dwm/patch/flextile.c

520 lines
16 KiB
C
Raw Normal View History

2019-09-09 22:25:19 +02:00
/*
* Set predefined flextile layout.
*
* The arg int value is a binary representation of the setup where certain bits have different
* meanings, similar to how Linux permissions work.
*
* The first two bits represents the stack axis, bits 3 and 4 the master axis. Bits 5 and 6
* are used to control the layout while bit 7 indicates whether or not the layout is mirrored.
* The 8th bit is reserved while bit 9 through 12 control nmaster with up to 15 clients in the
* master stack.
*
* Bitwise layout:
*
* 0000 (nmaster: 0-15 = clients in master stack)
* 0 (reserved)
* 0 (orientation: 0 = normal, 1 = mirror)
* 00 (layout: 00 = vertical, 01 = horizontal, 10 = centered (vert), 11 = centered (horz))
* 00 (master axis: 00 = left to right, 01 = top to bottom, 10 = monocle, 11 = grid)
* 00 (stack axis: 00 = left to right, 01 = top to bottom, 10 = monocle, 11 = grid)
*
* Examples:
* binary int layout
* --------------------------
* 000000000110 6 monocle
* 000100000110 262 deck layout
* 000100010000 272 bstack layout
* 000100010001 273 bstackhoriz layout
* 000000000111 7 grid layout
* 000100000101 261 default tile layout
* 000100100101 293 centered master
* 000100000111 263 default tile layout with grid stack
* 000100000001 257 columns (col) layout
2019-09-09 22:25:19 +02:00
*/
void
setflexlayout(const Arg *arg)
{
int i;
/* Find flextile layout */
for (i = 0; i < LENGTH(layouts); i++)
if (layouts[i].arrange == flextile)
break;
selmon->nmaster = ((arg->i & 0x0F00) >> 8);
selmon->ltaxis[0] = (1 + ((arg->i & 0x30) >> 4)) * (arg->i & 0x40 ? -1 : 1);
selmon->ltaxis[1] = 1 + ((arg->i & 0xC) >> 2);
selmon->ltaxis[2] = 1 + (arg->i & 0x3);
#if PERTAG_PATCH
selmon->pertag->nmasters[selmon->pertag->curtag] = selmon->nmaster;
selmon->pertag->ltaxes[selmon->pertag->curtag][0] = selmon->ltaxis[0];
selmon->pertag->ltaxes[selmon->pertag->curtag][1] = selmon->ltaxis[1];
selmon->pertag->ltaxes[selmon->pertag->curtag][2] = selmon->ltaxis[2];
#endif
setlayout(&((Arg) { .v = &layouts[i] }));
}
#if VANITYGAPS_PATCH
static void
flextile(Monitor *m)
{
unsigned int i, n, nc = 0, sc = 0, lt, cn = 0, rn = 0, cc = 0; // counters
int cols = 1, rows = 1;
int x, y, h, w; // master x, y, height, width
int sx, sy, sh, sw; // stack x, y, height, width
int ox, oy; // other stack x, y (centered layout)
int oh, ov, ih, iv; // gaps outer/inner horizontal/vertical
float facts, sfacts, ofacts;
Client *c;
getgaps(m, &oh, &ov, &ih, &iv, &n);
setflexsymbols(m, n);
if (n == 0)
return;
/* No outer gap if full screen monocle */
if ((!m->nmaster && m->ltaxis[STACK] == MONOCLE) || (n <= m->nmaster && m->ltaxis[MASTER] == MONOCLE)) {
ox = sx = x = m->wx;
oy = sy = y = m->wy;
sh = h = m->wh;
sw = w = m->ww;
} else {
ox = sx = x = m->wx + ov;
oy = sy = y = m->wy + oh;
sh = h = m->wh - 2*oh;
sw = w = m->ww - 2*ov;
}
sc = n - m->nmaster;
#if CFACTS_PATCH
getfacts(m, &facts, &sfacts);
ofacts = sfacts;
