690 lines
29 KiB
Rust
690 lines
29 KiB
Rust
//! # Thread manager
|
|
//!
|
|
//! This module describes the data structure and the methods used for thread scheduling
|
|
//! in the BurritOS operating system. A struct named [`ThreadManager`] holds the list of
|
|
//! all existing [`Thread`] instances and synchronization objects, such as
|
|
//! [`Lock`](crate::kernel::synch::Lock),
|
|
//! [`Semaphore`](crate::kernel::synch::Semaphore) and
|
|
//! [`Condition`](crate::kernel::synch::Condition).
|
|
//!
|
|
//! ## Purpose
|
|
//!
|
|
//! [`ThreadManager`] holds the state of the system processes using the following subcomponents:
|
|
//!
|
|
//! ### Two lists of threads
|
|
//!
|
|
//! - **ready_list**: The list of threads ready to be executed
|
|
//! - **g_alive**: The list of currently executing threads
|
|
//!
|
|
//! The difference between the two above lists lies in the state of the threads in question.
|
|
//! Ready threads have just been enqueued. They are not being executed yet. The second list is
|
|
//! needed because many threads may be executing at a given time. However, only a single thread
|
|
//! can be handled by the machine at a time. The system thus needs to keep in memory the alive
|
|
//! threads in case the currently running thread finishes or gets rescheduled.
|
|
//!
|
|
//! ### A list of synchronization objects
|
|
//!
|
|
//! Locks, Semaphores and Conditions allow resource sharing among running threads. Since resources
|
|
//! can only be accessed by a single thread at a time, we need data structures to signal other
|
|
//! threads that a resource may be busy or unavailable; say for example that:
|
|
//!
|
|
//! - Thread **A** wants to write to a file while **B** is currently reading said file.
|
|
//! - Thread **A** mutating the state of the file could cause issues for **B**.
|
|
//! - Therefore **B** needs to lock the file in question to avoid such issues.
|
|
//! - Thread **A** will have to wait for **B** to finish reading the file.
|
|
//!
|
|
//! These synchronization objects are held in an instance of the ObjAddr structure held by
|
|
//! ThreadManager. Their state is mutated depending on the actions of the currently running thread
|
|
//! through methods such as [`ThreadManager::sem_p`].
|
|
//!
|
|
//! ## Usage
|
|
//!
|
|
//! [`ThreadManager`] is thought as a subcomponent of the [`System`](crate::kernel::system::System) struct.
|
|
//! Instanciating [`System`](crate::kernel::system::System) will automatically instanciate a [`ThreadManager`]
|
|
//!
|
|
//! Manually loading a [`Thread`] into [`ThreadManager`] to execute a program with BurritOS could look like
|
|
//! this:
|
|
//!
|
|
//! ```
|
|
//! fn load_thread_manually(args: ...) {
|
|
//! let mut system = System::new(args.debug);
|
|
//!
|
|
//! let thread_exec = Thread::new(args.executable.as_str());
|
|
//! let thread_exec = Rc::new(RefCell::new(thread_exec));
|
|
//! system.get_thread_manager().get_g_alive().push(Rc::clone(&thread_exec));
|
|
//!
|
|
//! let owner1 = Process { num_thread: 0 };
|
|
//! let owner1 = Rc::new(RefCell::new(owner1));
|
|
//! system.get_thread_manager().start_thread(Rc::clone(&thread_exec), owner1, loader.elf_header.entrypoint, ptr, -1);
|
|
//!
|
|
//! let to_run = system.get_thread_manager().find_next_to_run().unwrap();
|
|
//! system.get_thread_manager().switch_to(&mut machine, Rc::clone(&to_run));
|
|
//!
|
|
//! machine.run(&mut system);
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! ## Imports
|
|
//!
|
|
//! The [`List`] and [`ObjAddr`] submodules used in this module are defined in the utility
|
|
//! module. The source code of [`ObjAddr`] has been decoupled from thread_manager in an effort
|
|
//! to keep this module concise.
