require_relative "collector" module Register # The Register Machine is an abstraction of the register level. This is seperate from the # actual assembler level to allow for several cpu architectures. # The Instructions (see class Instruction) define what the machine can do (ie load/store/maths) # The ast is transformed to virtual-machine objects, some of which represent code, some data. # # The next step transforms to the register machine layer, which is quite close to what actually # executes. The step after transforms to Arm, which creates executables. # class Machine include Collector include Logging log_level :info def initialize @booted = false @constants = [] end attr_reader :constants , :init , :booted # idea being that later method missing could catch translate_xxx and translate to target xxx # now we just instantiate ArmTranslater and pass instructions def translate_arm methods = Parfait.object_space.collect_methods translate_methods( methods ) label = @init.next @init = Arm::Translator.new.translate( @init ) @init.append label end def translate_methods(methods) translator = Arm::Translator.new methods.each do |method| log.debug "Translate method #{method.name}" instruction = method.instructions while instruction.next nekst = instruction.next t = translator.translate(nekst) # returning nil means no replace if t nekst = t.last instruction.replace_next(t) end instruction = nekst end end end def boot initialize boot_parfait! @init = Branch.new( "__initial_branch__" , Parfait.object_space.get_init.instructions ) @booted = true self end end # Module function to retrieve singleton def self.machine unless defined?(@machine) @machine = Machine.new end @machine end end Parfait::TypedMethod.class_eval do # for testing we need to reuse the main function (or do we?) # so remove the code that is there def clear_source self.source.send :initialize , self end end require_relative "boot"