module Risc # CallableCompiler is used to generate risc instructions. It is an abstact base # class shared by BlockCompiler and MethodCompiler # - risc_instructions: The sequence of risc level instructions that slot machine was # compiled to # Instructions derive from class Instruction and form a linked list # - constants is an array of Parfait objects that need to be available # - callable is a Method of Block # - current instruction is where addidion happens # class CallableCompiler include Util::CompilerList # Must pass the callable (method/block) # Also start instuction, usually a label is mandatory def initialize( callable , slot_label) raise "No method" unless callable @callable = callable @allocator = Allocator.new @constants = [] @current = @risc_instructions = slot_label.risc_label(self) @allocator.reset_regs end attr_reader :risc_instructions , :constants , :callable , :current # find the return label. Every methd should have exactly one def return_label @risc_instructions.each do |ins| next unless ins.is_a?(Label) return ins if ins.name == "return_label" end end # add a constant (which get created during compilation and need to be linked) # constants must be Parfait instances def add_constant(const) raise "Must be Parfait #{const}" unless const.is_a?(Parfait::Object) @constants << const end # add a risc instruction after the current (insertion point) # the added instruction will become the new insertion point def add_code( instruction ) raise "Not an instruction:#{instruction.to_s}:#{instruction.class.name}" unless instruction.is_a?(Risc::Instruction) raise instruction.to_s if( instruction.class.name.split("::").first == "Arm") new_current = instruction.last #after insertion this point is lost @current.insert(instruction) #insert after current @current = new_current self end # resolve the type of the slot, by inferring from it's name, using the type # scope related slots are resolved by the compiler by method/block def slot_type( slot , type) case slot when :frame new_type = self.frame_type when :arguments new_type = self.arg_type when :receiver new_type = self.receiver_type when Symbol new_type = type.type_for(slot) raise "Not found object #{slot}: in #{type}" unless new_type else raise "Not implemented object #{slot}:#{slot.class}" end #puts "RESOLVE in #{@type.class_name} #{slot}->#{type}" return new_type end # return the frame type, ie the blocks frame type def frame_type @callable.frame_type end # return the frame type, ie the blocks arguments type def arg_type @callable.arguments_type end # return the frame type, ie the blocks self_type def receiver_type @callable.self_type end def copy( reg , source ) copied = use_reg reg.type add_code Register.transfer( source , reg , copied ) copied end # Load a constant, meaning create a LoadConstant or LoadData instruction for the # given constant. Integers create LoadData (meaning the integer is encoded into # the actual instruction), Parfait::Objects create LoadConstant, where a pointer # to the object is loaded. # add the instruction to the code and return the register_value that was created # for further use # register may be passed in (epecially in mcro building) as second arg def load_object( object , into = nil) if(object.is_a? Integer) ins = Risc.load_data("load data #{object}" , object , into) else ins = Risc.load_constant("load to #{object}" , object , into) end ins.register.set_compiler(self) add_code ins # todo for constants (not objects) add_constant( object) if object.is_a?(Parfait::Object) # add_constant(right) if compiler ins.register end # Build with builder (see there), adding the created instructions def build(source , &block) builder(source).build(&block) end # return a Builder, that adds the generated code to this compiler def builder( source) Builder.new(self , source) end # compile the callable (method or block) to cpu # return an Assembler that will then translate to binary def translate_cpu(translator) risc = @risc_instructions cpu_instructions = risc.to_cpu(translator) nekst = risc.next while(nekst) cpu = nekst.to_cpu(translator) # returning nil means no replace cpu_instructions << cpu if cpu nekst = nekst.next end Risc::Assembler.new(@callable , cpu_instructions ) end # translate this method, which means the method itself and all blocks inside it # returns the array (of assemblers) that you pass in as collection def translate_method( translator , collection) collection << translate_cpu( translator ) collection end end end require_relative "allocator"