require_relative "code" module Vm # Because the idea of what one instruction does, does not always map one to one to real machine # instructions, and instruction may link to another instruction thus creating an arbitrary list # to get the job (the original instruciton) done # Admittately it would be simpler just to create the (abstract) instructions and let the machine # encode them into what-ever is neccessary, but this approach leaves more possibility to # optimize the actual instruction stream (not just the crystal instruction stream). Makes sense? # We have basic classes (literally) of instructions # - Memory # - Stack # - Logic # - Math # - Control/Compare # - Move # - Call # Instruction derives from Code, for the assembly api class Instruction < Code def initialize options @attributes = options end attr_reader :attributes def opcode @attributes[:opcode] end #abstract, only should be called from derived def to_s atts = @attributes.dup atts.delete(:opcode) atts.delete(:update_status) atts.delete(:condition_code) if atts[:condition_code] == :al atts.empty? ? "" : ", #{atts}" end # returns an array of registers (RegisterReferences) that this instruction uses. # ie for r1 = r2 + r3 # which in assembler is add r1 , r2 , r3 # it would return [r2,r3] # for pushes the list may be longer, whereas for a jump empty def uses raise "abstract called for #{self.class}" end # returns an array of registers (RegisterReferences) that this instruction assigns to. # ie for r1 = r2 + r3 # which in assembler is add r1 , r2 , r3 # it would return [r1] # for most instruction this is one, but comparisons and jumps 0 , and pop's as long as 16 def assigns raise "abstract called for #{self.class}" end def method_missing name , *args , &block return super unless (args.length <= 1) or block_given? set , attribute = name.to_s.split("set_") if set == "" @attributes[attribute.to_sym] = args[0] || 1 return self else return super end return @attributes[name.to_sym] end end class StackInstruction < Instruction def initialize first , options = {} @first = first super(options) end # when calling we place a dummy push/pop in the stream and calculate later what registers actually need saving def set_registers regs @first = regs.collect{ |r| r.symbol } end def is_push? opcode == :push end def is_pop? !is_push? end def uses is_push? ? regs : [] end def assigns is_pop? ? regs : [] end def regs @first end def to_s "#{opcode} [#{@first.collect {|f| f.to_asm}.join(',') }] #{super}" end end class MemoryInstruction < Instruction def initialize result , left , right = nil , options = {} @result = result @left = left @right = right super(options) end def uses ret = [@left.register ] ret << @right.register unless @right.nil? ret end def assigns [@result.register] end end class LogicInstruction < Instruction # result = left op right # # Logic instruction are your basic operator implementation. But unlike the (normal) code we write # these Instructions must have "place" to write their results. Ie when you write 4 + 5 in ruby # the result is sort of up in the air, but with Instructions the result must be assigned def initialize result , left , right , options = {} @result = result @left = left @right = right.is_a?(Fixnum) ? IntegerConstant.new(right) : right super(options) end attr_accessor :result , :left , :right def uses ret = [] ret << @left.register if @left and not @left.is_a? Constant ret << @right.register if @right and not @right.is_a?(Constant) ret end def assigns [@result.register] end def to_asm "#{opcode} #{result.to_asm} , #{left.to_asm} , #{right.to_asm} #{super}" end end class CompareInstruction < Instruction def initialize left , right , options = {} @left = left @right = right.is_a?(Fixnum) ? IntegerConstant.new(right) : right super(options) end def uses ret = [@left.register ] ret << @right.register unless @right.is_a? Constant ret end def assigns [] end end class MoveInstruction < Instruction def initialize to , from , options = {} @to = to @from = from.is_a?(Fixnum) ? IntegerConstant.new(from) : from raise "move must have from set #{inspect}" unless from super(options) end attr_accessor :to , :from def uses @from.is_a?(Constant) ? [] : [@from.register] end def assigns [@to.register] end def to_s "#{opcode} #{@to.to_asm} , #{@from.to_asm} #{super}" end end class CallInstruction < Instruction def initialize first , options = {} @first = first super(options) opcode = @attributes[:opcode].to_s if opcode.length == 3 and opcode[0] == "b" @attributes[:condition_code] = opcode[1,2].to_sym @attributes[:opcode] = :b end if opcode.length == 6 and opcode[0] == "c" @attributes[:condition_code] = opcode[4,2].to_sym @attributes[:opcode] = :call end end def uses if opcode == :call @first.args.collect {|arg| arg.register } else [] end end def assigns if opcode == :call [RegisterReference.new(RegisterMachine.instance.return_register)] else [] end end end end