16b3a77350
Affects method creation argument manipulation compiler / to_code
184 lines
6.7 KiB
Ruby
184 lines
6.7 KiB
Ruby
require_relative "tree"
|
|
|
|
module Typed
|
|
|
|
CompilerModules = [ "assignment" , "basic_values" , "call_site", "class_field" ,
|
|
"class_statement" , "collections" , "field_def" , "field_access",
|
|
"function_statement" , "if_statement" , "name_expression" ,
|
|
"operator_expression" , "return_statement", "statement_list",
|
|
"while_statement"]
|
|
|
|
CompilerModules.each do |mod|
|
|
require_relative "compiler/" + mod
|
|
end
|
|
|
|
# Compiling is the conversion of the AST into 2 things:
|
|
# - code (ie sequences of Instructions inside Methods)
|
|
# - an object graph containing all the Methods, their classes and Constants
|
|
#
|
|
# Some compile methods just add code, some may add Instructions while
|
|
# others instantiate Class and TypedMethod objects
|
|
#
|
|
# Everything in ruby is an statement, ie returns a value. So the effect of every compile
|
|
# is that a value is put into the ReturnSlot of the current Message.
|
|
# The compile method (so every compile method) returns the value that it deposits.
|
|
#
|
|
# The process uses a visitor pattern (from AST::Processor) to dispatch according to the
|
|
# type the statement. So a s(:if xx) will become an on_if(node) call.
|
|
# This makes the dispatch extensible, ie Expressions may be added by external code,
|
|
# as long as matching compile methods are supplied too.
|
|
#
|
|
# A compiler can also be used to generate code for a method without AST nodes. In the same way
|
|
# compile methods do, ie adding Instructions etc. In this way code may be generated that
|
|
# has no code equivalent.
|
|
#
|
|
# The Compiler also keeps a list of used registers, from which one may take to use and return to
|
|
# when done. The list may be reset.
|
|
#
|
|
# The Compiler also carries method and class instance variables. The method is where code is
|
|
# added to (with add_code). To be more precise, the @current instruction is where code is added
|
|
# to, and that may be changed with set_current
|
|
|
|
# All Statements reset the registers and return nil.
|
|
# Expressions use registers and return the register where their value is stored.
|
|
|
|
# Helper function to create a new compiler and compie the statement(s)
|
|
def self.compile statement
|
|
compiler = Compiler.new
|
|
code = Typed.ast_to_code statement
|
|
compiler.process code
|
|
end
|
|
|
|
class Compiler
|
|
CompilerModules.each do |mod|
|
|
include Typed.const_get( mod.camelize )
|
|
end
|
|
|
|
def initialize( method = nil )
|
|
@regs = []
|
|
return unless method
|
|
@method = method
|
|
@clazz = method.for_class
|
|
@current = method.instructions
|
|
end
|
|
attr_reader :clazz , :method
|
|
|
|
|
|
# Dispatches `code` according to it's class name, for class NameExpression
|
|
# a method named `on_NameExpression` is invoked with one argument, the `code`
|
|
#
|
|
# @param [Typed::Code, nil] code
|
|
def process(code)
|
|
name = code.class.name.split("::").last
|
|
# Invoke a specific handler
|
|
on_handler = :"on_#{name}"
|
|
if respond_to? on_handler
|
|
return send on_handler, code
|
|
else
|
|
raise "No handler on_#{name}(code) #{code.inspect}"
|
|
end
|
|
end
|
|
|
|
# {#process}es each code from `codes` and returns an array of
|
|
# results.
|
|
#
|
|
def process_all(codes)
|
|
codes.to_a.map do |code|
|
|
process code
|
|
end
|
|
end
|
|
|
|
# create the method, do some checks and set it as the current method to be added to
|
|
# class_name and method_name are pretty clear, args are given as a ruby array
|
|
def create_method( class_name , method_name , args = {})
|
|
raise "create_method #{class_name}.#{class_name.class}" unless class_name.is_a? Symbol
|
|
clazz = Register.machine.space.get_class_by_name class_name
|
|
raise "No such class #{class_name}" unless clazz
|
|
create_method_for( clazz , method_name , args)
|
|
end
|
|
|
|
# create a method for the given class ( Parfait class object)
|
|
# method_name is a Symbol
|
|
# args a ruby array
|
|
# the created method is set as the current and the given class too
|
|
# return the compiler (for chaining)
|
|
def create_method_for clazz , method_name , args
|
|
@clazz = clazz
|
|
raise "Args must be Hash #{args}" unless args.is_a?(Hash)
|
|
raise "create_method #{method_name}.#{method_name.class}" unless method_name.is_a? Symbol
|
|
arguments = Parfait::Type.new_for_hash( clazz , args )
|
|
@method = clazz.create_instance_method( method_name , arguments)
|
|
self
|
|
end
|
|
|
|
# add method entry and exit code. Mainly save_return for the enter and
|
|
# message shuffle and FunctionReturn for the return
|
|
# return self for chaining
|
|
def init_method
|
|
source = "_init_method"
|
|
name = "#{method.for_class.name}.#{method.name}"
|
|
@method.instructions = Register::Label.new(source, name)
|
|
@current = enter = method.instructions
|
|
add_code Register::Label.new( source, "return #{name}")
|
|
#load the return address into pc, affecting return. (other cpus have commands for this, but not arm)
|
|
add_code Register::FunctionReturn.new( source , Register.message_reg , Register.resolve_index(:message , :return_address) )
|
|
@current = enter
|
|
self
|
|
end
|
|
|
|
# set the insertion point (where code is added with add_code)
|
|
def set_current c
|
|
@current = c
|
|
end
|
|
|
|
# add an instruction after the current (insertion point)
|
|
# the added instruction will become the new insertion point
|
|
def add_code instruction
|
|
unless instruction.is_a?(Register::Instruction)
|
|
raise instruction.to_s
|
|
end
|
|
@current.insert(instruction) #insert after current
|
|
@current = instruction
|
|
self
|
|
end
|
|
|
|
# require a (temporary) register. code must give this back with release_reg
|
|
def use_reg type , value = nil
|
|
if @regs.empty?
|
|
reg = Register.tmp_reg(type , value)
|
|
else
|
|
reg = @regs.last.next_reg_use(type , value)
|
|
end
|
|
@regs << reg
|
|
return reg
|
|
end
|
|
|
|
def copy reg , source
|
|
copied = use_reg reg.type
|
|
add_code Reister.transfer source , reg , copied
|
|
copied
|
|
end
|
|
|
|
# releasing a register (accuired by use_reg) makes it available for use again
|
|
# thus avoiding possibly using too many registers
|
|
def release_reg reg
|
|
last = @regs.pop
|
|
raise "released register in wrong order, expect #{last} but was #{reg}" if reg != last
|
|
end
|
|
|
|
# reset the registers to be used. Start at r4 for next usage.
|
|
# Every statement starts with this, meaning each statement may use all registers, but none
|
|
# get saved. Statements have affect on objects.
|
|
def reset_regs
|
|
@regs.clear
|
|
end
|
|
|
|
# ensure the name given is not space and raise exception otherwise
|
|
# return the name for chaining
|
|
def no_space name
|
|
raise "space is a reserved name" if name == :space
|
|
name
|
|
end
|
|
end
|
|
end
|