BurritOS/src/kernel/thread_manager.rs

234 lines
9.2 KiB
Rust

use std::{rc::Rc, cell::{RefCell, Ref}};
use crate::{utility::list::List, simulator::{machine::{NUM_INT_REGS, NUM_FP_REGS, Machine}, interrupt::InterruptStatus}};
use super::{thread::Thread, mgerror::ErrorCode, process::Process};
pub const SIMULATORSTACKSIZE: usize = 32 * 1024;
/// # Thread manager
///
/// An instance of this struct is responsible for managing threads on behalf of the system
#[derive(PartialEq)]
pub struct ThreadManager {
/// Current running thread
pub g_current_thread: Option<Rc<RefCell<Thread>>>,
/// The thread to be destroyed next
pub g_thread_to_be_destroyed: Option<Rc<RefCell<Thread>>>,
/// The list of alive threads
pub g_alive: List<Rc<RefCell<Thread>>>,
/// Thread in ready state waiting to become active
ready_list: List<Rc<RefCell<Thread>>>,
}
impl ThreadManager {
/// Thread manager constructor
pub fn new() -> Self {
Self {
g_current_thread: Option::None,
g_thread_to_be_destroyed: Option::None,
g_alive: List::default(),
ready_list: List::default(),
}
}
/// Mark a thread as aready, but not necessarily running yet.
///
/// Put it in the ready list, for later scheduling onto the CPU.
///
/// ## Pamameter
///
/// **thread** is the thread to be put on the read list
pub fn ready_to_run(&mut self, thread: Rc<RefCell<Thread>>) {
self.ready_list.push(thread);
}
/// Return the next thread to be scheduled onto the CPU.
/// If there are no ready threads, return Option::None
///
/// Thread is removed from the ready list.
///
/// **return** Thread thread to be scheduled
pub fn find_next_to_run(&mut self) -> Option<Rc<RefCell<Thread>>> {
self.ready_list.pop()
}
/// Dispatch the CPU to next_thread. Save the state of the old thread
/// and load the state of the new thread.
///
/// We assume the state of the previously running thread has already been changed from running to blocked or ready.
///
/// Global variable g_current_thread become next_thread
///
/// ## Parameter
///
/// **next_thread** thread to dispatch to the CPU
pub fn switch_to(&mut self, machine: &mut Machine, next_thread: Rc<RefCell<Thread>>) {
match self.get_g_current_thread() {
Some(old) => {
let old1 = Rc::clone(old);
let old2 = Rc::clone(old);
self.thread_save_processor_state(machine, old1);
// old_thread.save_simulator_state();
if old2 != next_thread {
self.thread_restore_processor_state(machine, Rc::clone(&next_thread));
// next_thread.restore_simulator_state();
self.set_g_current_thread(Some(next_thread));
}
},
None => {
self.thread_restore_processor_state(machine, Rc::clone(&next_thread));
// next_thread.restore_simulator_state();
self.set_g_current_thread(Some(next_thread));
}
}
}
/// Start a thread, attaching it to a process
pub fn start_thread(&mut self, thread: Rc<RefCell<Thread>>, owner: Process, func_pc: u64, sp_loc: u64, argument: i64) {
let mut thread_m = thread.borrow_mut();
assert_eq!(thread_m.process, Option::None);
thread_m.process = Option::Some(owner);
let ptr = sp_loc; // todo addrspace
thread_m.init_thread_context(func_pc, ptr, argument);
let base_stack_addr: [i8; SIMULATORSTACKSIZE] = [0; SIMULATORSTACKSIZE]; // todo AllocBoundedArray
thread_m.init_simulator_context(base_stack_addr);
thread_m.process.as_mut().unwrap().num_thread += 1;
self.get_g_alive().push(Rc::clone(&thread));
self.ready_to_run(Rc::clone(&thread));
}
/// Wait for another thread to finish its execution
pub fn thread_join(&mut self, machine: &mut Machine, id_thread: Rc<RefCell<Thread>>) {
while self.get_g_alive().contains(&Rc::clone(&id_thread)) {
self.thread_yield(machine, Rc::clone(&id_thread));
}
}
/// Relinquish the CPU if any other thread is runnable.
