Move builtin wholesale to Mom

Since Builtin generates risc, just like mom instructions, it was a design mistake to put builtin into risc in the first place. Now that borders are coming more into focus, it make much more sense to have the builtin in mom.
In fact the instructions should be moved out and a seperate invocation mechanism used , so functions can be parsed, not generated (wip)
This commit is contained in:
2019-08-12 12:36:32 +03:00
parent a4b6f29834
commit fa0aa30386
20 changed files with 40 additions and 30 deletions

71
lib/mom/builtin.rb Normal file
View File

@ -0,0 +1,71 @@
module Mom
module Builtin
module CompileHelper
def compiler_for( clazz_name , method_name , arguments , locals = {})
frame = Parfait::NamedList.type_for( locals )
args = Parfait::NamedList.type_for( arguments )
Mom::MethodCompiler.compiler_for_class(clazz_name , method_name , args, frame )
end
end
end
end
require_relative "builtin/space"
require_relative "builtin/integer"
require_relative "builtin/object"
require_relative "builtin/word"
module Mom
module Builtin
# classes have booted, now create a minimal set of functions
# minimal means only that which can not be coded in ruby
# Methods are grabbed from respective modules by sending the method name.
# This should return the implementation of the method (ie a method object),
# not actually try to implement it(as that's impossible in ruby)
#
# When no main has been compiled, we will add an empty main (for testing)
#
def self.boot_functions(add_main = false)
# TODO go through the virtual parfait layer and adjust function names
# to what they really are
compilers = []
space = Parfait.object_space
space_type = space.get_class.instance_type
if(space_type.methods.nil?)
compilers << compiler_for( space_type , Space , :main)
end
obj_type = space.get_type_by_class_name(:Object)
[ :get_internal_word , :set_internal_word , :_method_missing,
:exit , :__init__ ].each do |f|
compilers << compiler_for( obj_type , Object , f)
end
word_type = space.get_type_by_class_name(:Word)
[:putstring , :get_internal_byte , :set_internal_byte ].each do |f|
compilers << compiler_for( word_type , Word , f)
end
int_type = space.get_type_by_class_name(:Integer)
Risc.operators.each do |op|
compilers << operator_compiler( int_type , op)
end
[ :div4, :<,:<= , :>=, :> , :div10 ].each do |f| #div4 is just a forward declaration
compilers << compiler_for( int_type , Integer , f)
end
compilers
end
def self.compiler_for( type , mod , name)
compiler = mod.send(name , nil)
compiler.add_method_to(type)
compiler
end
def self.operator_compiler(int_type , op)
compiler = Integer.operator_method(op)
compiler.add_method_to(int_type)
compiler
end
end
end

19
lib/mom/builtin/README.md Normal file
View File

@ -0,0 +1,19 @@
## Builtin module
The Builtin module contains functions that can not be coded in ruby.
It is the other side of the parfait coin, part of the runtime.
The functions are organised by their respective classes and get loaded in boot_classes! ,
right at the start. (see register/boot.rb)
These functions return their code, ie a Parfait::CallableMethod with a MethodSource object,
which can then be called by ruby code as if it were a "normal" function.
A normal ruby function is one that is parsed and transformed to code. But not all
functionality can be written in ruby, one of those chicken and egg things.
C uses Assembler in this situation, we use Builtin functions.
Slightly more here : http://ruby-x.org/2014/06/10/more-clarity.html (then still called Kernel)
The Builtin module is scattered into several files, but that is just so the file
doesn't get too long.

