tet123/debezium-connector-mongodb/pom.xml

382 lines
16 KiB
XML
Raw Normal View History

DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
<?xml version="1.0"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
<parent>
<groupId>io.debezium</groupId>
<artifactId>debezium-parent</artifactId>
<version>2.6.0.Final</version>
<relativePath>../debezium-parent/pom.xml</relativePath>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>debezium-connector-mongodb</artifactId>
<name>Debezium Connector for MongoDB</name>
<packaging>jar</packaging>
<dependencies>
<dependency>
<groupId>io.debezium</groupId>
<artifactId>debezium-core</artifactId>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>connect-api</artifactId>
<scope>provided</scope>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>connect-transforms</artifactId>
<scope>provided</scope>
</dependency>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<scope>provided</scope>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</dependency>
<dependency>
<groupId>org.mongodb</groupId>
2020-11-25 10:44:44 +01:00
<artifactId>mongodb-driver-sync</artifactId>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</dependency>
<!-- Testing -->
<dependency>
<groupId>io.debezium</groupId>
<artifactId>debezium-core</artifactId>
<type>test-jar</type>
<scope>test</scope>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</dependency>
<dependency>
<groupId>io.debezium</groupId>
<artifactId>debezium-embedded</artifactId>
<type>test-jar</type>
<scope>test</scope>
</dependency>
<dependency>
<groupId>io.debezium</groupId>
<artifactId>debezium-embedded</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>io.debezium</groupId>
<artifactId>debezium-testing-testcontainers</artifactId>
<scope>test</scope>
<exclusions>
<exclusion>
<groupId>org.junit.platform</groupId>
<artifactId>junit-platform-launcher</artifactId>
</exclusion>
<exclusion>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter</artifactId>
</exclusion>
</exclusions>
</dependency>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
<dependency>
2022-01-11 09:09:09 +01:00
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<scope>test</scope>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<scope>test</scope>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</dependency>
<dependency>
<groupId>org.assertj</groupId>
<artifactId>assertj-core</artifactId>
<scope>test</scope>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</dependency>
<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-core</artifactId>
<scope>test</scope>
</dependency>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
<dependency>
<groupId>io.confluent</groupId>
<artifactId>kafka-connect-avro-converter</artifactId>
<scope>test</scope>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</dependency>
<dependency>
<groupId>io.apicurio</groupId>
<artifactId>apicurio-registry-utils-converter</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.awaitility</groupId>
<artifactId>awaitility</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>io.rest-assured</groupId>
<artifactId>rest-assured</artifactId>
<scope>test</scope>
</dependency>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</dependencies>
<properties>
<!--
Set this property to 'true' in a profile to skip the integration tests and not even run the Docker containers.
-->
<docker.skip>false</docker.skip>
<docker.exposeContainerInfo>docker.container</docker.exposeContainerInfo>
<!-- Apicurion container properties -->
<apicurio.port>8080</apicurio.port>
<apicurio.init.timeout>60000</apicurio.init.timeout> <!-- 60 seconds -->
<!-- Mongo configuration -->
<!-- See MongoDbPlatform enum for possible options -->
<mongodb.platform>mongodb_docker</mongodb.platform>
<!-- Mongo test containers -->
<!-- port range used to allocate ports -->
<mongodb.docker.desktop.ports>27017:27117</mongodb.docker.desktop.ports>
<mongodb.replica.size>1</mongodb.replica.size>
<mongodb.shard.size>2</mongodb.shard.size>
<mongodb.shard.replica.size>${mongodb.replica.size}</mongodb.shard.replica.size>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</properties>
<build>
<plugins>
<plugin>
<groupId>io.fabric8</groupId>
<artifactId>docker-maven-plugin</artifactId>
<configuration>
<watchInterval>500</watchInterval>
<logDate>default</logDate>
<verbose>true</verbose>
<!--autoPull>always</autoPull-->
<images>
<image>
<name>apicurio/apicurio-registry-mem:${version.apicurio}</name>
<run>
<namingStrategy>none</namingStrategy>
<ports>
<port>${apicurio.port}:8080</port>
</ports>
<log>
<prefix>apicurio</prefix>
<enabled>true</enabled>
<color>blue</color>
</log>
<wait>
<log>.*apicurio-registry-app.*started in.*</log>
<time>${apicurio.init.timeout}</time>
</wait>
</run>
</image>
</images>
</configuration>
<!--
Connect this plugin to the maven lifecycle around the integration-test phase:
start the container in pre-integration-test and stop it in post-integration-test.