///
/// Cannot use yield as a function name -> reserved name in rust
pub fn thread_yield(&mut self, machine: &mut Machine, thread: Rc<RefCell<Thread>>) {
let old_status = machine.interrupt.set_status(crate::simulator::interrupt::InterruptStatus::InterruptOff);
assert_eq!(Option::Some(Rc::clone(&thread)), self.g_current_thread);
let next_thread = self.find_next_to_run();
if let Some(next_thread) = next_thread {
self.ready_to_run(thread);
self.switch_to(machine, next_thread);
}
machine.interrupt.set_status(old_status);
}
/// Put the thread to sleep and relinquish the processor
pub fn thread_sleep(&mut self, machine: &mut Machine, thread: Rc<RefCell<Thread>>) {
debug_assert_eq!(Option::Some(Rc::clone(&thread)), self.g_current_thread);
debug_assert_eq!(machine.interrupt.get_status(), InterruptStatus::InterruptOff);
let mut next_thread = self.find_next_to_run();
while next_thread.is_none() {
eprintln!("Nobody to run => idle");
machine.interrupt.idle();
next_thread = self.find_next_to_run();
}
self.switch_to(machine, Rc::clone(&next_thread.unwrap()));
}
/// Finish the execution of the thread and prepare its deallocation
pub fn thread_finish(&mut self, machine: &mut Machine, thread: Rc<RefCell<Thread>>) {
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
self.g_thread_to_be_destroyed = Option::Some(Rc::clone(&thread));
self.g_alive.remove(Rc::clone(&thread));
#[cfg(debug_assertions)]
println!("Sleeping thread {}", thread.borrow().get_name());
// g_objets_addrs->removeObject(self.thread) // a ajouté plus tard
self.thread_sleep(machine, Rc::clone(&thread));
machine.interrupt.set_status(old_status);
}
/// Save the CPU state of a user program on a context switch.
pub fn thread_save_processor_state(&mut self, machine: &mut Machine, thread: Rc<RefCell<Thread>>) {
let mut t = thread.borrow_mut();
for i in 0..NUM_INT_REGS {
t.thread_context.int_registers[i] = machine.read_int_register(i);
}
for i in 0..NUM_FP_REGS {
t.thread_context.float_registers[i] = machine.read_fp_register(i);
}
t.thread_context.pc = machine.pc;
}
/// Restore the CPU state of a user program on a context switch.
pub fn thread_restore_processor_state(&self, machine: &mut Machine, thread: Rc<RefCell<Thread>>) {
let t: Ref<_> = thread.borrow();
for i in 0..NUM_INT_REGS {
machine.write_int_register(i, t.thread_context.int_registers[i]);
}
machine.pc = t.thread_context.pc;
}
/// Currently running thread
pub fn get_g_current_thread(&mut self) -> &Option<Rc<RefCell<Thread>>> {
&self.g_current_thread
}
/// Thread to be destroyed by [...]
///
/// TODO: Finish the comment with the relevant value
pub fn get_g_thread_to_be_destroyed(&mut self) -> &Option<Rc<RefCell<Thread>>> {
&self.g_thread_to_be_destroyed
}
/// List of alive threads
pub fn get_g_alive(&mut self) -> &mut List<Rc<RefCell<Thread>>> {
&mut self.g_alive
}
/// Set currently running thread
pub fn set_g_current_thread(&mut self, thread: Option<Rc<RefCell<Thread>>>) {
self.g_current_thread = thread
}
/// Set thread to be destroyed next
pub fn set_g_thread_to_be_destroyed(&mut self, thread: Option<Rc<RefCell<Thread>>>) {
self.g_thread_to_be_destroyed = thread
}
}
#[cfg(test)]
mod test {
use std::{rc::Rc, cell::RefCell};
use crate::{simulator::{machine::Machine, loader}, kernel::{system::System, thread::{Thread, self}, process::Process}};
#[test]
fn test_thread_context() {
let mut machine = Machine::new(true);
let (loader, ptr) = loader::Loader::new("./target/guac/halt.guac", &mut machine, 0).expect("IO Error");
let start_pc = loader.elf_header.entrypoint;
let system = &mut System::default();
let thread1 = Thread::new("th1");
let thread1 = Rc::new(RefCell::new(thread1));
system.get_thread_manager().get_g_alive().push(Rc::clone(&thread1));
let owner1 = Process { num_thread: 0 };
system.get_thread_manager().start_thread(Rc::clone(&thread1), owner1, loader.elf_header.entrypoint, ptr, -1);
debug_assert_eq!(thread1.borrow_mut().thread_context.pc, start_pc);
debug_assert!(system.get_thread_manager().get_g_alive().contains(&Rc::clone(&thread1)));
let to_run = system.get_thread_manager().find_next_to_run().unwrap();
debug_assert_eq!(to_run, Rc::clone(&thread1));
system.get_thread_manager().switch_to(&mut machine, Rc::clone(&to_run));
debug_assert_eq!(system.get_thread_manager().g_current_thread, Option::Some(Rc::clone(&thread1)));
debug_assert_eq!(machine.pc, loader.elf_header.entrypoint);
machine.run(system);
}
}