209
lib/mom/builtin/integer.rb Normal file
View File

@ -0,0 +1,209 @@
module Mom
module Builtin
# integer related kernel functions
# all these functions (return the function they implement) assume interger input
# Also the returned integer object has to be passed in to avoid having to allocate it.
#
# This means the methods will have to be renamed at some point and wrapped
module Integer
module ClassMethods
include CompileHelper
# div by 4, ie shift right by 2
# Mostly created for testing at this point, as it is short
# return new int with result
def div4(context)
compiler = compiler_for(:Integer,:div4 ,{})
compiler.add_code Div4.new("div4")
return compiler
end
class Div4 < ::Mom::Instruction
def to_risc(compiler)
builder = compiler.builder(compiler.source)
integer_tmp = builder.allocate_int
builder.build do
integer_self! << message[:receiver]
integer_self.reduce_int
integer_1! << 2
integer_self.op :>> , integer_1
integer_tmp[Parfait::Integer.integer_index] << integer_self
message[:return_value] << integer_tmp
end
return compiler
end
end
# implemented by the comparison
def >( context )
comparison( :> )
end
# implemented by the comparison
def <( context )
comparison( :< )
end
# implemented by the comparison
def <=( context )
comparison( :<= )
end
# implemented by the comparison
def >=( context )
comparison( :>= )
end
# all (four) comparison operation are quite similar and implemented here
# - reduce the ints (assume int as input)
# - subtract the fixnums
# - check for minus ( < and > )
# - also check for zero (<= and >=)
# - load true or false object into return, depending on check
# - return
def comparison( operator )
compiler = compiler_for(:Integer, operator ,{other: :Integer })
compiler.add_code Comparison.new("comparison" , operator)
return compiler
end
class Comparison < ::Mom::Instruction
attr_reader :operator
def initialize(name , operator)
super(name)
@operator = operator
end
def to_risc(compiler)
builder = compiler.builder(compiler.source)
operator = @operator # make accessible in block
builder.build do
integer! << message[:receiver]
integer.reduce_int
integer_reg! << message[:arguments]
integer_reg << integer_reg[Parfait::NamedList.type_length + 0] #"other" is at index 0
integer_reg.reduce_int
swap_names(:integer , :integer_reg) if(operator.to_s.start_with?('<') )
integer.op :- , integer_reg
if_minus false_label
if_zero( false_label ) if operator.to_s.length == 1
object! << Parfait.object_space.true_object
branch merge_label
add_code false_label
object << Parfait.object_space.false_object
add_code merge_label
message[:return_value] << object
end
return compiler
end
end
# implemented all known binary operators that map straight to machine codes
# this function (similar to comparison):
# - unpacks the intergers to fixnum
# - applies the operator (at a risc level)
# - gets a new integer and stores the result
# - returns the new int
def operator_method( op_sym )
compiler = compiler_for(:Integer, op_sym ,{other: :Integer })
compiler.add_code OperatorInstruction.new("operator" , op_sym)
return compiler
end
class OperatorInstruction < ::Mom::Instruction
attr_reader :operator
def initialize(name , operator)
super(name)
@operator = operator
end
def to_risc(compiler)
builder = compiler.builder(compiler.source)
integer_tmp = builder.allocate_int
operator = @operator # make accessible in block
builder.build do
integer! << message[:receiver]
integer.reduce_int
integer_reg! << message[:arguments]
integer_reg << integer_reg[Parfait::NamedList.type_length + 0] #"other" is at index 0
integer_reg.reduce_int
integer.op operator , integer_reg
integer_tmp[Parfait::Integer.integer_index] << integer
message[:return_value] << integer_tmp
end
return compiler
end
end
# as the name suggests, this devides the integer (self) by ten
#
# This version is lifted from some arm assembler tricks and is _much_
# faster than the general div versions. I think it was about three
# times less instructions. Useful for itos
#
# In fact it is possible to generate specific div function for any given
# integer and some are even more faster (as eg div4).
def div10( context )
compiler = compiler_for(:Integer,:div10 ,{})
compiler.add_code Div10.new("div10")
return compiler
end
class Div10 < ::Mom::Instruction
def to_risc(compiler)
s = "div_10 "
builder = compiler.builder(compiler.source)
integer_tmp = builder.allocate_int
builder.build do
integer_self! << message[:receiver]
integer_self.reduce_int
integer_1! << integer_self
integer_reg! << integer_self
integer_const! << 1
integer_1.op :>> , integer_const
integer_const << 2
integer_reg.op :>> , integer_const
integer_reg.op :+ , integer_1
integer_const << 4
integer_1 << integer_reg
integer_reg.op :>> , integer_1
integer_reg.op :+ , integer_1
integer_const << 8
integer_1 << integer_reg
integer_1.op :>> , integer_const
integer_reg.op :+ , integer_1
integer_const << 16
integer_1 << integer_reg
integer_1.op :>> , integer_const
integer_reg.op :+ , integer_1
integer_const << 3
integer_reg.op :>> , integer_const
integer_const << 10
integer_1 << integer_reg
integer_1.op :* , integer_const
integer_self.op :- , integer_1
integer_1 << integer_self
integer_const << 6
integer_1.op :+ , integer_const
integer_const << 4
integer_1.op :>> , integer_const
integer_reg.op :+ , integer_1
integer_tmp[Parfait::Integer.integer_index] << integer_reg
message[:return_value] << integer_tmp
end
return compiler
end
end
end
extend ClassMethods
end
end
end

