require "vm/c_machine" require_relative "stack_instruction" require_relative "logic_instruction" require_relative "move_instruction" require_relative "compare_instruction" require_relative "memory_instruction" require_relative "call_instruction" require_relative "constants" module Arm class ArmMachine < Vm::CMachine def integer_less_or_equal block , first , right block.add_code cmp( first , right: right ) Vm::Bool.new end def integer_plus block , result , first , right block.add_code add( result , right: first , :extra => right ) result end def integer_minus block , result , first , right block.add_code sub( result , right: first , :extra => right ) result end def integer_load block , first , right block.add_code mov( first , right: right ) first end def integer_move block , first , right block.add_code mov( first , right: right ) first end def string_load block , str_lit , reg block.add_code add( "r#{reg}".to_sym , :extra => str_lit ) #right is pc, implicit #second arg is a hack to get the stringlength without coding block.add_code mov( "r#{reg+1}".to_sym , right: str_lit.length ) str_lit end def function_call into , call raise "Not CallSite #{call.inspect}" unless call.is_a? Vm::CallSite raise "Not linked #{call.inspect}" unless call.function into.add_code call( call.function , {}) call.function.return_type end def main_start entry entry.add_code mov( :fp , right: 0 ) end def main_exit exit syscall(exit , 1) exit end def function_entry block, f_name # entry.add_code push( :regs => [:lr] ) block end def function_exit entry , f_name entry.add_code mov( :pc , right: :lr ) end # assumes string in r0 and r1 and moves them along for the syscall def write_stdout block block.add_code mov( :r2 , right: :r1 ) block.add_code mov( :r1 , right: :r0 ) block.add_code mov( :r0 , right: 1 ) # 1 == stdout syscall( block , 4 ) end # make a string out of the integer. # as we don't have memory manegement yet, you have to pass the string in (ouch) # in a weird twist the string is actually a string, while we actually use its address. def integer_to_s block , string number = Vm::Integer.new(0) tos = Vm::Block.new("integer_to_s") # need to create a block to jump to block.add_code(tos) # and then use the new block to add code #STMFD sp!, {r9, r10, lr} #function entry save working regs (for recursion) tos.add_code push( [:lr ] , {} ) #and the return address. # MOV r9, r1 # preserve arguments over following # MOV r10, r2 # function calls # pin data, ie no saving remainder = Vm::Integer.new( number.register + 1) # BL udiv10 # r1 = r1 / 10 div10( tos , number , remainder ) # ADD r10, r10, 48 #'0' # make char out of digit (by using ascii encoding) tos.add_code add( remainder , right: remainder , extra: 48 ) #STRB r10, [r1], 1 # store digit at end of buffer tos.add_code strb( remainder , right: string ) #and increment TODO check # CMP r1, #0 # quotient non-zero? tos.add_code cmp( number , right: 0 ) #BLNE utoa # conditional recursive call to utoa tos.add_code callne( tos , {} ) #LDMFD sp!, {r9, r10, pc} # function exit - restore and return tos.add_code pop( [:pc] , {} ) end private # the number (a Vm::integer) is (itself) divided by 10, ie overwritten by the result # and the remainder is overwritten (ie an out argument) # not really a function, more a macro, hence private def div10 block, number , remainder # takes argument in r1 # returns quotient in r1, remainder in r2 # SUB r2, r1, #10 # keep (x-10) for later block.add_code sub( remainder , right: number , :extra => 10 ) # SUB r1, r1, r1, lsr #2 block.add_code add( number , right: number , extra: number , shift_right: 4) # ADD r1, r1, r1, lsr #4 # ADD r1, r1, r1, lsr #8 # ADD r1, r1, r1, lsr #16 # MOV r1, r1, lsr #3 # ADD r3, r1, r1, asl #2 # SUBS r2, r2, r3, asl #1 # calc (x-10) - (x/10)*10 # ADDPL r1, r1, #1 # fix-up quotient # ADDMI r2, r2, #10 # fix-up remainder # MOV pc, lr end def syscall block , num block.add_code mov( :r7 , right: num ) block.add_code swi( 0 , {}) Vm::Integer.new(0) #small todo, is this actually correct for all (that they return int) end end end