module Risc # RegisterValue is like a variable name, a storage location. # The location is a register off course. # The type is always known, and sometimes the value too # Or something about the value, like some instances types # # When participating in the builder dsl, a builder may be set to get the # results of dsl operations (like <<) back to the builder class RegisterValue attr_reader :symbol , :type , :extra attr_reader :builder # The first arg is a symbol :r0 - :r12 # Second arg is the type, which may be given as the symbol of the class name # (internally we store the actual type instance, resolving any symbols) # A third value may give extra information. This is a hash, where keys may # be :value, or :value_XX or :type_XX to indicate value or type information # for an XX instance def initialize( reg , type , extra = {}) extra = {} unless extra raise "Not Hash #{extra}" unless extra.is_a?(Hash) raise "not reg #{reg}" unless self.class.look_like_reg( reg ) raise "No type " unless type type = Parfait.object_space.get_type_by_class_name(type) if type.is_a?(Symbol) @type = type @symbol = reg @extra = extra end def class_name return :fixnum unless @type @type.class_name end # allows to set the builder, which is mainly done by the builder # but sometimes, eg in exit, one nneds to create the reg by hand and set # return the RegisterValue for chaining in assignment def set_builder( builder ) @builder = builder self end # using the registers type, resolve the slot to an index # Using the index and the register, add a SlotToReg to the instruction def resolve_and_add(slot , compiler) index = resolve_index( slot ) new_left = get_new_left( slot , compiler ) compiler.add_code Risc::SlotToReg.new( "SlotLoad #{type}[#{slot}]" , self ,index, new_left) new_left end # resolve the given slot name (instance variable name) to an index using the type # RegisterValue has the current type, so we just look up the index in the type def resolve_index(slot) #puts "TYPE #{type} obj:#{object} var:#{slot} comp:#{compiler}" index = type.variable_index(slot) raise "Index not found for #{slot} in #{type} of type #{@type}" unless index return index end # reduce integer to fixnum and add instruction if builder is used def reduce_int reduce = Risc.slot_to_reg( "int -> fix" , self , Parfait::Integer.integer_index , self) builder.add_code(reduce) if builder reduce end # when following variables in resolve_and_add, get a new RegisterValue # that represents the new value. # Ie in "normal case" a the same register, with the type of the slot # (the not normal case, the first reduction, uses a new register, as we don't # overwrite the message) # We get the type with resolve_new_type def get_new_left(slot, compiler) new_type = extra["type_#{slot}".to_sym] new_type , extra = compiler.slot_type(slot , type) unless new_type if( @symbol == :r0 ) new_left = compiler.use_reg( new_type , extra) else new_left = RegisterValue.new( @symbol , new_type , extra) end new_left end def to_s s = "#{symbol}:#{class_name}" s += ":#{extra}" unless extra.empty? s end def reg_no @symbol.to_s[1 .. -1].to_i end def self.look_like_reg is_it return true if is_it.is_a? RegisterValue return false unless is_it.is_a? Symbol if( [:lr , :pc].include? is_it ) return true end if( (is_it.to_s.length <= 3) and (is_it.to_s[0] == "r")) # could tighten this by checking that the rest is a number return true end return false end def == other return false if other.nil? return false if other.class != RegisterValue symbol == other.symbol end #helper method to calculate with register symbols def next_reg_use( type , extra = {} ) int = @symbol[1,3].to_i raise "No more registers #{self}" if int > 11 sym = "r#{int + 1}".to_sym RegisterValue.new( sym , type, extra) end def rxf_reference_name @symbol end # can't overload "=" , so use shift for it. # move the right side to the left. Left (this) is a RegisterValue # right value may be # - constant (Parfait object) , resulting in a LoadConstant # - another RegisterValue, resulting in a Transfer instruction # - an RValue, resulting in an SlotToReg def <<( right ) case right when Parfait::Object , Symbol , Label ins = Risc.load_constant("#{right.class} to #{self.type}" , right , self) when Fixnum ins = Risc.load_data("#{right.class} to #{self.type}" , right , self) when RegisterValue ins = Risc.transfer("#{right.type} to #{self.type}" , right , self) when RValue ins = Risc.slot_to_reg("#{right.register.type}[#{right.index}] -> #{self.type}" , right.register , right.index , self) else raise "not implemented for #{right.class}:#{right}" end builder.add_code(ins) if builder return ins end # similar to above (<< which produces slot_to_reg), this produces byte_to_reg # since << covers all other cases, this must have a RValue as the right def <=( right ) raise "not implemented for #{right.class}:#{right}" unless right.is_a?( RValue ) ins = Risc.byte_to_reg("#{right.register.type}[#{right.index}] -> #{self.type}" , right.register , right.index , self) builder.add_code(ins) if builder return ins end def -( right ) raise "operators only on registers, not #{right.class}" unless right.is_a? RegisterValue op = Risc.op("#{self.type} - #{right.type}", :- , self , right ) builder.add_code(op) if builder op end # generate a Function return instruction # using the register as the parameter where the return address is passed def function_return ret = Risc.function_return("return", self) builder.add_code(ret) if builder ret end # create operator instruction for self and add # doesn't read quite as smoothly as one would like, but better than the compiler version def op( operator , right) ret = Risc.op( "operator #{operator}" , operator , self , right) builder.add_code(ret) if builder ret end # just capture the values in an intermediary object (RValue) # The RValue then gets used in a RegToSlot ot SlotToReg, where # the values are unpacked to call Risc.reg_to_slot or Risc.slot_to_reg def []( index ) RValue.new( self , index , builder) end end # Just a struct, see comment for [] of RegisterValue # class RValue attr_reader :register , :index , :builder def initialize(register, index , builder) @register , @index , @builder = register , index , builder end # fullfil the objects purpose by creating a RegToSlot instruction from # itself (the slot) and the register given def <<( reg ) raise "not reg #{reg}" unless reg.is_a?(RegisterValue) reg_to_slot = Risc.reg_to_slot("#{reg.class_name} -> #{register.class_name}[#{index}]" , reg , register, index) builder.add_code(reg_to_slot) if builder reg_to_slot end # similar to above (<< which produces reg_to_slot), this produces reg_to_byte # from itself (the slot) and the register given def <=( reg ) raise "not reg #{reg}" unless reg.is_a?(RegisterValue) reg_to_byte = Risc.reg_to_byte("#{reg.class_name} -> #{register.class_name}[#{index}]" , reg , register, index) builder.add_code(reg_to_byte) if builder reg_to_byte end end # The register we use to store the current message object is :r0 def self.message_reg RegisterValue.new :r0 , :Message end # The register we use to store the new message object is :r3 # The new message is the one being built, to be sent def self.new_message_reg RegisterValue.new :r1 , :Message end # The first scratch register. There is a next_reg_use to get a next and next. # Current thinking is that scratch is schatch between instructions def self.tmp_reg( type , extra = {}) RegisterValue.new :r1 , type , extra end end