178
lib/mom/builtin/object.rb Normal file
View File

@ -0,0 +1,178 @@
module Mom
module Builtin
class Object
module ClassMethods
include CompileHelper
# self[index] basically. Index is the first arg
# return is stored in return_value
def get_internal_word( context )
compiler = compiler_for(:Object , :get_internal_word ,{at: :Integer})
compiler.add_code GetInternalWord.new("get_internal_word")
return compiler
end
class GetInternalWord < ::Mom::Instruction
def to_risc(compiler)
compiler.builder(compiler.source).build do
object! << message[:receiver]
integer! << message[:arguments]
integer << integer[Parfait::NamedList.type_length + 0] #"at" is at index 0
integer.reduce_int
object << object[integer]
message[:return_value] << object
end
end
end
# self[index] = val basically. Index is the first arg , value the second
# return the value passed in
def set_internal_word( context )
compiler = compiler_for(:Object , :set_internal_word , {at: :Integer, value: :Object} )
compiler.add_code SetInternalWord.new("set_internal_word")
return compiler
end
class SetInternalWord < ::Mom::Instruction
def to_risc(compiler)
compiler.builder(compiler.source).build do
object! << message[:receiver]
integer! << message[:arguments]
object_reg! << integer[Parfait::NamedList.type_length + 1] #"value" is at index 1
integer << integer[Parfait::NamedList.type_length + 0] #"at" is at index 0
integer.reduce_int
object[integer] << object_reg
message[:return_value] << object_reg
end
return compiler
end
end
# every object needs a method missing.
# Even if it's just this one, sys_exit (later raise)
def _method_missing( context )
compiler = compiler_for(:Object,:method_missing ,{})
compiler.add_code MethodMissing.new("missing")
return compiler
end
class MethodMissing < ::Mom::Instruction
def to_risc(compiler)
builder = compiler.builder(compiler.source)
builder.prepare_int_return # makes integer_tmp variable as return
Builtin.emit_syscall( builder , :exit )
return compiler
end
end
# this is the really really first place the machine starts (apart from the jump here)
# it isn't really a function, ie it is jumped to (not called), exits and may not return
# so it is responsible for initial setup:
# - load fist message, set up Space as receiver
# - call main, ie set up message for that etc
# - exit (exit_sequence) which passes a machine int out to c
def __init__( context )
compiler = Mom::MethodCompiler.compiler_for_class(:Object,:__init__ ,
Parfait::NamedList.type_for({}) , Parfait::NamedList.type_for({}))
compiler.add_code MethodMissing.new("missing")
return compiler
end
class Init < ::Mom::Instruction
def to_risc(compiler)
builder = compiler.builder(compiler.source)
builder.build do
factory! << Parfait.object_space.get_factory_for(:Message)
message << factory[:next_object]
next_message! << message[:next_message]
factory[:next_object] << next_message
end
Mom::MessageSetup.new(Parfait.object_space.get_main).build_with( builder )
builder.build do
message << message[:next_message]
space? << Parfait.object_space
message[:receiver] << space
end
exit_label = Risc.label(compiler.source , "#{compiler.receiver_type.object_class.name}.#{compiler.source.name}" )
ret_tmp = compiler.use_reg(:Label).set_builder(builder)
builder.build do
ret_tmp << exit_label
message[:return_address] << ret_tmp
add_code Risc.function_call( "__init__ issue call" , Parfait.object_space.get_main)
add_code exit_label
end
compiler.reset_regs
exit_sequence(builder)
return compiler
end
end
# the exit function
# mainly calls exit_sequence
def exit( context )
compiler = compiler_for(:Object,:exit ,{})
compiler.add_code Exit.new("exit")
return compiler
end
class Exit < ::Mom::Instruction
def to_risc(compiler)
builder = compiler.builder(compiler.source)
builder.prepare_int_return # makes integer_tmp variable as return
Builtin.exit_sequence(builder)
return compiler
end
end
end
extend ClassMethods
end
# emit the syscall with given name
# there is a Syscall instruction, but the message has to be saved and restored
def self.emit_syscall( builder , name )
save_message( builder )
builder.add_code Risc::Syscall.new("emit_syscall(#{name})", name )
restore_message(builder)
return unless (@clazz and @method)
builder.add_code Risc.label( "#{@clazz.name}.#{@message.name}" , "return_syscall" )
end
# a sort of inline version of exit method.
# Used by exit and __init__ (so it doesn't have to call it)
# Assumes int return value and extracts the fixnum for process exit code
def self.exit_sequence(builder)
save_message( builder )
builder.build do
message << message[:return_value]
message.reduce_int
add_code Risc::Syscall.new("emit_syscall(exit)", :exit )
end
end
# save the current message, as the syscall destroys all context
#
# This relies on linux to save and restore all registers
#
def self.save_message(builder)
r8 = Risc::RegisterValue.new( :r8 , :Message).set_builder(builder)
builder.build {r8 << message}
end
# restore the message that we save in r8
# before th restore, the syscall return, a fixnum, is saved
# The caller of this method is assumed to caal prepare_int_return
# so that the return value already has an integer instance
# This instance is filled with os return value
def self.restore_message(builder)
r8 = Risc::RegisterValue.new( :r8 , :Message)
builder.build do
integer_reg! << message
message << r8
integer_2! << message[:return_value]
integer_2[Parfait::Integer.integer_index] << integer_reg
end
end
end
end

