module Risc # CallableCompiler is used to generate risc instructions. It is an abstact base # class shared by BlockCompiler and MethodCompiler # - risc_instructions: The sequence of risc level instructions that mom was compiled to # - cpu_instructions: The sequence of cpu specific instructions that the # risc_instructions was compiled to # Instructions derive from class Instruction and form a linked list class CallableCompiler def initialize( ) @regs = [] @risc_instructions = Risc.label(source_name, source_name) @risc_instructions << Risc.label( source_name, "unreachable") @current = @risc_instructions @constants = [] @block_compilers = [] end attr_reader :risc_instructions , :constants , :block_compilers # convert the given mom instruction to_risc and then add it (see add_code) # continue down the instruction chain unti depleted # (adding moves the insertion point so the whole mom chain is added as a risc chain) def add_mom( instruction ) while( instruction ) raise "whats this a #{instruction}" unless instruction.is_a?(Mom::Instruction) #puts "adding mom #{instruction.to_s}:#{instruction.next.to_s}" risc = instruction.to_risc( self ) add_code(risc) reset_regs #puts "adding risc #{risc.to_s}:#{risc.next.to_s}" instruction = instruction.next end end # add a constant (which get created during compilation and need to be linked) def add_constant(const) raise "Must be Parfait #{const}" unless const.is_a?(Parfait::Object) @constants << const end # add a risc instruction after the current (insertion point) # the added instruction will become the new insertion point def add_code( instruction ) raise "Not an instruction:#{instruction.to_s}" unless instruction.is_a?(Risc::Instruction) raise instruction.to_s if( instruction.class.name.split("::").first == "Arm") new_current = instruction.last #after insertion this point is lost @current.insert(instruction) #insert after current @current = new_current self end # require a (temporary) register. code must give this back with release_reg # Second extra parameter may give extra info about the value, see RegisterValue def use_reg( type , extra = {} ) raise "Not type #{type.inspect}" unless type.is_a?(Symbol) or type.is_a?(Parfait::Type) if @regs.empty? reg = Risc.tmp_reg(type , extra) else reg = @regs.last.next_reg_use(type , extra) end @regs << reg return reg end # resolve the type of the slot, by inferring from it's name, using the type # scope related slots are resolved by the compiler by method/block def slot_type( slot , type) case slot when :frame new_type = self.frame_type when :arguments new_type = self.arg_type when :receiver new_type = self.receiver_type when Symbol new_type = type.type_for(slot) raise "Not found object #{slot}: in #{type}" unless new_type else raise "Not implemented object #{slot}:#{slot.class}" end #puts "RESOLVE in #{@type.class_name} #{slot}->#{type}" return new_type end def copy( reg , source ) copied = use_reg reg.type add_code Register.transfer( source , reg , copied ) copied end # releasing a register (accuired by use_reg) makes it available for use again # thus avoiding possibly using too many registers def release_reg( reg ) last = @regs.pop raise "released register in wrong order, expect #{last} but was #{reg}" if reg != last end # reset the registers to be used. Start at r4 for next usage. # Every statement starts with this, meaning each statement may use all registers, but none # get saved. Statements have affect on objects. def reset_regs @regs.clear end # Build with builder (see there), adding the created instructions def build(&block) builder.build(&block) end # return a new code builder that uses this compiler # CodeBuilder returns code after building def code_builder( source) CodeBuilder.new(self , source) end # return a CompilerBuilder # CompilerBuilder adds the generated code to the compiler def compiler_builder( source) CompilerBuilder.new(self , source) end end end