module Arm class Translator # translator should translate from register instructio set to it's own (arm eg) # for each instruction we call the translator with translate_XXX # with XXX being the class name. # the result is replaced in the stream def translate instruction class_name = instruction.class.name.split("::").last self.send( "translate_#{class_name}".to_sym , instruction) end # don't replace labels def translate_Label code nil end # Arm stores the return address in a register (not on the stack) # The register is called link , or lr for short . # Maybe because it provides the "link" back to the caller # the vm defines a register for the location, so we store it there. def translate_SaveReturn code ArmMachine.str( :lr , code.register , 4 * code.index ) end def translate_GetSlot code # times 4 because arm works in bytes, but vm in words if(code.index.is_a? Numeric) ArmMachine.ldr( code.register , code.array , 4 * code.index ) else ArmMachine.ldr( code.register , code.array , code.index ) end end def translate_RegisterTransfer code # Register machine convention is from => to # But arm has the receiver/result as the first ArmMachine.mov( code.to , code.from) end def translate_SetSlot code # times 4 because arm works in bytes, but vm in words if(code.index.is_a? Numeric) ArmMachine.str( code.register , code.array , 4 * code.index ) else ArmMachine.str( code.register , code.array , code.index ) end end def translate_FunctionCall code ArmMachine.call( code.method ) end def translate_FunctionReturn code ArmMachine.ldr( :pc , code.register , 4 * code.index ) end def translate_LoadConstant code constant = code.constant if constant.is_a?(Parfait::Object) or constant.is_a?(Symbol) or constant.is_a?(Register::Label) return ArmMachine.add( code.register , constant ) else return ArmMachine.mov( code.register , constant ) end end def translate_OperatorInstruction code left = code.left right = code.right case code.operator.to_s when "+" c = ArmMachine.add(left , left , right) when "-" c = ArmMachine.sub(left , left , right) when "&" c = ArmMachine.and(left , left , right) when "|" c = ArmMachine.orr(left , left , right) when "*" c = ArmMachine.mul(left , right , left) #arm rule about left not being result, lukily commutative else raise "unimplemented '#{code.operator}' #{code}" end c end # This implements branch logic, which is simply assembler branch # # The only target for a call is a Block, so we just need to get the address for the code # and branch to it. def translate_Branch code ArmMachine.b( code.label ) end def translate_Syscall code call_codes = { :putstring => 4 , :exit => 1 } int_code = call_codes[code.name] raise "Not implemented syscall, #{code.name}" unless int_code send( code.name , int_code ) end def putstring int_code codes = ArmMachine.ldr( :r1 , Register.message_reg, 4 * Register.resolve_index(:message , :receiver)) codes.append ArmMachine.add( :r1 , :r1 , 8 ) codes.append ArmMachine.mov( :r0 , 1 ) codes.append ArmMachine.mov( :r2 , 12 ) # String length, obvious TODO syscall(int_code , codes ) end def exit int_code codes = Register::Label.new(nil , "exit") syscall int_code , codes end private # syscall is always triggered by swi(0) # The actual code (ie the index of the kernel function) is in r7 def syscall int_code , codes codes.append ArmMachine.mov( :r7 , int_code ) codes.append ArmMachine.swi( 0 ) codes end end end