18
lib/mom/builtin/space.rb Normal file
View File

@ -0,0 +1,18 @@
module Mom
module Builtin
class Space
module ClassMethods
include CompileHelper
# main entry point, ie __init__ calls this
# defined here as empty, to be redefined
def main(context)
compiler = compiler_for(:Space , :main ,{args: :Integer})
return compiler
end
end
extend ClassMethods
end
end
end

82
lib/mom/builtin/word.rb Normal file
View File

@ -0,0 +1,82 @@
module Mom
module Builtin
module Word
module ClassMethods
include CompileHelper
# wrapper for the syscall
# io/file currently hardcoded to stdout
# set up registers for syscall, ie
# - pointer in r1
# - length in r2
# - emit_syscall (which does the return of an integer, see there)
def putstring( context)
compiler = compiler_for(:Word , :putstring ,{})
compiler.add_code Putstring.new("putstring")
return compiler
end
class Putstring < ::Mom::Instruction
def to_risc(compiler)
builder = compiler.builder(compiler.source)
builder.prepare_int_return # makes integer_tmp variable as return
builder.build do
word! << message[:receiver]
integer! << word[Parfait::Word.get_length_index]
end
Mom::Builtin.emit_syscall( builder , :putstring )
compiler
end
end
# self[index] basically. Index is the first arg > 0
# return a word sized new int, in return_value
#
# Note: no index (or type) checking. Method should be internal and check before.
# Which means the returned integer could be passed in, instead of allocated.
def get_internal_byte( context)
compiler = compiler_for(:Word , :get_internal_byte , {at: :Integer})
compiler.add_code GetInternalByte.new("get_internal_byte")
return compiler
end
class GetInternalByte < ::Mom::Instruction
def to_risc(compiler)
builder = compiler.builder(compiler.source)
integer_tmp = builder.allocate_int
builder.build do
object! << message[:receiver]
integer! << message[:arguments]
integer << integer[Parfait::NamedList.type_length + 0] #"at" is at index 0
integer.reduce_int
object <= object[integer]
integer_tmp[Parfait::Integer.integer_index] << object
message[:return_value] << integer_tmp
end
return compiler
end
end
# self[index] = val basically. Index is the first arg ( >0 , unchecked),
# value the second, which is also returned
def set_internal_byte( context )
compiler = compiler_for(:Word, :set_internal_byte , {at: :Integer , value: :Integer} )
compiler.add_code SetInternalByte.new("set_internal_byte")
return compiler
end
class SetInternalByte < ::Mom::Instruction
def to_risc(compiler)
compiler.builder(compiler.source).build do
word! << message[:receiver]
integer! << message[:arguments]
integer_reg! << integer[Parfait::NamedList.type_length + 1] #"value" is at index 1
message[:return_value] << integer_reg
integer << integer[Parfait::NamedList.type_length + 0] #"at" is at index 0
integer.reduce_int
integer_reg.reduce_int
word[integer] <= integer_reg
end
return compiler
end
end
end
extend ClassMethods
end
end
end

View File

@ -12,6 +12,10 @@
# Machine capabilities (instructions) for basic operations. Use of macros for higher level.
module Mom
# boot bubiltin function (subject to change)
def self.boot!
Builtin.boot_functions
end
end
require_relative "instruction.rb"
@ -19,3 +23,4 @@ require_relative "mom_collection"
require_relative "callable_compiler"
require_relative "method_compiler"
require_relative "block_compiler"
require_relative "builtin"