module Risc # To create a binary, we need a so called Text element. Bad name for what is the code # # Binary code is already created by the Machine (by translating risc to arm to binary) # # This class serves to write all the objects of the linker (wich also contain the code) # into one stream or binary text object. This is then written to an ELF text section. # # A word about positions: The c world has a thing called position independent code, and # basically we follw that idea. Code (ie jumps and constant loads) are all relative. # But we have pointers. In C the linker takes care of bending those, we have to # do that ourselves, in write_ref. That's why we need the load adddess and basically # we just add it to pointers. class TextWriter include Util::Logging log_level :info def initialize(linker) @linker = linker raise "may not me nil" if linker.nil? end # objects must be written in same order as positioned by the linker, namely # - intial jump # - all objects # - all BinaryCode def write_as_string @stream = StringIO.new write_init(@linker.cpu_init) write_debug write_objects write_code log.debug "Assembled 0x#{stream_position.to_s(16)} bytes" return @stream.string end def sorted_objects @linker.object_positions.keys.sort do |left , right| Position.get(left).at <=> Position.get(right).at end end # debugging loop to write out positions (in debug) def write_debug sorted_objects.each do |objekt| next if objekt.is_a?(Risc::Label) log.debug "Linked #{objekt.class}:0x#{objekt.object_id.to_s(16)} at #{Position.get(objekt)} / 0x#{objekt.padded_length.to_s(16)}" end end # Write all the objects in the order that they have been positioed def write_objects sorted_objects.each do |objekt| next unless Position.is_object(objekt) write_any( objekt ) end end # Write the BinaryCode objects of all methods to stream. # Really like any other object, it's just about the ordering def write_code @linker.assemblers.each do |asm| asm.callable.each_binary do |code| write_any(code) end end end # Write any object just logs a bit and passes to write_any_out def write_any( obj ) write_any_log( obj , "Write") if stream_position != Position.get(obj).at raise "Write #{obj.class}:0x#{obj.object_id.to_s(16)} at 0x#{stream_position.to_s(16)} not #{Position.get(obj)}" end write_any_out(obj) write_any_log( obj , "Wrote") Position.get(obj) end def write_any_log( obj , at) log.debug "#{at} #{obj.class}:0x#{obj.object_id.to_s(16)} at stream 0x#{stream_position.to_s(16)} pos:#{Position.get(obj)} , len:0x#{obj.padded_length.to_s(16)}" end # Most objects are the same and get passed to write_object # But Strings and BinaryCode write out binary, so they have different methods (for now) def write_any_out(obj) case obj when Parfait::Word, Symbol write_String obj when Parfait::BinaryCode write_BinaryCode( obj ) when Parfait::ReturnAddress write_return_address( obj ) when Parfait::Integer write_integer( obj ) when Parfait::Data4 write_data4( obj ) else write_object( obj ) end end # write type of the instance, and the variables that are passed # variables ar values, ie int or refs. For refs the object needs to save the object first def write_object( object ) obj_written = write_object_variables(object) log.debug "instances=#{object.get_instance_variables.inspect} mem_len=0x#{object.padded_length.to_s(16)}" indexed_written = write_object_indexed(object) log.debug "type #{obj_written} , total #{obj_written + indexed_written} (array #{indexed_written})" log.debug "Len = 0x#{object.get_length.to_s(16)} , inst =0x#{object.get_type.instance_length.to_s(16)}" if object.is_a? Parfait::Type pad_after( obj_written + indexed_written ) Position.get(object) end def write_object_indexed(object) written = 0 if( object.is_a? Parfait::List) object.each do |inst| write_ref_for(inst) written += 4 end end written end def write_object_variables(object) written = 0 # compensate for the "secret" marker object.get_instance_variables.each do |var| inst = object.get_instance_variable(var) #puts "Nil for #{object.class}.#{var}" unless inst inst = nil if [:cpu_instructions , :risc_instructions].include?(var) write_ref_for(inst) written += 4 end written end def write_return_address( addr ) write_ref_for( addr.get_type ) write_ref_for( addr.next_integer ) val = addr.value ? addr.value + @linker.platform.loaded_at : Parfait.object_space.nil_object write_ref_for( val ) write_ref_for( 0 ) log.debug "Integer witten stream 0x#{@stream.length.to_s(16)}" end def write_integer( int ) write_ref_for( int.get_type ) write_ref_for( int.next_integer ) write_ref_for( int.value ) write_ref_for( 0 ) log.debug "Integer witten stream 0x#{@stream.length.to_s(16)}" end def write_data4( code ) write_ref_for( code.get_type ) write_ref_for( code.get_type ) case code when Parfait::NilClass , nil fake_int = 0 when Parfait::TrueClass , true fake_int = 1 when Parfait::FalseClass , false fake_int = 0 else fake_int = code.get_type end write_ref_for( fake_int ) write_ref_for( code.get_type ) log.debug "Data4 witten stream 0x#{@stream.length.to_s(16)}" end # first jump, def write_init( cpu_init ) cpu_init.assemble(@stream) @stream.write_unsigned_int_8(0) until @linker.platform.padding == stream_position log.debug "Init witten stream 0x#{@stream.length.to_s(16)}" end def write_BinaryCode( code ) write_ref_for( code.get_type ) write_ref_for( code.next_code ) code.each_word do |word| @stream.write_unsigned_int_32( word || 0 ) end log.debug "Code16 witten stream 0x#{@stream.length.to_s(16)}" end def write_String( string ) if string.is_a? Parfait::Word str = string.to_string raise "length mismatch #{str.length} != #{string.char_length}" if str.length != string.char_length end str = string.to_s if string.is_a? Symbol log.debug "#{string.class} is #{string} at 0x#{Position.get(string)} length 0x#{string.length.to_s(16)}" write_checked_string(string , str) end def write_checked_string(string, str) write_ref_for( string.get_type ) #ref @stream.write_signed_int_32( str.length ) #int @stream.write str pad_after(str.length + 8 ) # type , length log.debug "String (0x#{string.length.to_s(16)}) stream 0x#{@stream.length.to_s(16)}" end def write_Symbol(sym) return write_String(sym) end private # write means we write the resulting address straight into the assembler stream # object means the object of which we write the address def write_ref_for( object ) if(object.is_a?( ::Integer) ) return @stream.write_signed_int_32(object) end case object when nil object = Parfait.object_space.nil_object when true object = Parfait.object_space.true_object when false object = Parfait.object_space.nil_object end @stream.write_signed_int_32(Position.get(object) + @linker.platform.loaded_at) end # pad_after is always in bytes and pads (writes 0's) up to the next 8 word boundary def pad_after( length ) before = stream_position pad = Parfait::Object.padded(length) - length # for header, type pad.times do @stream.write_unsigned_int_8(0) end after = stream_position log.debug "padded 0x#{length.to_s(16)} with 0x#{pad.to_s(16)} stream #{before.to_s(16)}/#{after.to_s(16)}" end # return the stream length as hex def stream_position @stream.length end end end