
end
# when following variables in resolve_and_add, get a new RegisterValue
# that represents the new value.
# Ie in "normal case" a the same register, with the type of the slot
# (the not normal case, the first reduction, uses a new register, as we don't
# overwrite the message)
# We get the type with resolve_new_type
def get_new_left(slot, compiler)
new_type = extra["type_#{slot}".to_sym]
new_type , extra = compiler.slot_type(slot , type) unless new_type
if( @symbol == :r0 )
new_left = compiler.use_reg( new_type , extra)
else
new_left = RegisterValue.new( @symbol , new_type , extra)
end
new_left
end
def to_s
s = "#{symbol}:#{class_name}"
s += ":#{extra}" unless extra.empty?
s
end
def reg_no
@symbol.to_s[1 .. -1].to_i
end
def self.look_like_reg is_it
return true if is_it.is_a? RegisterValue
return false unless is_it.is_a? Symbol
if( [:lr , :pc].include? is_it )
return true
end
if( (is_it.to_s.length <= 3) and (is_it.to_s[0] == "r"))
# could tighten this by checking that the rest is a number
return true
end
return false
end
def == other
return false if other.nil?
return false if other.class != RegisterValue
symbol == other.symbol
end
#helper method to calculate with register symbols
def next_reg_use( type , extra = {} )
int = @symbol[1,3].to_i
raise "No more registers #{self}" if int > 11
sym = "r#{int + 1}".to_sym
RegisterValue.new( sym , type, extra)
end
def rxf_reference_name
@symbol
end
# can't overload "=" , so use shift for it.
# move the right side to the left. Left (this) is a RegisterValue
# right value may be
# - constant (Parfait object) , resulting in a LoadConstant
# - another RegisterValue, resulting in a Transfer instruction
# - an RValue, resulting in an SlotToReg
def <<( right )
case right
when Symbol
ins = Risc.load_constant("#{right.class} to #{self.type}" , right , self)
when Parfait::Object
ins = Risc.load_constant("#{right.class} to #{self.type}" , right , self)
builder.compiler.add_constant(right) if builder
when Label
ins = Risc.load_constant("#{right.class} to #{self.type}" , right , self)
builder.compiler.add_constant(right.address) if builder
when ::Integer
ins = Risc.load_data("#{right.class} to #{self.type}" , right , self)
when RegisterValue
ins = Risc.transfer("#{right.type} to #{self.type}" , right , self)
when RValue
ins = Risc.slot_to_reg("#{right.register.type}[#{right.index}] -> #{self.type}" , right.register , right.index , self)
else
raise "not implemented for #{right.class}:#{right}"
end
builder.add_code(ins) if builder
return ins
end
# similar to above (<< which produces slot_to_reg), this produces byte_to_reg
# since << covers all other cases, this must have a RValue as the right
def <=( right )
raise "not implemented for #{right.class}:#{right}" unless right.is_a?( RValue )
ins = Risc.byte_to_reg("#{right.register.type}[#{right.index}] -> #{self.type}" , right.register , right.index , self)
builder.add_code(ins) if builder
return ins
end
def -( right )
raise "operators only on registers, not #{right.class}" unless right.is_a? RegisterValue
op = Risc.op("#{self.type} - #{right.type}", :- , self , right )
builder.add_code(op) if builder
op
end
# generate a Function return instruction
# using the register as the parameter where the return address is passed
def function_return
ret = Risc.function_return("return", self)
builder.add_code(ret) if builder
ret
end
# create operator instruction for self and add
# doesn't read quite as smoothly as one would like, but better than the compiler version
def op( operator , right)
ret = Risc.op( "operator #{operator}" , operator , self , right)
builder.add_code(ret) if builder
ret
end
# just capture the values in an intermediary object (RValue)
# The RValue then gets used in a RegToSlot ot SlotToReg, where
# the values are unpacked to call Risc.reg_to_slot or Risc.slot_to_reg
def []( index )
RValue.new( self , index , builder)
end
end
# Just a struct, see comment for [] of RegisterValue
#
class RValue
attr_reader :register , :index , :builder
def initialize(register, index , builder)
@register , @index , @builder = register , index , builder
end
# fullfil the objects purpose by creating a RegToSlot instruction from
# itself (the slot) and the register given
def <<( reg )
raise "not reg #{reg}" unless reg.is_a?(RegisterValue)
reg_to_slot = Risc.reg_to_slot("#{reg.class_name} -> #{register.class_name}[#{index}]" , reg , register, index)
builder.add_code(reg_to_slot) if builder
reg_to_slot
end
# similar to above (<< which produces reg_to_slot), this produces reg_to_byte
# from itself (the slot) and the register given
def <=( reg )
raise "not reg #{reg}" unless reg.is_a?(RegisterValue)
reg_to_byte = Risc.reg_to_byte("#{reg.class_name} -> #{register.class_name}[#{index}]" , reg , register, index)
builder.add_code(reg_to_byte) if builder
reg_to_byte
end
end
# The register we use to store the current message object is :r0
def self.message_reg
RegisterValue.new :r0 , :Message
end
# The register we use to store the new message object is :r3
# The new message is the one being built, to be sent
def self.new_message_reg
RegisterValue.new :r1 , :Message
end
# The first scratch register. There is a next_reg_use to get a next and next.
# Current thinking is that scratch is schatch between instructions
def self.tmp_reg( type , extra = {})
RegisterValue.new :r1 , type , extra
end
end