rubyx/lib/typed/compiler.rb

189 lines
7.0 KiB
Ruby
Raw Normal View History

require_relative "tree"
module Typed
2016-12-09 13:20:48 +02:00
CompilerModules = [ "assignment" , "basic_values" , "call_site", "class_field" ,
2016-12-09 14:29:06 +02:00
"class_statement" , "collections" , "field_def" , "field_access",
"function_statement" , "if_statement" , "name_expression" ,
"operator_expression" , "return_statement", "statement_list",
"while_statement"]
2016-12-09 13:20:48 +02:00
CompilerModules.each do |mod|
require_relative "compiler/" + mod
end
# Compiling is the conversion of the AST into 2 things:
# - code (ie sequences of Instructions inside Methods)
# - an object graph containing all the Methods, their classes and Constants
#
# Some compile methods just add code, some may add Instructions while
2016-12-12 23:38:55 +02:00
# others instantiate Class and TypedMethod objects
#
# Everything in ruby is an statement, ie returns a value. So the effect of every compile
# is that a value is put into the ReturnSlot of the current Message.
# The compile method (so every compile method) returns the value that it deposits.
#
# The process uses a visitor pattern (from AST::Processor) to dispatch according to the
# type the statement. So a s(:if xx) will become an on_if(node) call.
# This makes the dispatch extensible, ie Expressions may be added by external code,
# as long as matching compile methods are supplied too.
#
# A compiler can also be used to generate code for a method without AST nodes. In the same way
# compile methods do, ie adding Instructions etc. In this way code may be generated that
# has no code equivalent.
#
# The Compiler also keeps a list of used registers, from which one may take to use and return to
# when done. The list may be reset.
#
# The Compiler also carries method and class instance variables. The method is where code is
# added to (with add_code). To be more precise, the @current instruction is where code is added
# to, and that may be changed with set_current
# All Statements reset the registers and return nil.
# Expressions use registers and return the register where their value is stored.
# Helper function to create a new compiler and compie the statement(s)
def self.compile statement
compiler = Compiler.new
2016-12-08 20:13:08 +02:00
code = Typed.ast_to_code statement
compiler.process code
end
class Compiler
2016-12-09 13:20:48 +02:00
CompilerModules.each do |mod|
include Typed.const_get( mod.camelize )
end
def initialize( method = nil )
2015-10-10 11:05:55 +03:00
@regs = []
return unless method
@method = method
2016-12-14 13:24:42 +02:00
@type = method.for_type
@current = method.instructions
end
2016-12-14 13:24:42 +02:00
attr_reader :type , :method
# Dispatches `code` according to it's class name, for class NameExpression
# a method named `on_NameExpression` is invoked with one argument, the `code`
#
2016-12-08 20:13:08 +02:00
# @param [Typed::Code, nil] code
def process(code)
name = code.class.name.split("::").last
# Invoke a specific handler
on_handler = :"on_#{name}"
if respond_to? on_handler
return send on_handler, code
else
raise "No handler on_#{name}(code) #{code.inspect}"
end
end
# {#process}es each code from `codes` and returns an array of
# results.
#
def process_all(codes)
codes.to_a.map do |code|
process code
end
end
# create the method, do some checks and set it as the current method to be added to
# class_name and method_name are pretty clear, args are given as a ruby array
def create_method( class_name , method_name , args = {})
raise "create_method #{class_name}.#{class_name.class}" unless class_name.is_a? Symbol
clazz = Register.machine.space.get_class_by_name class_name
raise "No such class #{class_name}" unless clazz
2016-12-14 13:24:42 +02:00
create_method_for( clazz.instance_type , method_name , args)
end
2016-12-14 13:24:42 +02:00
# create a method for the given type ( Parfait type object)
# method_name is a Symbol
2016-12-14 13:24:42 +02:00
# args a hash that will be converted to a type
# the created method is set as the current and the given type too
# return the compiler (for chaining)
2016-12-14 13:24:42 +02:00
def create_method_for( type , method_name , args )
@type = type
raise "create_method #{type.inspect} is not a Type" unless type.is_a? Parfait::Type
raise "Args must be Hash #{args}" unless args.is_a?(Hash)
raise "create_method #{method_name}.#{method_name.class}" unless method_name.is_a? Symbol
2016-12-14 13:24:42 +02:00
arguments = Parfait::Type.new_for_hash( type.object_class , args )
@method = type.create_instance_method( method_name , arguments)
self
end
# add method entry and exit code. Mainly save_return for the enter and
# message shuffle and FunctionReturn for the return
# return self for chaining
def init_method
2015-11-01 19:13:40 +02:00
source = "_init_method"
2016-12-14 13:24:42 +02:00
name = "#{method.for_type.name}.#{method.name}"
2015-11-14 22:53:01 +02:00
@method.instructions = Register::Label.new(source, name)
2015-11-02 20:11:12 +02:00
@current = enter = method.instructions
2015-11-14 22:53:01 +02:00
add_code Register::Label.new( source, "return #{name}")
#load the return address into pc, affecting return. (other cpus have commands for this, but not arm)
add_code Register::FunctionReturn.new( source , Register.message_reg , Register.resolve_index(:message , :return_address) )
@current = enter
self
end
# set the insertion point (where code is added with add_code)
def set_current c
@current = c
end
# add an instruction after the current (insertion point)
# the added instruction will become the new insertion point
def add_code instruction
unless instruction.is_a?(Register::Instruction)
raise instruction.to_s
end
if( instruction.class.name.split("::").first == "Arm")
raise instruction.to_s
end
@current.insert(instruction) #insert after current
@current = instruction
self
end
2015-10-10 11:05:55 +03:00
# require a (temporary) register. code must give this back with release_reg
def use_reg type , value = nil
2016-12-14 13:24:42 +02:00
raise "Not type #{type.inspect}" unless type.is_a?(Symbol) or type.is_a?(Parfait::Type)
2015-10-10 11:05:55 +03:00
if @regs.empty?
reg = Register.tmp_reg(type , value)
2015-10-10 11:05:55 +03:00
else
reg = @regs.last.next_reg_use(type , value)
2015-10-10 11:05:55 +03:00
end
@regs << reg
return reg
end
def copy reg , source
copied = use_reg reg.type
add_code Reister.transfer source , reg , copied
copied
end
# releasing a register (accuired by use_reg) makes it available for use again
# thus avoiding possibly using too many registers
2015-10-10 11:05:55 +03:00
def release_reg reg
last = @regs.pop
raise "released register in wrong order, expect #{last} but was #{reg}" if reg != last
end
# reset the registers to be used. Start at r4 for next usage.
# Every statement starts with this, meaning each statement may use all registers, but none
# get saved. Statements have affect on objects.
def reset_regs
@regs.clear
end
# ensure the name given is not space and raise exception otherwise
# return the name for chaining
def no_space name
raise "space is a reserved name" if name == :space
name
end
end
end