module Risc # Assemble the object machine into a binary. # Assemble first to get positions, then write # The assemble function determines the length of an object and then actually # writes the bytes they are pretty much dependant. In an earlier version they were # functions on the objects, but now it has gone to a visitor pattern. class Assembler include Logging log_level :debug MARKER = 0xA51AF00D def initialize( machine) @machine = machine @objects = machine.objects @load_at = 0x8054 # this is linux/arm end # objects must be written in same order as positioned / assembled def write_as_string @stream = StringIO.new Positioned.set_position(@machine.cpu_init.first , 0) puts ":#{Positioned.position(@machine.cpu_init.first)}:" @machine.cpu_init.assemble( @stream ) 8.times do @stream.write_unsigned_int_8(0) end write_debug write_objects write_code log.debug "Assembled 0x#{stream_position.to_s(16)} bytes" return @stream.string end # debugging loop accesses all positions to force an error if it's not set def write_debug all = @objects.values.sort{|a,b| Positioned.position(a) <=> Positioned.position(b)} all.each do |objekt| next if objekt.is_a?(Risc::Label) log.debug "Linked #{objekt.class}:0x#{objekt.object_id.to_s(16)} at 0x#{Positioned.position(objekt).to_s(16)} / 0x#{objekt.padded_length.to_s(16)}" Positioned.position(objekt) end end def write_objects # then the objects , not code yet @objects.each do | id, objekt| next if objekt.is_a? Parfait::BinaryCode next if objekt.is_a? Risc::Label # ignore write_any( objekt ) end end # Write the BinaryCode objects of all methods to stream. # Really like any other object, it's just about the ordering def write_code @objects.each do |id, method| next unless method.is_a? Parfait::TypedMethod binary = method.binary while(binary) do write_any( binary ) binary = binary.next end end end def write_any( obj ) write_any_log( obj , "Write") if @stream.length != Positioned.position(obj) raise "Write #{obj.class}:0x#{obj.object_id.to_s(16)} at #{stream_position} not #{Positioned.position(obj)}" end write_any_out(obj) write_any_log( obj , "Wrote") Positioned.position(obj) end def write_any_log( obj , at) log.debug "#{at} #{obj.class}:0x#{obj.object_id.to_s(16)} at stream 0x#{stream_position.to_s(16)} pos:0x#{Positioned.position(obj).to_s(16)} , len:0x#{obj.padded_length.to_s(16)}" end def write_any_out(obj) if obj.is_a?(Parfait::Word) or obj.is_a?(Symbol) write_String obj else write_object obj end end # write type of the instance, and the variables that are passed # variables ar values, ie int or refs. For refs the object needs to save the object first def write_object( object ) write_object_check(object) obj_written = write_object_variables(object) log.debug "instances=#{object.get_instance_variables.inspect} mem_len=0x#{object.padded_length.to_s(16)}" indexed_written = write_object_indexed(object) log.debug "type #{obj_written} , total #{obj_written + indexed_written} (array #{indexed_written})" log.debug "Len = 0x#{object.get_length.to_s(16)} , inst =0x#{object.get_type.instance_length.to_s(16)}" if object.is_a? Parfait::Type pad_after( obj_written + indexed_written ) Positioned.position(object) end def write_object_check(object) log.debug "Write object #{object.class} #{object.inspect[0..100]}" unless @objects.has_key? object.object_id log.debug "Object at 0x#{Positioned.position(object).to_s(16)}:#{object.get_type()}" raise "Object(0x#{object.object_id.to_s(16)}) not linked #{object.inspect}" end end def write_object_indexed(object) written = 0 if( object.is_a? Parfait::List) object.each do |inst| write_ref_for(inst) written += 4 end end written end def write_object_variables(object) @stream.write_signed_int_32( MARKER ) written = 0 # compensate for the "secret" marker object.get_instance_variables.each do |var| inst = object.get_instance_variable(var) #puts "Nil for #{object.class}.#{var}" unless inst inst = nil if [:cpu_instructions , :risc_instructions].include?(var) write_ref_for(inst) written += 4 end written end def write_BinaryCode code write_String code end def write_String( string ) if string.is_a? Parfait::Word str = string.to_string raise "length mismatch #{str.length} != #{string.char_length}" if str.length != string.char_length end str = string.to_s if string.is_a? Symbol log.debug "#{string.class} is #{string} at 0x#{Positioned.position(string).to_s(16)} length 0x#{string.length.to_s(16)}" write_checked_string(string , str) end def write_checked_string(string, str) @stream.write_signed_int_32( MARKER ) write_ref_for( string.get_type ) #ref @stream.write_signed_int_32( str.length ) #int @stream.write str pad_after(str.length + 8 ) # type , length *4 == 12 log.debug "String (0x#{string.length.to_s(16)}) stream 0x#{@stream.length.to_s(16)}" end def write_Symbol(sym) return write_String(sym) end private # write means we write the resulting address straight into the assembler stream # object means the object of which we write the address def write_ref_for object case object when nil @stream.write_signed_int_32(0) when Fixnum @stream.write_signed_int_32(object) else @stream.write_signed_int_32(Positioned.position(object) + @load_at) end end # pad_after is always in bytes and pads (writes 0's) up to the next 8 word boundary def pad_after length before = stream_position pad = Padding.padding_for(length) - 4 # four is for the MARKER we write pad.times do @stream.write_unsigned_int_8(0) end after = stream_position log.debug "padded 0x#{length.to_s(16)} with 0x#{pad.to_s(16)} stream #{before.to_s(16)}/#{after.to_s(16)}" end # return the stream length as hex def stream_position @stream.length end end RxFile::Volotile.add(Assembler , [:objects]) end