rubyx/lib/register/assembler.rb
2015-06-06 18:46:53 +02:00

262 lines
8.8 KiB
Ruby

module Register
class LinkException < Exception
end
# Assemble the object machine into a binary.
# Link first to get positions, then assemble
# The link function determines the length of an object and the assemble actually
# writes the bytes they are pretty much dependant. In an earlier version they were
# functions on the objects, but now it has gone to a visitor pattern.
class Assembler
include Padding
TYPE_REF = 0
TYPE_INT = 1
TYPE_BITS = 4
TYPE_LENGTH = 6
def initialize machine
@machine = machine
end
def link
# want to have the methods first in the executable
# so first we determine the code length for the methods and set the
# binary code (array) to right length
@machine.objects.each do |objekt|
next unless objekt.is_a? Parfait::Method
objekt.code.set_length(objekt.info.byte_length , 0)
end
at = 0
# then we make sure we really get the binary codes first
@machine.objects.each do |objekt|
next unless objekt.is_a? Parfait::BinaryCode
objekt.set_position at
# puts "CODE #{objekt.name} at #{objekt.position}"
at += objekt.word_length
end
# and then everything else
@machine.objects.each do | objekt|
# have to tell the code that will be assembled where it is to
# get the jumps/calls right
if objekt.is_a? Parfait::Method
objekt.info.set_position( objekt.code.position )
end
next if objekt.is_a? Parfait::BinaryCode
objekt.set_position at
at += objekt.word_length
end
end
def assemble
# must be same order as link
begin
link
all= @machine.objects.sort{|a,b| a.position <=> b.position}
all.each do |objekt|
puts "Linked #{objekt.class}(#{objekt.object_id.to_s(16)}) at #{objekt.position.to_s(16)} / #{objekt.word_length.to_s(16)}"
objekt.position
end
# first we need to create the binary code for the methods
@machine.objects.each do |objekt|
next unless objekt.is_a? Parfait::Method
assemble_binary_method(objekt)
end
@stream = StringIO.new
#TODOmid , main = @objects.find{|k,objekt| objekt.is_a?(Virtual::CompiledMethod) and (objekt.name == :__init__ )}
# initial_jump = @machine.init
# initial_jump.codes.each do |code|
# code.assemble( @stream )
# end
# then write the methods to file
@machine.objects.each do |objekt|
next unless objekt.is_a? Parfait::BinaryCode
assemble_any( objekt )
end
# and then the rest of the object machine
@machine.objects.each do | objekt|
next if objekt.is_a? Parfait::BinaryCode
assemble_any( objekt )
end
rescue LinkException
puts "RELINK"
# knowing that we fix the problem, we hope to get away with retry.
retry
end
puts "Assembled 0x#{@stream.length.to_s(16)}/#{@stream.length.to_s(16)} bytes"
return @stream.string
end
# assemble the CompiledMethodInfo into a stringio
# and then plonk that binary data into the method.code array
def assemble_binary_method method
stream = StringIO.new
method.info.blocks.each do |block|
block.codes.each do |code|
begin
code.assemble( stream )
rescue => e
puts "Method error #{method.name}\n#{Sof::Writer.write(method.info.blocks).to_s[0...2000]}"
puts Sof::Writer.write(code)
raise e
end
end
end
method.code.fill_with 0
index = 1
stream.rewind
puts "Assembled #{method.name} with length #{stream.length}"
raise "length error #{method.code.length} != #{method.info.byte_length}" if method.code.length != method.info.byte_length
raise "length error #{stream.length} != #{method.info.byte_length}" if method.info.byte_length - stream.length > 32
stream.each_byte do |b|
method.code.set_char(index , b )
index = index + 1
end
end
def assemble_any obj
puts "Assemble #{obj.class}(#{obj.object_id.to_s(16)}) at stream #{@stream.length.to_s(16)} pos:#{obj.position.to_s(16)} , len:#{obj.word_length.to_s(16)}"
if @stream.length != obj.position
raise "Assemble #{obj.class} #{obj.object_id.to_s(16)} at #{@stream.length.to_s(16)} not #{obj.position.to_s(16)}"