#else
facts = MIN(n, m->nmaster);
ofacts = sfacts = sc;
#endif // CFACTS_PATCH
/* Split master into master + stack if we have enough clients */
if (m->nmaster && n > m->nmaster) {
if (abs(m->ltaxis[LAYOUT]) == SPLIT_VERTICAL
|| (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V && n == m->nmaster + 1)) {
sw = (w - iv) * (1 - m->mfact);
w = (w - iv) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) // mirror
x = sx + sw + iv;
else
sx = x + w + iv;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_HORIZONTAL
|| (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H && n == m->nmaster + 1)) {
sh = (h - ih) * (1 - m->mfact);
h = (h - ih) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) // mirror
y = sy + sh + ih;
else
sy = y + h + ih;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V) {
sw = (w - 2*iv) * (1 - m->mfact) / 2;
w = (w - 2*iv) * m->mfact;
x = sx + sw + iv;
if (m->ltaxis[LAYOUT] < 0) // mirror
ox = x + w + iv;
else
sx = x + w + iv;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H) {
sh = (h - 2*ih) * (1 - m->mfact) / 2;
h = (h - 2*ih) * m->mfact;
y = sy + sh + ih;
if (m->ltaxis[LAYOUT] < 0) // mirror
oy = y + h + ih;
else
sy = y + h + ih;
}
if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V || abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H) {
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
facts = sfacts = ofacts = 0;
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
#if CFACTS_PATCH
if (i < m->nmaster)
facts += c->cfact; // total factor of master area
else if (sc && i < m->nmaster + sc)
sfacts += c->cfact; // total factor of first stack area
else
ofacts += c->cfact; // total factor of second stack area
#else
if (i < m->nmaster)
facts += 1;
else if (sc && i < m->nmaster + sc)
sfacts += 1;
else
ofacts += 1;
#endif // CFACTS_PATCH
}
}
}
for (i = 0, lt = MASTER, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i == 0 || (m->nmaster && i == m->nmaster) || i == (m->nmaster + sc)) {
nc = MIN(n, m->nmaster);
if (!m->nmaster || i == m->nmaster) { // switch to stack area
x = sx, y = sy, h = sh, w = sw, facts = sfacts, lt = STACK;
nc = sc;
} else if (i > 0 && i == (m->nmaster + sc)) { // switch to second stack area
x = ox, y = oy, h = sh, w = sw, nc = n - i, facts = ofacts;
}
if (m->ltaxis[lt] == LEFT_TO_RIGHT)
w -= iv * (nc - 1);
else if (m->ltaxis[lt] == TOP_TO_BOTTOM)
h -= ih * (nc - 1);
else if (m->ltaxis[lt] == GRID) {
/* grid dimensions */
for (cols = 1; cols <= nc/2; cols++)
if (cols*cols >= nc)
break;
if (nc == 5) /* set layout against the general calculation: not 1:2:2, but 2:3 */
cols = 2;
rows = nc/cols;
cn = rn = cc = 0; // reset cell no, row no, client count
}
}
if (m->ltaxis[lt] == LEFT_TO_RIGHT) {
#if CFACTS_PATCH
resize(c, x, y, w * (c->cfact / facts) - (2*c->bw), h - (2*c->bw), 0);
#else
resize(c, x, y, w / facts - (2*c->bw), h - (2*c->bw), 0);
#endif // CFACTS_PATCH
x = x + WIDTH(c) + iv;
} else if (m->ltaxis[lt] == TOP_TO_BOTTOM) {
#if CFACTS_PATCH
