module Arm class LogicInstruction < Instruction # result = left op right #or constant loading # # Logic instruction are your basic operator implementation. But unlike the (normal) code we write # these Instructions must have "place" to write their results. Ie when you write 4 + 5 in ruby # the result is sort of up in the air, but with Instructions the result must be assigned def initialize(result , left , right , attributes = {}) super(nil) @attributes = attributes @result = result @left = left @right = right @attributes[:update_status] = 1 if @attributes[:update_status] == nil @attributes[:condition_code] = :al if @attributes[:condition_code] == nil raise "Left arg must be given #{inspect}" unless @left end attr_accessor :result , :left , :right def assemble(io) left , right = determine_operands immediate = 1 # default, unless register (below) if (right.is_a?(Numeric)) operand = handle_numeric(right) elsif (right.is_a?(Symbol) or right.is_a?(::Risc::RiscValue)) operand = reg_code(right) #integer means the register the integer is in (otherwise constant) immediate = 0 # ie not immediate is register else raise "invalid operand argument #{right.inspect} , #{inspect}" end left_code = reg_code(left) op = shift_handling if( opcode == :mul ) operand = reg_code(left) + 0x90 op = reg_code(right) << 8 left_code = reg_code(@result) end val = shift(operand , 0) val |= shift(op , 0) # any barrel action, is already shifted val |= shift(result , 12) val |= shift(left_code , 12 + 4) val |= shift(@attributes[:update_status] , 12 + 4 + 4)#20 val |= shift(op_bit_code , 12 + 4 + 4 + 1) val |= shift(immediate , 12 + 4 + 4 + 1 + 4) val |= instruction_code val |= condition_code io.write_unsigned_int_32 val end def result opcode == :mul ? 0 : reg_code(@result) end def instuction_class 0b00 # OPC_DATA_PROCESSING end # Arm can't load any large (over 1024) numbers, or larger with fancy shifting, # but then the lower bits must be 0's. Especially in constant loading random large numbers # happen, and so they are split into two instructions. An exeption is thrown, that triggers # some position handling and an @extra add instruction generated. def handle_numeric(right) if (right.fits_u8?) operand = right # no shifting needed elsif (op_with_rot = calculate_u8_with_rr(right)) operand = op_with_rot else unless @extra @extra = 1 # puts "RELINK L at #{Risc::Position.get(self)}" # use sub for sub and add for add, ie same as opcode insert ArmMachine.send( opcode , result , result , 0 ) #noop end # now we can do the actual breaking of instruction, by splitting the operand operand = calculate_u8_with_rr( right & 0xFFFFFF00 ) raise "no fit for #{right} in #{self}" unless operand @next.set_value(right & 0xFF ) end return operand end def set_value(val) @right = val end # don't overwrite instance variables, to make assembly repeatable # this also loads constants, which are issued as pc relative adds def determine_operands if( @left.is_a?(Parfait::Object) or @left.is_a?(Risc::Label) or (@left.is_a?(Symbol) and !Risc::RiscValue.look_like_reg(@left))) left = @left left = left.address if left.is_a?(Risc::Label) # do pc relative addressing with the difference to the instuction # 8 is for the funny pipeline adjustment (ie pointing to fetch and not execute) right = Risc::Position.get(left) - 8 right -= Risc::Position.get(self).at if( (right < 0) && ((opcode == :add) || (opcode == :sub)) ) right *= -1 # this works as we never issue sub only add set_opcode :sub # so (as we can't change the sign permanently) we can change the opcode end # and the sign even for sub (becuase we created them) raise "No negatives implemented #{self} #{right} " if right < 0 return :pc , right else return @left , @right end end def to_s "#{self.class.name} #{opcode} #{@result} = #{@left} #{@right} extra=#{@extra}" end end end