end
clazz = obj.class.name.split("::").last
send("assemble_#{clazz}".to_sym , obj)
obj.position
end
def type_word array
word = 0
index = 0
array.each do |var |
#type = (var.class == Integer) ? TYPE_INT : TYPE_REF
#TODO
type = TYPE_REF
word += type << (index * TYPE_BITS)
index = index + 1
end
word += ( (array.get_length + 1 ) / 8 ) << TYPE_LENGTH * TYPE_BITS
word
end
# write type and layout of the instance, and the variables that are passed
# variables ar values, ie int or refs. For refs the object needs to save the object first
def assemble_object( object )
unless @machine.objects.include? object
raise "Object(#{object.object_id}) not linked #{object.inspect}"
end
layout = object.get_layout
type = type_word(layout)
@stream.write_uint32( type )
write_ref_for(layout )
layout.each do |var|
inst = object.instance_variable_get "@#{var}".to_sym
puts "Nil for #{object.class}.#{var}" unless inst
write_ref_for(inst)
end
puts "layout length=#{layout.get_length.to_s(16)} mem_len=#{layout.word_length.to_s(16)}"
l = layout.get_length
pad_after( l * 4)
object.position
end
def assemble_List array
type = type_word(array)
@stream.write_uint32( type )
write_ref_for(array.layout[:names]) #ref
array.each do |var|
write_ref_for(var)
end
pad_after( array.length * 4 )
array.position
end
def assemble_Dictionary hash
# so here we can be sure to have _identical_ keys/values arrays
assemble_object( hash , [ hash.keys , hash.values ] )
end
def assemble_Space(space)
assemble_object(space )
end
def assemble_Class(clazz)
assemble_object( clazz )
end
def assemble_Message me
assemble_object(me)
end
def assemble_Frame me
assemble_object(me )
end
def assemble_Method(method)
raise "no"
count = method.info.blocks.inject(0) { |c , block| c += block.word_length }
word = (count+7) / 32 # all object are multiple of 8 words (7 for header)
raise "Method too long, splitting not implemented #{method.name}/#{count}" if word > 15
# first line is integers, convention is that following lines are the same
TYPE_LENGTH.times { word = ((word << TYPE_BITS) + TYPE_INT) }
@stream.write_uint32( word )
write_ref_for(method.get_layout()) #ref of layout
# TODO the assembly may have to move to the object to be more extensible
method.blocks.each do |block|
block.codes.each do |code|
code.assemble( @stream )
end
end
pad_after( count )
end
def assemble_BinaryCode code
assemble_String code
end
def assemble_String( string )
str = string.to_string if string.is_a? Parfait::Word
str = string.to_s if string.is_a? Symbol
word = (str.length + 7) / 32 # all object are multiple of 8 words (7 for header)
raise "String too long (implement split string!) #{word}" if word > 15
# first line is integers, convention is that following lines are the same
TYPE_LENGTH.times { word = ((word << TYPE_BITS) + TYPE_INT) }
@stream.write_uint32( word )
puts "String is #{string} at #{string.position.to_s(16)} length #{string.length.to_s(16)}"
write_ref_for( string.get_layout ) #ref
@stream.write str
pad_after(str.length)
#puts "String (#{slot.word_length}) stream #{@stream.word_length.to_s(16)}"
end
def assemble_Symbol(sym)
return assemble_String(sym)
end
def assemble_StringConstant( sc)
return assemble_String(sc)
end
private
# write means we write the resulting address straight into the assembler stream
# object means the object of which we write the address
def write_ref_for object
@stream.write_sint32 object.position
end
# pad_after is always in bytes and pads (writes 0's) up to the next 8 word boundary
def pad_after length
before = @stream.length.to_s(16)
pad = padding_for(length)
pad.times do
@stream.write_uint8(0)
end
after = @stream.length.to_s(16)
puts "padded #{length.to_s(16)} with #{pad.to_s(16)} stream #{before}/#{after}"
end
end
Sof::Volotile.add(Register::Assembler , [:objects])
end