-->
<executions>
<execution>
<id>start</id>
<phase>pre-integration-test</phase>
<goals>
<goal>build</goal>
<goal>start</goal>
</goals>
</execution>
<execution>
<id>stop</id>
<phase>post-integration-test</phase>
<goals>
<goal>stop</goal>
</goals>
</execution>
</executions>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</plugin>
<!--
Unlike surefire, the failsafe plugin ensures 'post-integration-test' phase always runs, even
when there are failed integration tests. We rely upon this to always shut down the Docker container
after the integration tests (defined as '*IT.java') are run.
-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<executions>
<execution>
<id>integration-test</id>
<goals>
<goal>integration-test</goal>
</goals>
</execution>
<execution>
<id>verify</id>
<goals>
<goal>verify</goal>
</goals>
</execution>
</executions>
<configuration>
<skipTests>${skipITs}</skipTests>
<enableAssertions>true</enableAssertions>
<systemPropertyVariables>
<!-- Make these available to the tests via system properties -->
<version.mongo.server>${version.mongo.server}</version.mongo.server>
<mongodb.docker.desktop.ports>${mongodb.docker.desktop.ports}</mongodb.docker.desktop.ports>
<mongodb.replica.size>${mongodb.replica.size}</mongodb.replica.size>
<mongodb.shard.size>${mongodb.shard.size}</mongodb.shard.size>
<mongodb.shard.replica.size>${mongodb.shard.replica.size}</mongodb.shard.replica.size>
<mongodb.platform>${mongodb.platform}</mongodb.platform>
<mongodb.connection.string>${mongodb.connection.string}</mongodb.connection.string>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
<skipLongRunningTests>${skipLongRunningTests}</skipLongRunningTests>
</systemPropertyVariables>
<runOrder>${runOrder}</runOrder>
<argLine>--add-opens java.base/java.net=ALL-UNNAMED</argLine>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</configuration>
</plugin>
<plugin>
<groupId>io.debezium</groupId>
<artifactId>debezium-schema-generator</artifactId>
<version>${project.version}</version>
<executions>
<execution>
<id>generate-connector-metadata</id>
<goals>
<goal>generate-api-spec</goal>
</goals>
<phase>prepare-package</phase>
<configuration>
<outputDirectory>${project.build.outputDirectory}/META-INF/resources/</outputDirectory>
</configuration>
</execution>
</executions>
</plugin>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</plugins>
<resources>
<!-- Apply the properties set in the POM to the resource files -->
<resource>
<filtering>true</filtering>
<directory>src/main/resources</directory>
<includes>
<include>*</include>
<include>**/*</include>
</includes>
</resource>
</resources>
<testResources>
<testResource>
<directory>src/test/resources</directory>
<filtering>true</filtering>
<includes>
<include>*</include>
<include>**/*</include>
</includes>
</testResource>
</testResources>
</build>
<!--
Define several useful profiles
-->
<profiles>
<profile>
<id>document-db</id>
<activation>
<activeByDefault>false</activeByDefault>
</activation>
<properties>
<mongodb.platform>document_db</mongodb.platform>
</properties>
</profile>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
<profile>
<id>assembly</id>
<activation>
<activeByDefault>false</activeByDefault>
</activation>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
2019-09-23 19:01:44 +02:00
<version>${version.assembly.plugin}</version>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
<dependencies>
<dependency>
<groupId>io.debezium</groupId>
<artifactId>debezium-assembly-descriptors</artifactId>
<version>${project.version}</version>
</dependency>
</dependencies>
<executions>
<execution>
<id>default</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
<configuration>
<finalName>${project.artifactId}-${project.version}</finalName>
<attach>true</attach> <!-- we want attach & deploy these to Maven -->
<descriptorRefs>
<descriptorRef>${assembly.descriptor}</descriptorRef>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</descriptorRefs>
2020-02-07 08:26:47 +01:00
<tarLongFileMode>posix</tarLongFileMode>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<version>${version.failsafe.plugin}</version>
<configuration>
<systemPropertyVariables>
<isAssemblyProfileActive>true</isAssemblyProfileActive>
</systemPropertyVariables>
</configuration>
</plugin>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</plugins>
</build>
</profile>
2021-04-21 12:32:40 +02:00
