Just for future, as this gives us a way to know immediately in the type, which represent normal, and which singleton classes
Also instantiate singleton class lazily (with singleton type)
This makes the type of class single, ie unique, immediately when it is used, ie methods or variables defined.
Fixes a design mistake, where all singletonn classes shared the same type, and thus unique methods per class were impossible
(Also some misc in commit)
the typed method has to be created in the to_pafait pass for it to work correctly, ie for the sends to have something to call
also means that when during compilation creating (raising?) a method, not only vool. but also callable has to be created
resolve had the wrong approach, sort of class based oo
It took methods from "derived" types and just used them
To be correct, those methods would have to be recompiled for the current type, rubyx is type, not class based.
Started on that, still soe strange hang though
Later, type and method analysis may reveal "compatible" types (down only off course) where one could use the exact same code, but that is phase 2
both in mom and risc method complers
alll just compilers now, all linked
Required to move some code down into callable_compiler but all in all quite little. cleaner
seems more appropriate, as it is the class for a single object
Also seems to be called that on the net (don't remember where the meta came from, but it's gone)
as they are just the type of the meta_class, that was relatively simple.
I feel this is what oo is meant to be, instance variables and methods for the objects, and since classes are objects, for them too.
Class variables seem like a design mistake, weird scoping rules and no data hiding (left as an exercise to the reader)
args and locals got inlined into message, forgot to delete then
ripples out due to type creation
small type class api change, more ripples, but also more consistent
I call it macro because it lets you insert basically arbitrary risc code into the ruby level. The way it works:
Reserve namespace X
map any X.some_call to a Mom instruction
by the name SomeCall
which must take the same args in constructor as given
And obviously produce whatever risc it wants
Hoping to rewrite builtin around this idea (with the existing Mom builtn instructions)
Super is a statement, a send really.
Not an expression (as maybe in c++)
The actual implementation will be a bit tricky, like raise, a bit of stack walking, but not impossible. Still, later
When the lambda is passed as argument, it must be moved. This triggers the generation of a corresponding parfait object (as before, and as for other constants) but now also triggers the code build. The code being the constant as it were
Also some more name fixes from renames
Same same, just have to remembe to actually execute the condition if it is a send
Having send a possible expression, removes one tmp variable and associated move, for a little extra work.
Next return and assign (rest)
Before, when the type was determined, it was assumed that the method can be resolved. But off course tis is not true, as methods may be defined later in the file.
Two solutions for that. One could (and should) define all methods and only then start to compile. Thus having the type safety.
Or (as now) make a dynamic call and let it fail at runtime.