module Arm # A translator is cpu specific and translates from risc instructions to a given # cpu. This one transltes to Arm Instructions. class Translator # translator should translate from register instructio set to it's own (arm eg) # for each instruction we call the translator with translate_XXX # with XXX being the class name. # the result is replaced in the stream def translate( instruction ) class_name = instruction.class.name.split("::").last self.send( "translate_#{class_name}".to_sym , instruction) end def translate_Label( code ) Risc.label( code.source , code.name , code.address) end # arm indexes are # in bytes, so *4 # if an instruction is passed in we get the index with index function def arm_index( index ) index = index.index if index.is_a?(Risc::Instruction) raise "index error #{index}" if index < 0 index * 4 end def translate_Transfer( code ) # Risc machine convention is from => to # But arm has the receiver/result as the first ArmMachine.mov( code.to , code.from) end def translate_SlotToReg( code ) ArmMachine.ldr( *slot_args_for(code) ) end def translate_RegToSlot( code ) ArmMachine.str( *slot_args_for(code) ) end def slot_args_for( code ) if(code.index.is_a? Numeric) [ code.register , code.array , arm_index(code) ] else [ code.register , code.array , code.index , :shift_lsl => 2] end end def byte_args_for( code ) args = slot_args_for( code ) args.pop if(code.index.is_a? Numeric) args end def translate_ByteToReg( code ) ArmMachine.ldrb( *byte_args_for(code) ) end def translate_RegToByte( code ) ArmMachine.strb( *byte_args_for(code) ) end def translate_FunctionCall( code ) ArmMachine.b( code.method.binary ) end def translate_FunctionReturn( code ) # FIXME reduce the int first, register contains a ReturnAddress ArmMachine.mov( :pc , code.register) end def translate_DynamicJump(code) index = Parfait.object_space.get_type_by_class_name(:CallableMethod).variable_index(:binary) codes = ArmMachine.ldr( code.register , code.register , arm_index(index) ) codes << ArmMachine.mov( :pc , code.register) codes end def translate_LoadConstant( code ) constant = code.constant constant = constant.to_cpu(self) if constant.is_a?(Risc::Label) return ArmMachine.add( code.register , constant ) end def translate_LoadData( code ) return ArmMachine.mov( code.register , code.constant ) end def translate_OperatorInstruction( code ) left = code.left right = code.right case code.operator.to_s when "+" c = ArmMachine.add(left , left , right) when "-" c = ArmMachine.sub(left , left , right) when "&" c = ArmMachine.and(left , left , right) when "|" c = ArmMachine.orr(left , left , right) when "*" c = ArmMachine.mul(left , right , left) #arm rule about left not being result, lukily commutative when ">>" c = ArmMachine.mov(left , left , :shift_asr => right) #arm rule about left not being result, lukily commutative when "<<" c = ArmMachine.mov(left , left , :shift_lsl => right) #arm rule about left not being result, lukily commutative else raise "unimplemented '#{code.operator}' #{code}" end c end # This implements branch logic, which is simply assembler branch # # The only target for a call is a Block, so we just need to get the address for the code # and branch to it. def translate_Branch( code ) target = code.label.is_a?(Risc::Label) ? code.label.to_cpu(self) : code.label ArmMachine.b( target ) end def translate_IsPlus( code ) ArmMachine.bpl( code.label.to_cpu(self) ) end def translate_IsMinus( code ) ArmMachine.bmi( code.label.to_cpu(self) ) end def translate_IsZero( code ) ArmMachine.beq( code.label.to_cpu(self) ) end def translate_IsNotZero( code ) ArmMachine.bne( code.label.to_cpu(self) ) end def translate_IsOverflow( code ) ArmMachine.bvs( code.label.to_cpu(self)) end def translate_Syscall( code ) call_codes = { putstring: 4 , exit: 1 } name = code.name name = :exit if name == :died int_code = call_codes[name] raise "Not implemented syscall, #{name}" unless int_code send( name , int_code ) end def putstring( int_code ) # adjust for object header (0 based, hence -1) codes = ArmMachine.add( :r1 , :r1 , (Parfait::Word.type_length - 1)*4 ) codes.append ArmMachine.mov( :r0 , 1 ) # write to stdout == 1 syscall(int_code , codes ) end def exit( int_code ) codes = ArmMachine.mov( :r7 , int_code ) codes.append ArmMachine.swi( 0 ) codes end private # syscall is always triggered by swi(0) # The actual code (ie the index of the kernel function) is in r7 def syscall( int_code , codes) codes.append ArmMachine.mov( :r7 , int_code ) codes.append ArmMachine.swi( 0 ) codes end end end