<profile>
<id>quick</id>
<activation>
<activeByDefault>false</activeByDefault>
<property>
<name>quick</name>
</property>
</activation>
2021-04-21 12:32:40 +02:00
<properties>
<skipITs>true</skipITs>
<docker.skip>true</docker.skip>
</properties>
</profile>
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Do not perform any Docker-related functionality
To use, specify "-DskipITs" on the Maven command line.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<profile>
<id>skip-integration-tests</id>
<activation>
<activeByDefault>false</activeByDefault>
<property>
<name>skipITs</name>
</property>
</activation>
<properties>
<docker.skip>true</docker.skip>
</properties>
</profile>
<profile>
<id>apicurio</id>
<activation>
<activeByDefault>false</activeByDefault>
<property>
<name>apicurio</name>
</property>
</activation>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<configuration>
<systemPropertyVariables>
<use.apicurio>true</use.apicurio>
</systemPropertyVariables>
</configuration>
</plugin>
</plugins>
</build>
<properties>
<docker.filter>apicurio/apicurio-registry-mem:${version.apicurio}</docker.filter>
</properties>
</profile>
DBZ-2 Created initial Maven module with a MongoDB connector Added a new `debezium-connector-mongodb` module that defines a MongoDB connector. The MongoDB connector can capture and record the changes within a MongoDB replica set, or when seeded with addresses of the configuration server of a MongoDB sharded cluster, the connector captures the changes from the each replica set used as a shard. In the latter case, the connector even discovers the addition of or removal of shards. The connector monitors each replica set using multiple tasks and, if needed, separate threads within each task. When a replica set is being monitored for the first time, the connector will perform an "initial sync" of that replica set's databases and collections. Once the initial sync has completed, the connector will then begin tailing the oplog of the replica set, starting at the exact point in time at which it started the initial sync. This equivalent to how MongoDB replication works. The connector always uses the replica set's primary node to tail the oplog. If the replica set undergoes an election and different node becomes primary, the connector will immediately stop tailing the oplog, connect to the new primary, and start tailing the oplog using the new primary node. Likewise, if connector experiences any problems communicating with the replica set members, it will try to reconnect (using exponential backoff so as to not overwhelm the replica set) and continue tailing the oplog from where it last left off. In this way the connector is able to dynamically adjust to changes in replica set membership and to automatically handle communication failures. The MongoDB oplog contains limited information, and in particular the events describing updates and deletes do not actually have the before or after state of the documents. Instead, the oplog events are all idempotent, so updates contain the effective changes that were made during an update, and deletes merely contain the deleted document identifier. Consequently, the connector is limited in the information it includes in its output events. Create and read events do contain the initial state, but the update contain only the changes (rather than the before and/or after states of the document) and delete events do not have the before state of the deleted document. All connector events, however, do contain the local system timestamp at which the event was processed and _source_ information detailing the origins of the event, including the replica set name, the MongoDB transaction timestamp of the event, and the transactions identifier among other things. It is possible for MongoDB to lose commits in specific failure situations. For exmaple, if the primary applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes may not have had a chance to read those changes from the primary's oplog before the primary crashed. If one such secondary is then elected as primary, it's oplog is missing the last changes that the old primary had recorded and no longer has those changes. In these cases where MongoDB loses changes recorded in a primary's oplog, it is possible that the MongoDB connector may or may not capture these lost changes.
2016-04-19 22:49:58 +02:00
</profiles>
</project>