testing fibo

This commit is contained in:
Torsten Ruger 2015-11-06 14:24:57 +02:00
parent eae5cac4b5
commit ebcc15d314
5 changed files with 21 additions and 180 deletions

View File

@ -192,6 +192,7 @@ module Interpreter
else else
raise "unimplemented '#{@instruction.operator}' #{@instruction}" raise "unimplemented '#{@instruction.operator}' #{@instruction}"
end end
## result not over 2**62 => overflow
log.debug "#{@instruction} == #{result} (#{left}|#{right})" log.debug "#{@instruction} == #{result} (#{left}|#{right})"
right = set_register(@instruction.left , result) right = set_register(@instruction.left , result)
true true

View File

@ -1,36 +0,0 @@
module Register
class Constant < ::Register::Object
end
class TrueConstant < Constant
end
class FalseConstant < Constant
end
class NilConstant < Constant
end
# another abstract "marker" class (so we can check for it)
# derived classes are Boot/Meta Class and StringConstant
class ObjectConstant < Constant
# def type
# Soml::Reference
# end
def clazz
raise "abstract #{self}"
end
end
class IntegerConstant < Constant
def initialize int
@integer = int
end
attr_reader :integer
def type
:Integer
end
def fits_u8?
integer >= 0 and integer <= 255
end
end
end

View File

@ -5,8 +5,9 @@ def fibonaccit(n)
tmp = a tmp = a
a = b a = b
b = tmp + b b = tmp + b
puts b
end end
b
end end
fibonaccit( 10 ) #1000000.times {fibonaccit( 30 )}
puts fibonaccit 100

View File

@ -1,137 +0,0 @@
//===--- examples/Fibonacci/fibonacci.cpp - An example use of the JIT -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This small program provides an example of how to build quickly a small module
// with function Fibonacci and execute it with the JIT.
//
// The goal of this snippet is to create in the memory the LLVM module
// consisting of one function as follow:
//
// int fib(int x) {
// if(x<=2) return 1;
// return fib(x-1)+fib(x-2);
// }
//
// Once we have this, we compile the module via JIT, then execute the `fib'
// function and return result to a driver, i.e. to a "host program".
//
//===----------------------------------------------------------------------===//
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/ExecutionEngine/Interpreter.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetSelect.h"
using namespace llvm;
static Function *CreateFibFunction(Module *M, LLVMContext &Context) {
// Create the fib function and insert it into module M. This function is said
// to return an int and take an int parameter.
Function *FibF =
cast<Function>(M->getOrInsertFunction("fib", Type::getInt32Ty(Context),
Type::getInt32Ty(Context),
(Type *)0));
// Add a basic block to the function.
BasicBlock *BB = BasicBlock::Create(Context, "EntryBlock", FibF);
// Get pointers to the constants.
Value *One = ConstantInt::get(Type::getInt32Ty(Context), 1);
Value *Two = ConstantInt::get(Type::getInt32Ty(Context), 2);
// Get pointer to the integer argument of the add1 function...
Argument *ArgX = FibF->arg_begin(); // Get the arg.
ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
// Create the true_block.
BasicBlock *RetBB = BasicBlock::Create(Context, "return", FibF);
// Create an exit block.
BasicBlock* RecurseBB = BasicBlock::Create(Context, "recurse", FibF);
// Create the "if (arg <= 2) goto exitbb"
Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
// Create: ret int 1
ReturnInst::Create(Context, One, RetBB);
// create fib(x-1)
Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
CallInst *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
CallFibX1->setTailCall();
// create fib(x-2)
Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
CallInst *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
CallFibX2->setTailCall();
// fib(x-1)+fib(x-2)
Value *Sum = BinaryOperator::CreateAdd(CallFibX1, CallFibX2,
"addresult", RecurseBB);
// Create the return instruction and add it to the basic block
ReturnInst::Create(Context, Sum, RecurseBB);
return FibF;
}
int main(int argc, char **argv) {
int n = argc > 1 ? atol(argv[1]) : 24;
InitializeNativeTarget();
LLVMContext Context;
// Create some module to put our function into it.
OwningPtr<Module> M(new Module("test", Context));
// We are about to create the "fib" function:
Function *FibF = CreateFibFunction(M.get(), Context);
// Now we going to create JIT
std::string errStr;
ExecutionEngine *EE =
EngineBuilder(M.get())
.setErrorStr(&errStr)
.setEngineKind(EngineKind::JIT)
.create();
if (!EE) {
errs() << argv[0] << ": Failed to construct ExecutionEngine: " << errStr
<< "\n";
return 1;
}
errs() << "verifying... ";
if (verifyModule(*M)) {
errs() << argv[0] << ": Error constructing function!\n";
return 1;
}
errs() << "OK\n";
errs() << "We just constructed this LLVM module:\n\n---------\n" << *M;
errs() << "---------\nstarting fibonacci(" << n << ") with JIT...\n";
// Call the Fibonacci function with argument n:
std::vector<GenericValue> Args(1);
Args[0].IntVal = APInt(32, n);
GenericValue GV = EE->runFunction(FibF, Args);
// import result of execution
outs() << "Result: " << GV.IntVal << "\n";
return 0;
}

View File

@ -3,7 +3,7 @@ require_relative 'helper'
class TestWhileFragment < MiniTest::Test class TestWhileFragment < MiniTest::Test
include Fragments include Fragments
def test_while_fibo def fibo num
@string_input = <<HERE @string_input = <<HERE
class Object class Object
int fibonaccit(int n) int fibonaccit(int n)
@ -21,12 +21,24 @@ class Object
end end
int main() int main()
return fibonaccit( 10 ) return fibonaccit( 100 )
end end
end end
HERE HERE
@length = 278 @string_input.sub!( "100" , num.to_s )
check_return 55 end
def test_while_fibo
fibo 100
@length = 2348
#TODO bug, int max is 92 ruby converts to biginteger.
check_return 354224848179261915075
end
def test_while_fibo
fibo 92
@length = 2164
check_return 7540113804746346429
end end
end end