module Risc # CallableCompiler is used to generate risc instructions. It is an abstact base # class shared by BlockCompiler and MethodCompiler # - risc_instructions: The sequence of risc level instructions that slot machine was # compiled to # Instructions derive from class Instruction and form a linked list # - constants is an array of Parfait objects that need to be available # - callable is a Method of Block # - current instruction is where addidion happens # class CallableCompiler include Util::CompilerList # Must pass the callable (method/block) # Also start instuction, usually a label is mandatory def initialize( callable , slot_label) raise "No method" unless callable @callable = callable @allocator = Allocator.new @constants = [] @current = @risc_instructions = slot_label.risc_label(self) @allocator.reset_regs end attr_reader :risc_instructions , :constants , :callable , :current # find the return label. Every methd should have exactly one def return_label @risc_instructions.each do |ins| next unless ins.is_a?(Label) return ins if ins.name == "return_label" end end # add a constant (which get created during compilation and need to be linked) # constants must be Parfait instances def add_constant(const) raise "Must be Parfait #{const}" unless const.is_a?(Parfait::Object) @constants << const end # add a risc instruction after the current (insertion point) # the added instruction will become the new insertion point def add_code( instruction ) raise "Not an instruction:#{instruction.to_s}:#{instruction.class.name}" unless instruction.is_a?(Risc::Instruction) raise instruction.to_s if( instruction.class.name.split("::").first == "Arm") new_current = instruction.last #after insertion this point is lost @current.insert(instruction) #insert after current @current = new_current self end # require a (temporary) register. code must give this back with release_reg # Second extra parameter may give extra info about the value, see RegisterValue def use_reg( type , extra = {} ) @allocator.use_reg(type, extra) end # resolve the type of the slot, by inferring from it's name, using the type # scope related slots are resolved by the compiler by method/block def slot_type( slot , type) case slot when :frame new_type = self.frame_type when :arguments new_type = self.arg_type when :receiver new_type = self.receiver_type when Symbol new_type = type.type_for(slot) raise "Not found object #{slot}: in #{type}" unless new_type else raise "Not implemented object #{slot}:#{slot.class}" end #puts "RESOLVE in #{@type.class_name} #{slot}->#{type}" return new_type end # return the frame type, ie the blocks frame type def frame_type @callable.frame_type end # return the frame type, ie the blocks arguments type def arg_type @callable.arguments_type end # return the frame type, ie the blocks self_type def receiver_type @callable.self_type end def copy( reg , source ) copied = use_reg reg.type add_code Register.transfer( source , reg , copied ) copied end # releasing a register (accuired by use_reg) makes it available for use again # thus avoiding possibly using too many registers def release_reg( reg ) last = @allocator.pop raise "released register in wrong order, expect #{last} but was #{reg}" if reg != last end # reset the registers to be used. Start at r4 for next usage. # Every statement starts with this, meaning each statement may use all registers, but none # get saved. Statements have affect on objects. def reset_regs @allocator.clear_regs end # Build with builder (see there), adding the created instructions def build(source , &block) builder(source).build(&block) end # return a Builder, that adds the generated code to this compiler def builder( source) Builder.new(self , source) end # compile the callable (method or block) to cpu # return an Assembler that will then translate to binary def translate_cpu(translator) risc = @risc_instructions cpu_instructions = risc.to_cpu(translator) nekst = risc.next while(nekst) cpu = nekst.to_cpu(translator) # returning nil means no replace cpu_instructions << cpu if cpu nekst = nekst.next end Risc::Assembler.new(@callable , cpu_instructions ) end # translate this method, which means the method itself and all blocks inside it # returns the array (of assemblers) that you pass in as collection def translate_method( translator , collection) collection << translate_cpu( translator ) collection end end end require_relative "allocator"