resize(c, x, y, w - (2*c->bw), h * (c->cfact / facts) - (2*c->bw), 0);
#else
resize(c, x, y, w - (2*c->bw), h / facts - (2*c->bw), 0);
#endif // CFACTS_PATCH
y = y + HEIGHT(c) + ih;
} else if (m->ltaxis[lt] == MONOCLE) {
resize(c, x, y, w - (2*c->bw), h - (2*c->bw), 0);
} else if (m->ltaxis[lt] == GRID) {
if (cc/rows + 1 > cols - nc%cols)
rows = nc/cols + 1;
resize(c,
x + cn*((w - iv*(cols - 1)) / cols + iv),
y + rn*((h - ih*(rows - 1)) / rows + ih),
(w - iv*(cols - 1)) / cols,
(h - ih*(rows - 1)) / rows,
0);
rn++;
cc++;
if (rn >= rows) {
rn = 0;
cn++;
}
}
}
}
#else
static void
flextile(Monitor *m)
{
unsigned int i, n, nc = 0, sc = 0, lt, cn = 0, rn = 0, cc = 0; // counters
int cols = 1, rows = 1;
int x, y, h, w; // master x, y, height, width
int sx, sy, sh, sw; // stack x, y, height, width
int ox, oy; // other stack x, y (centered layout)
float facts, sfacts, ofacts;
Client *c;
for (n = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), n++);
setflexsymbols(m, n);
if (n == 0)
return;
ox = sx = x = m->wx;
oy = sy = y = m->wy;
sh = h = m->wh;
sw = w = m->ww;
sc = n - m->nmaster;
#if CFACTS_PATCH
getfacts(m, &facts, &sfacts);
ofacts = sfacts;
#else
facts = MIN(n, m->nmaster);
ofacts = sfacts = sc;
#endif // CFACTS_PATCH
/* Split master into master + stack if we have enough clients */
if (m->nmaster && n > m->nmaster) {
if (abs(m->ltaxis[LAYOUT]) == SPLIT_VERTICAL
|| (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V && n == m->nmaster + 1)) {
sw = w * (1 - m->mfact);
w = w * m->mfact;
if (m->ltaxis[LAYOUT] < 0) // mirror
x = sx + sw;
else
sx = x + w;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_HORIZONTAL
|| (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H && n == m->nmaster + 1)) {
sh = h * (1 - m->mfact);
h = h * m->mfact;
if (m->ltaxis[LAYOUT] < 0) // mirror
y = sy + sh;
else
sy = y + h;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V) {
sw = w * (1 - m->mfact) / 2;
w = w * m->mfact;
x = sx + sw;
if (m->ltaxis[LAYOUT] < 0) // mirror
ox = x + w;
else
sx = x + w;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H) {
sh = h * (1 - m->mfact) / 2;
h = h * m->mfact;
y = sy + sh;
if (m->ltaxis[LAYOUT] < 0) // mirror
oy = y + h;
else
sy = y + h;
}
if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V || abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H) {
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
facts = sfacts = ofacts = 0;
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
#if CFACTS_PATCH
if (i < m->nmaster)
facts += c->cfact; // total factor of master area
else if (sc && i < m->nmaster + sc)
sfacts += c->cfact; // total factor of first stack area
else
ofacts += c->cfact; // total factor of second stack area
#else
if (i < m->nmaster)
facts += 1;
else if (sc && i < m->nmaster + sc)
sfacts += 1;
else
ofacts += 1;
#endif // CFACTS_PATCH
}
}
}
for (i = 0, lt = MASTER, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i == 0 || (m->nmaster && i == m->nmaster) || i == (m->nmaster + sc)) {
