module Register class LinkException < Exception end # Assemble the object machine into a binary. # Link first to get positions, then assemble # The link function determines the length of an object and the assemble actually # writes the bytes they are pretty much dependant. In an earlier version they were # functions on the objects, but now it has gone to a visitor pattern. class Assembler TYPE_REF = 0 TYPE_INT = 1 TYPE_BITS = 4 TYPE_LENGTH = 6 def initialize machine @machine = machine end def link # want to have the methods first in the executable # so first we determine the code length for the methods and set the # binary code (array) to right length @machine.objects.each do |objekt| next unless objekt.is_a? Parfait::Method objekt.code.set_length(objekt.info.mem_length / 4 , 0) end at = 0 # then we make sure we really get the binary codes first @machine.objects.each do |objekt| next unless objekt.is_a? Parfait::BinaryCode objekt.set_position at # puts "CODE #{objekt.name} at #{objekt.position}" at += objekt.mem_length end # and then everything else @machine.objects.each do | objekt| # have to tell the code that will be assembled where it is to # get the jumps/calls right if objekt.is_a? Parfait::Method objekt.info.set_position( objekt.code.position ) end next if objekt.is_a? Parfait::BinaryCode objekt.set_position at at += objekt.mem_length end @machine.objects.each do |objekt| objekt.position end end def assemble # must be same order as link begin link # first we need to create the binary code for the methods @machine.objects.each do |objekt| next unless objekt.is_a? Parfait::Method assemble_binary_method(objekt) end @stream = StringIO.new #TODOmid , main = @objects.find{|k,objekt| objekt.is_a?(Virtual::CompiledMethod) and (objekt.name == :__init__ )} # initial_jump = @machine.init # initial_jump.codes.each do |code| # code.assemble( @stream ) # end # then write the methods to file @machine.objects.each do |objekt| next unless objekt.is_a? Parfait::BinaryCode assemble_any( objekt ) end # and then the rest of the object machine @machine.objects.each do | objekt| next if objekt.is_a? Parfait::BinaryCode assemble_any( objekt ) end rescue LinkException # knowing that we fix the problem, we hope to get away with retry. retry end puts "Assembled 0x#{@stream.length.to_s(16)}/#{@stream.length} bytes" return @stream.string end # assemble the CompiledMethodInfo into a stringio # and then plonk that binary data into the method.code array def assemble_binary_method method stream = StringIO.new begin method.info.blocks.each do |block| block.codes.each do |code| code.assemble( stream ) end end rescue => e puts "Method error #{method.name}\n#{Sof::Writer.write(method.info.blocks).to_s[0...2000]}" raise e end method.code.fill_with 0 index = 1 stream.each_byte do |b| method.set_char(index , b ) index = index + 1 raise "length error #{method.code.get_length}" if index > method.info.get_length end end def assemble_any obj puts "Assemble #{obj.class} at stream #{(@stream.length).to_s(16)} pos:#{obj.position.to_s(16)} , len:#{obj.mem_length}" if @stream.length != obj.position raise "Assemble #{obj.class} at #{@stream.length.to_s(16)} not #{obj.position.to_s(16)}" end clazz = obj.class.name.split("::").last send("assemble_#{clazz}".to_sym , obj) obj.position end def type_word array word = 0 index = 0 array.each do |var | #type = (var.class == Integer) ? TYPE_INT : TYPE_REF #TODO type = TYPE_REF word += type << (index * TYPE_BITS) index = index + 1 end word += ( (array.get_length + 1 ) / 8 ) << TYPE_LENGTH * TYPE_BITS word end # write type and layout of the instance, and the variables that are passed # variables ar values, ie int or refs. For refs the object needs to save the object first def assemble_object( object ) unless @machine.objects.include? object raise "Object(#{object.object_id}) not linked #{object.inspect}" end layout = object.get_layout type = type_word(layout) @stream.write_uint32( type ) write_ref_for(layout ) layout.each do |var| inst = object.instance_variable_get "@#{var}".to_sym puts "Nil for #{object.class}.#{var}" unless inst write_ref_for(inst) end pad_after( layout.get_length * 4 ) object.position end def assemble_List array type = type_word(array) @stream.write_uint32( type ) write_ref_for(array.layout[:names]) #ref array.each do |var| write_ref_for(var) end pad_after( array.length * 4 ) array.position end def assemble_Dictionary hash # so here we can be sure to have _identical_ keys/values arrays assemble_object( hash , [ hash.keys , hash.values ] ) end def assemble_Space(space) assemble_object(space ) end def assemble_Class(clazz) assemble_object( clazz ) end def assemble_Message me assemble_object(me) end def assemble_Frame me assemble_object(me ) end def assemble_Method(method) count = method.info.blocks.inject(0) { |c , block| c += block.mem_length } word = (count+7) / 32 # all object are multiple of 8 words (7 for header) raise "Method too long, splitting not implemented #{method.name}/#{count}" if word > 15 # first line is integers, convention is that following lines are the same TYPE_LENGTH.times { word = ((word << TYPE_BITS) + TYPE_INT) } @stream.write_uint32( word ) write_ref_for(method.get_layout()) #ref of layout # TODO the assembly may have to move to the object to be more extensible method.blocks.each do |block| block.codes.each do |code| code.assemble( @stream ) end end pad_after( count ) end def assemble_BinaryCode code assemble_String code end def assemble_String( string ) str = string.to_s if string.is_a? Parfait::Word str = string.to_s if str.is_a? Symbol word = (str.length + 7) / 32 # all object are multiple of 8 words (7 for header) raise "String too long (implement split string!) #{word}" if word > 15 # first line is integers, convention is that following lines are the same TYPE_LENGTH.times { word = ((word << TYPE_BITS) + TYPE_INT) } @stream.write_uint32( word ) write_ref_for( string.get_layout ) #ref @stream.write str pad_after(str.length) #puts "String (#{slot.mem_length}) stream #{@stream.mem_length.to_s(16)}" end def assemble_Symbol(sym) return assemble_String(sym) end def assemble_StringConstant( sc) return assemble_String(sc) end private # write means we write the resulting address straight into the assembler stream # object means the object of which we write the address def write_ref_for object @stream.write_sint32 object.position end # objects only come in lengths of multiple of 8 words # but there is a constant overhead of 2 words, one for type, one for layout # and as we would have to subtract 1 to make it work without overhead, we now have to add 7 def padded len a = 32 * (1 + (len + 7)/32 ) #puts "#{a} for #{len}" a end def padded_words words padded(words*4) # 4 == word length, a constant waiting for a home end # pad_after is always in bytes and pads (writes 0's) up to the next 8 word boundary def pad_after length pad = padded(length) - length - 8 # for header, type and layout pad.times do @stream.write_uint8(0) end #puts "padded #{length} with #{pad} stream pos #{@stream.length.to_s(16)}" end end Sof::Volotile.add(Register::Assembler , [:objects]) end