rubyx/lib/arm/translator.rb

165 lines
4.8 KiB
Ruby
Raw Normal View History

module Arm
class Translator
# translator should translate from register instructio set to it's own (arm eg)
# for each instruction we call the translator with translate_XXX
# with XXX being the class name.
# the result is replaced in the stream
def translate instruction
class_name = instruction.class.name.split("::").last
self.send( "translate_#{class_name}".to_sym , instruction)
end
# don't replace labels
def translate_Label code
nil
end
# arm indexes are
# in bytes, so *4
# if an instruction is passed in we get the index with index function
def arm_index index
index = index.index if index.is_a?(Register::Instruction)
raise "index error 0" if index == 0
index * 4
end
# Arm stores the return address in a register (not on the stack)
# The register is called link , or lr for short .
# Maybe because it provides the "link" back to the caller
# the vm defines a register for the location, so we store it there.
def translate_SaveReturn code
ArmMachine.str( :lr , code.register , arm_index(code) )
end
def translate_RegisterTransfer code
# Register machine convention is from => to
# But arm has the receiver/result as the first
ArmMachine.mov( code.to , code.from)
end
def translate_SlotToReg( code )
2016-12-15 17:21:08 +01:00
ArmMachine.ldr( *slot_args_for(code) )
end
def translate_RegToSlot( code )
2016-12-15 17:21:08 +01:00
ArmMachine.str( *slot_args_for(code) )
end
def slot_args_for( code )
if(code.index.is_a? Numeric)
2016-12-15 17:21:08 +01:00
[ code.register , code.array , arm_index(code) ]
else
2016-12-15 17:21:08 +01:00
[ code.register , code.array , code.index , :shift_lsl => 2]
end
end
2016-12-15 17:21:08 +01:00
def byte_args_for( code )
args = slot_args_for( code )
args.pop if(code.index.is_a? Numeric)
args
end
2016-12-25 17:11:58 +01:00
def translate_ByteToReg code
2016-12-15 17:21:08 +01:00
ArmMachine.ldrb( *byte_args_for(code) )
end
2016-12-25 17:11:58 +01:00
def translate_RegToByte code
2016-12-15 17:21:08 +01:00
ArmMachine.strb( *byte_args_for(code) )
end
def translate_FunctionCall code
ArmMachine.b( code.method.instructions )
end
def translate_FunctionReturn code
ArmMachine.ldr( :pc , code.register , arm_index(code) )
end
def translate_LoadConstant code
constant = code.constant
2015-11-03 15:20:25 +01:00
if constant.is_a?(Parfait::Object) or constant.is_a?(Symbol) or constant.is_a?(Register::Label)
return ArmMachine.add( code.register , constant )
else
2015-11-03 15:20:25 +01:00
return ArmMachine.mov( code.register , constant )
end
end
def translate_OperatorInstruction code
left = code.left
right = code.right
case code.operator.to_s
when "+"
c = ArmMachine.add(left , left , right)
when "-"
c = ArmMachine.sub(left , left , right)
when "&"
c = ArmMachine.and(left , left , right)
when "|"
c = ArmMachine.orr(left , left , right)
when "*"
c = ArmMachine.mul(left , right , left) #arm rule about left not being result, lukily commutative
when ">>"
c = ArmMachine.mov(left , left , :shift_asr => right) #arm rule about left not being result, lukily commutative
when "<<"
c = ArmMachine.mov(left , left , :shift_lsl => right) #arm rule about left not being result, lukily commutative
else
raise "unimplemented '#{code.operator}' #{code}"
end
c
end
# This implements branch logic, which is simply assembler branch
#
# The only target for a call is a Block, so we just need to get the address for the code
# and branch to it.
def translate_Branch code
ArmMachine.b( code.label )
end
def translate_IsPlus code
ArmMachine.bpl( code.label)
end
def translate_IsMinus code
ArmMachine.bmi( code.label)
end
def translate_IsZero code
ArmMachine.beq( code.label)
end
def translate_IsOverflow code
ArmMachine.bvs( code.label)
end
def translate_Syscall code
call_codes = { :putstring => 4 , :exit => 1 }
int_code = call_codes[code.name]
raise "Not implemented syscall, #{code.name}" unless int_code
send( code.name , int_code )
end
def putstring int_code
codes = ArmMachine.add( :r1 , :r1 , 12 ) # adjust for object header
2015-11-15 10:28:16 +01:00
codes.append ArmMachine.mov( :r0 , 1 ) # write to stdout == 1
syscall(int_code , codes )
end
def exit int_code
2016-12-28 17:16:39 +01:00
codes = ArmMachine.ldr( :r0 , :r0 , arm_index(Register.resolve_to_index(:Message , :return_value)) )
syscall int_code , codes
end
private
# syscall is always triggered by swi(0)
# The actual code (ie the index of the kernel function) is in r7
def syscall int_code , codes
codes.append ArmMachine.mov( :r7 , int_code )
codes.append ArmMachine.swi( 0 )
codes
end
end
end