nc = MIN(n, m->nmaster);
if (!m->nmaster || i == m->nmaster) { // switch to stack area
x = sx, y = sy, h = sh, w = sw, facts = sfacts, lt = STACK;
nc = sc;
} else if (i > 0 && i == (m->nmaster + sc)) { // switch to second stack area
x = ox, y = oy, h = sh, w = sw, nc = n - i, facts = ofacts;
}
if (m->ltaxis[lt] == GRID) {
/* grid dimensions */
for (cols = 1; cols <= nc/2; cols++)
if (cols*cols >= nc)
break;
if (nc == 5) /* set layout against the general calculation: not 1:2:2, but 2:3 */
cols = 2;
rows = nc/cols;
cn = rn = cc = 0; // reset cell no, row no, client count
}
}
if (m->ltaxis[lt] == LEFT_TO_RIGHT) {
#if CFACTS_PATCH
resize(c, x, y, w * (c->cfact / facts) - (2*c->bw), h - (2*c->bw), 0);
#else
resize(c, x, y, w / facts - (2*c->bw), h - (2*c->bw), 0);
#endif // CFACTS_PATCH
x = x + WIDTH(c);
} else if (m->ltaxis[lt] == TOP_TO_BOTTOM) {
#if CFACTS_PATCH
resize(c, x, y, w - (2*c->bw), h * (c->cfact / facts) - (2*c->bw), 0);
#else
resize(c, x, y, w - (2*c->bw), h / facts - (2*c->bw), 0);
#endif // CFACTS_PATCH
y = y + HEIGHT(c);
} else if (m->ltaxis[lt] == MONOCLE) {
resize(c, x, y, w - (2*c->bw), h - (2*c->bw), 0);
} else if (m->ltaxis[lt] == GRID) {
if (cc/rows + 1 > cols - nc%cols)
rows = nc/cols + 1;
resize(c,
x + cn * (w / cols),
y + rn * (h / rows),
w / cols,
h / rows,
0);
rn++;
cc++;
if (rn >= rows) {
rn = 0;
cn++;
}
}
}
}
#endif
static void
setflexsymbols(Monitor *m, unsigned int n)
{
char sym1 = 61, sym2 = 93, sym3 = 61, sym = 0;
/* Predefined layouts */
/* bstack */
if (abs(m->ltaxis[LAYOUT]) == SPLIT_HORIZONTAL && m->ltaxis[MASTER] == LEFT_TO_RIGHT && m->ltaxis[STACK] == LEFT_TO_RIGHT) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, (m->ltaxis[LAYOUT] < 0 ? "⚍⚍⚍" : "⚎⚎⚎"));
return;
}
/* bstackhoriz */
if (abs(m->ltaxis[LAYOUT]) == SPLIT_HORIZONTAL && m->ltaxis[MASTER] == LEFT_TO_RIGHT && m->ltaxis[STACK] == TOP_TO_BOTTOM) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, (m->ltaxis[LAYOUT] < 0 ? "☳☳☳" : "☶☶☶"));
return;
}
/* centered master horizontal split */
if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H && m->ltaxis[MASTER] == TOP_TO_BOTTOM && m->ltaxis[STACK] == TOP_TO_BOTTOM) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "☰☰☰");
return;
}
if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H && m->ltaxis[MASTER] == LEFT_TO_RIGHT && m->ltaxis[STACK] == LEFT_TO_RIGHT) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "☵☵☵");
return;
}
/* monocle */
if (n <= 1 && ((!m->nmaster && m->ltaxis[STACK] == MONOCLE) || (n <= m->nmaster && m->ltaxis[MASTER] == MONOCLE))) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[M]");
return;
}
/* Layout symbols */
if (abs(m->ltaxis[LAYOUT]) == SPLIT_VERTICAL) {
if (m->nmaster > 1 || m->ltaxis[MASTER] == MONOCLE)
sym2 = 124; // |
else if (m->ltaxis[LAYOUT] < 0)
sym2 = 91; // [
else
sym2 = 93; // ]
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_HORIZONTAL) {
if (m->nmaster > 1 || m->ltaxis[MASTER] == MONOCLE)
sym2 = 58; // :
