require_relative "values" module Vm # Think flowcharts: blocks are the boxes. The smallest unit of linear code # Blocks must end in control instructions (jump/call/return). # And the only valid argument for a jump is a Block # Blocks form a linked list # There are four ways for a block to get data (to work on) # - hard coded constants (embedded in code) # - memory move # - values passed in (from previous blocks. ie local variables) # See Value description on how to create code/instructions # Codes then get assembled into bytes (after linking) class Block < Code def initialize(name) super() @name = name.to_sym @next = nil @codes = [] end attr_reader :name , :next , :codes def length @codes.inject(0) {| sum , item | sum + item.length} end def add_code(kode) if( kode.is_a? Array ) kode.each { |code| @codes << code } else @codes << kode end self end def link_at pos , context @position = pos @codes.each do |code| code.link_at(pos , context) pos += code.length end pos end def assemble(io) @codes.each do |obj| obj.assemble io end end # set the next executed block after self. # why is this useful? if it's unconditional, why not merge them: # So the second block can be used as a jump target. You standard loop needs a block to setup # and at least one to do the calculation def set_next block @next = block end # sugar to create instructions easily. Any method with one arg is sent to the machine and the result # (hopefully an instruction) added as code def method_missing(meth, *args, &block) if args.length == 1 add_code CMachine.instance.send(meth , *args) else super end end end end