module Risc # A Builder is used to generate code, either by using it's api, or dsl # # There are two subclasses of Builder, depending of what one wants to do with the # generated code. # # CompilerBuilder: The code is added to the method_compiler. # This is used to generate the builtin methods. # # CodeBuilder: The code can be stored up and returned. # This is used in Mom::to_risc methods # class Builder attr_reader :built , :compiler # pass a compiler, to which instruction are added (usually) # second arg determines weather instructions are added (default true) # call build with a block to build def initialize(compiler, for_source) @compiler = compiler @source = for_source @source_used = false @names = {} end # make the magic: convert incoming names into registers that have the # type set according to the name (using resolve_type) # anmes are stored, so subsequent calls use the same register def method_missing(*args) super if args.length != 1 name = args[0] return @names[name] if @names.has_key?(name) if name == :message reg = Risc.message_reg reg.builder = self elsif name.to_s.index("label") reg = Risc.label( @source , "#{name}_#{object_id}") @source_used = true else type = Risc.resolve_type(name , @compiler) #checking reg = @compiler.use_reg( type.object_class.name ) reg.builder = self end @names[name] = reg reg end def if_zero( label ) @source_used = true add_code Risc::IsZero.new(@source , label) end def if_not_zero( label ) @source_used = true add_code Risc::IsNotZero.new(@source , label) end def branch( label ) @source_used = true add_code Risc::Branch.new(@source, label) end # build code using dsl (see __init__ or MessageSetup for examples) # names (that ruby would resolve to a variable/method) are converted # to registers. << means assignment and [] is supported both on # L and R values (but only one at a time). R values may also be constants. # # Basically this allows to create LoadConstant, RegToSlot, SlotToReg and # Transfer instructions with extremely readable code. # example: # space << Parfait.object_space # load constant # message[:receiver] << space #make current message (r0) receiver the space # # build result is available as built, but also gets added to compiler, if the # builder is created with default args # def build(&block) instance_eval(&block) @built end def add_code(ins) raise "Must be implemented in subclass #{self}" end # move a machine int from register "from" to a Parfait::Integer in register "to" # have to grab an integer from space and stick it in the "to" register first. def add_new_int( source , from, to ) source += "add_new_int " space = compiler.use_reg(:Space) int = compiler.use_reg(:Integer) space_i = Risc.resolve_to_index(:Space, :next_integer) add_load_constant( source + "space" , Parfait.object_space , space ) add_slot_to_reg( source + "next_i1" , space , space_i , to) add_slot_to_reg( source + "next_i2" , to , Risc.resolve_to_index(:Integer, :next_integer) , int) add_reg_to_slot( source + "store link" , int , space , space_i ) add_reg_to_slot( source + "store value" , from , to , Parfait::Integer.integer_index) end # load receiver and the first argument (int) # return both registers def self_and_int_arg( source ) me = add_known( :receiver ) int_arg = load_int_arg_at(source , 0 ) return me , int_arg end # Load the first argument, assumed to be integer def load_int_arg_at( source , at) int_arg = compiler.use_reg :Integer add_slot_to_reg(source , Risc.message_reg , :arguments , int_arg ) add_slot_to_reg(source , int_arg , at + 1, int_arg ) #1 for type return int_arg end # assumed Integer in given register is replaced by the fixnum that it is holding def reduce_int( source , register ) add_slot_to_reg( source + "int -> fix" , register , Parfait::Integer.integer_index , register) end # for computationally building code (ie writing assembler) these short cuts # help to instantiate risc instructions and add them immediately [:label, :reg_to_slot , :slot_to_reg , :load_constant, :load_data, :function_return , :function_call, :op , :transfer , :reg_to_slot , :byte_to_reg , :reg_to_byte].each do |method| define_method("add_#{method}".to_sym) do |*args| if not @source_used args[0] = @source @source_used = true end add_code Risc.send( method , *args ) end end def add_known(name) case name when :receiver message = Risc.message_reg ret_type = message.resolve_new_type(:receiver, compiler) ret = compiler.use_reg( ret_type ) add_slot_to_reg(" load self" , message , :receiver , ret ) return ret when :space space = Parfait.object_space reg = compiler.use_reg :Space , space add_load_constant( "load space", space , reg ) return reg when :message reg = compiler.use_reg :Message add_transfer( "load message", Risc.message_reg , reg ) return reg else raise "Unknow expression #{name}" end end end # if a symbol is given, it may be the message or the new_message. # These are mapped to register references. # The valid symbols (:message,:new_message) are the same that are returned # by the slots. All data (at any time) is in one of the instance variables of these two # objects. Risc defines module methods with the same names (and _reg) def self.resolve_to_register( reference ) return reference if reference.is_a?(RegisterValue) case reference when :message return message_reg when :new_message return new_message_reg else raise "not recognized register reference #{reference} #{reference.class}" end end # resolve a symbol to a type. In the simplest case the sybbol is the class name # But in building sometimes variations are needed, so next_message or caller work # too (and return Message) # Also objects work, in which case the instance_type of their class is returned # An error is raised if the symbol/object can not be resolved def self.resolve_type( object , compiler ) object = object.type if object.is_a?(RegisterValue) case object when :name type = Parfait.object_space.get_type_by_class_name( :Word ) when :frame , :arguments , :receiver type = compiler.resolve_type(object) when :message , :next_message , :caller type = Parfait.object_space.get_type_by_class_name(:Message) when Parfait::Object type = Parfait.object_space.get_type_by_class_name( object.class.name.split("::").last.to_sym) when Symbol object = object.to_s.camelise.to_sym clazz = Parfait.object_space.get_class_by_name(object) raise "Not implemented/found object #{object}:#{object.class}" unless clazz type = clazz.instance_type else raise "Not implemented/found object #{object}:#{object.class}" end return type end # The first arg is a class name (possibly lowercase) and the second an instance variable name. # By looking up the class and the type for that class, we can resolve the instance # variable name to an index. # The class can be mapped to a register, and so we get a memory address (reg+index) # Third arg, compiler, is only needed to resolve receiver/arguments/frame def self.resolve_to_index(object , variable_name ,compiler = nil) return variable_name if variable_name.is_a?(Integer) or variable_name.is_a?(RegisterValue) type = compiler.resolve_type( object) if compiler type = resolve_type(object , compiler) unless type #puts "TYPE #{type} obj:#{object} var:#{variable_name} comp:#{compiler}" index = type.variable_index(variable_name) raise "Index not found for #{variable_name} in #{object} of type #{type}" unless index return index end class CodeBuilder < Builder attr_reader :built def initialize(compiler, for_source) super @built = nil end def build(&block) super @built end # CodeBuilder stores the code. # The code can be access through the @built instance, and is returned # from build method def add_code(ins) if(@built) @built << ins else @built = ins end end end # A CompilerBuilder adds the generated code to the MethodCompiler. # class CompilerBuilder < Builder # add code straight to the compiler def add_code(ins) return @compiler.add_code(ins) end end end