else if (m->ltaxis[LAYOUT] < 0)
sym2 = 91; // [
else
sym2 = 93; // ]
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V) {
if (m->ltaxis[LAYOUT] < 0)
sym2 = 87; // W
else
sym2 = 77; // M
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H) {
if (m->ltaxis[LAYOUT] < 0)
sym2 = 87; // W
else
sym2 = 77; // M
}
if (m->ltaxis[MASTER] == LEFT_TO_RIGHT)
sym1 = 124; // | ⏸
else if (m->ltaxis[MASTER] == TOP_TO_BOTTOM)
sym1 = 61; // =
else if (m->ltaxis[MASTER] == MONOCLE)
sym1 = MIN(n, m->nmaster);
else if (m->ltaxis[MASTER] == GRID)
sym1 = 35; // #
if (m->ltaxis[STACK] == LEFT_TO_RIGHT)
sym3 = 124; // |
else if (m->ltaxis[STACK] == TOP_TO_BOTTOM)
sym3 = 61; // =
else if (m->ltaxis[STACK] == MONOCLE)
sym3 = n - m->nmaster;
else if (m->ltaxis[STACK] == GRID)
sym3 = 35; // #
/* Generic symbols */
if (!m->nmaster) {
if (m->ltaxis[STACK] == MONOCLE) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%d%c", 91, sym3, 93);
} else {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%c", sym3, sym3, sym3);
}
return;
}
if (n <= m->nmaster) {
if (m->ltaxis[MASTER] == MONOCLE) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%d%c", 91, sym1, 93);
} else {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%c", 91, sym1, 93);
}
} else {
if (m->ltaxis[LAYOUT] < 0) {
sym = sym1;
sym1 = sym3;
sym3 = sym;
}
if (m->nmaster == 1 && abs(m->ltaxis[LAYOUT]) <= SPLIT_HORIZONTAL && m->ltaxis[MASTER] != MONOCLE) {
if (m->ltaxis[LAYOUT] > 0)
sym1 = 91;
else
sym3 = 93;
}
if (m->ltaxis[MASTER] == MONOCLE && m->ltaxis[STACK] == MONOCLE)
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%d%c%d", sym1, sym2, sym3);
else if ((m->nmaster && m->ltaxis[MASTER] == MONOCLE && m->ltaxis[LAYOUT] > 0) || (m->ltaxis[STACK] == MONOCLE && m->ltaxis[LAYOUT] < 0))
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%d%c%c", sym1, sym2, sym3);
else if ((m->ltaxis[STACK] == MONOCLE && m->ltaxis[LAYOUT] > 0) || (m->nmaster && m->ltaxis[MASTER] == MONOCLE && m->ltaxis[LAYOUT] < 0))
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%d", sym1, sym2, n - m->nmaster);
else
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%c", sym1, sym2, sym3);
}
}
/* Mirror layout axis for flextile */
void
mirrorlayout(const Arg *arg)
{
if (!selmon->lt[selmon->sellt]->arrange)
return;
selmon->ltaxis[0] *= -1;
#if PERTAG_PATCH
selmon->pertag->ltaxes[selmon->pertag->curtag][0] = selmon->ltaxis[0];
#endif // PERTAG_PATCH
arrange(selmon);
}
/* Rotate layout axis for flextile */
void
rotatelayoutaxis(const Arg *arg)
{
if (!selmon->lt[selmon->sellt]->arrange)
return;
if (arg->i == 0) {
if (selmon->ltaxis[0] > 0)
selmon->ltaxis[0] = selmon->ltaxis[0] + 1 > 4 ? 1 : selmon->ltaxis[0] + 1;
else
selmon->ltaxis[0] = selmon->ltaxis[0] - 1 < -4 ? -1 : selmon->ltaxis[0] - 1;
} else
selmon->ltaxis[arg->i] = selmon->ltaxis[arg->i] + 1 > 4 ? 1 : selmon->ltaxis[arg->i] + 1;
#if PERTAG_PATCH
selmon->pertag->ltaxes[selmon->pertag->curtag][arg->i] = selmon->ltaxis[arg->i];
#endif // PERTAG_PATCH
arrange(selmon);
}