rubyx/lib/risc
Torsten Rüger fd46826b9c Implement class instance variables
as they are just the type of the meta_class, that was relatively simple.
I feel this is what oo is meant to be, instance variables and methods for the objects, and since classes are objects, for them too.
Class variables seem like a design mistake, weird scoping rules and no data hiding (left as an exercise to the reader)
2019-09-19 15:48:27 +03:00
..
instructions tests for mom check instructions 2019-09-15 19:57:15 +03:00
position Fixed almost all but Interpreter 2019-08-13 00:13:29 +03:00
assembler.rb generalize assemblers to use callables 2018-07-30 10:23:42 +03:00
binary_writer.rb jump was written off the end of binary code, fixed 2018-05-28 11:45:04 +03:00
block_compiler.rb Remove dead code 2019-08-18 10:19:52 +03:00
builder.rb generalize get_main and get_init to get_method 2019-09-15 12:58:43 +03:00
callable_compiler.rb generalize get_main and get_init to get_method 2019-09-15 12:58:43 +03:00
collector.rb fixes #26 2019-07-28 16:42:40 +03:00
fake_memory.rb cache index resolution 2018-08-12 13:09:34 +03:00
instruction.rb tests for mom check instructions 2019-09-15 19:57:15 +03:00
interpreter_platform.rb fix platform derivation and some tests 2018-07-01 21:27:27 +03:00
interpreter.rb get method name out from method_missing 2019-09-17 20:18:00 +03:00
linker.rb add a statistics command to compiler 2019-09-05 13:25:40 +03:00
method_compiler.rb Remove dead code 2019-08-18 10:19:52 +03:00
parfait_adapter.rb Fix last parfait bug 2019-09-10 14:49:02 +03:00
parfait_boot.rb Implement class instance variables 2019-09-19 15:48:27 +03:00
platform.rb platform helper 2018-07-02 09:36:29 +03:00
README.md litte bit of docs 2018-08-24 18:49:44 +03:00
register_value.rb Changing the call setup and return to be more efficient 2019-08-23 15:30:27 +03:00
risc_collection.rb cache booted functions 2019-09-07 17:56:06 +03:00
text_writer.rb add a statistics command to compiler 2019-09-05 13:25:40 +03:00

Risc Machine

The Risc Machine, is an abstract machine with registers. Think of it as an arm machine with normal instruction names. It is not however an abstraction of existing hardware, but only of that subset that we need.

Our primary objective is to compile typed code to this level, so the register machine has:

  • object access instructions
  • object load
  • object oriented call semantics
  • extended (and extensible) branching
  • normal integer operators

All data is in objects.

The register machine is aware of Parfait objects, and specifically uses Message and Frame to express call semantics.

Calls and syscalls

The Risc Machine only uses 1 fixed register, the currently worked on Message. (and assumes a program counter and flags, neither of which are directly manipulated)

There is no stack, rather messages form a linked list, and preparing to call, the data is pre-filled into the next message. Calling then means moving the new message to the current one and jumping to the address of the method. Returning is the somewhat reverse process.

Syscalls are implemented by one Syscall instruction. The Risc machine does not specify/limit the meaning or number of syscalls. This is implemented by the level below, eg the arm/interpreter.

Interpreter

There is an interpreter that can interpret programs compiled to the risc instruction set. This is very handy for debugging (and nothing else).

Even more handy is the graphical interface for the interpreter, which is in it's own repository: rubyx-debugger.

Arm / Elf

There is also a (very straightforward) transformation to arm instructions. Together with the also quite minimal elf module, arm binaries can be produced.

These binaries have no external dependencies and in fact can not even call c at the moment (only syscalls :-)).