|
|
|
|
use std::{
|
|
rc::Rc,
|
|
cell::{
|
|
RefCell,
|
|
Ref
|
|
}
|
|
};
|
|
|
|
use crate::{
|
|
utility::{
|
|
list::List,
|
|
objaddr::ObjAddr
|
|
},
|
|
simulator::{
|
|
machine::{
|
|
NUM_INT_REGS,
|
|
NUM_FP_REGS,
|
|
Machine
|
|
},
|
|
interrupt::InterruptStatus,
|
|
error::{
|
|
MachineOk,
|
|
MachineError
|
|
}
|
|
},
|
|
kernel::{
|
|
thread::Thread,
|
|
process::Process
|
|
}
|
|
};
|
|
|
|
/// Using this type alias to simplify struct and method definitions
|
|
pub type ThreadRef = Rc<RefCell<Thread>>;
|
|
|
|
/// # Thread manager
|
|
///
|
|
/// An instance of this struct is responsible for managing threads on behalf of the system
|
|
#[derive(PartialEq)]
|
|
pub struct ThreadManager {
|
|
/// Current running thread
|
|
pub g_current_thread: Option<ThreadRef>,
|
|
/// The list of alive threads
|
|
pub g_alive: List<ThreadRef>,
|
|
/// Thread in ready state waiting to become active
|
|
ready_list: List<ThreadRef>,
|
|
/// List of objects created by the thread manager (such as Locks and Semaphores)
|
|
obj_addrs: ObjAddr,
|
|
/// If true, enables debug mode
|
|
debug: bool,
|
|
/// Temporary field, to be removed when virtual memory will be available to use.
|
|
///
|
|
/// A value to know where the next starting thread should have its stack pointer
|
|
sp_max: u64,
|
|
}
|
|
|
|
impl ThreadManager {
|
|
|
|
/// Thread manager constructor
|
|
pub fn new(debug: bool) -> Self {
|
|
Self {
|
|
g_current_thread: Option::None,
|
|
g_alive: List::default(),
|
|
ready_list: List::default(),
|
|
obj_addrs: ObjAddr::init(),
|
|
debug,
|
|
sp_max: 0
|
|
}
|
|
}
|
|
|
|
/// Mark `thread` as ready, but not necessarily running yet.
|
|
///
|
|
/// Put it in the ready list, for later scheduling onto the CPU.
|
|
///
|
|
/// ## Pamameter
|
|
///
|
|
/// **thread** is the thread to be put on the ready list
|
|
pub fn ready_to_run(&mut self, thread: ThreadRef) {
|
|
self.ready_list.push(thread);
|
|
}
|
|
|
|
/// Return the next thread to be scheduled onto the CPU.
|
|
/// If there are no ready threads, return `Option::None`
|
|
///
|
|
/// Thread is removed from the ready list.
|
|
///
|
|
/// **return** Thread thread to be scheduled
|
|
pub fn find_next_to_run(&mut self) -> Option<ThreadRef> {
|
|
self.ready_list.pop()
|
|
}
|
|
|
|
/// Dispatch the CPU to `next_thread`. Save the state of the old thread
|
|
/// and load the state of the new thread.
|
|
///
|
|
/// We assume the state of the previously running thread has already been changed from running to blocked or ready.
|
|
///
|
|
/// Variable `g_current_thread` become next_thread
|
|
///
|
|
/// ## Parameter
|
|
///
|
|
/// **next_thread** thread to dispatch to the CPU
|
|
pub fn switch_to(&mut self, machine: &mut Machine, next_thread: ThreadRef) {
|
|
if let Some(old_thread) = self.get_g_current_thread() {
|
|
let old_thread = old_thread.clone();
|
|
self.thread_save_processor_state(machine, old_thread.clone());
|
|
// old_thread.save_simulator_state();
|
|
if old_thread != next_thread {
|
|
self.debug(format!("switching from \"{}\" to \"{}\"", old_thread.borrow().get_name(), next_thread.borrow().get_name()));
|
|
self.thread_restore_processor_state(machine, Rc::clone(&next_thread));
|
|
// next_thread.restore_simulator_state();
|
|
debug_assert!(!self.ready_list.contains(&next_thread));
|
|
self.set_g_current_thread(Some(next_thread));
|
|
}
|
|
} else {
|
|
self.thread_restore_processor_state(machine, Rc::clone(&next_thread));
|
|
// next_thread.restore_simulator_state();
|
|
self.set_g_current_thread(Some(next_thread));
|
|
}
|
|
}
|
|
|
|
/// Start a thread, attaching it to a process
|
|
///
|
|
/// ## Parameter
|
|
///
|
|
/// **thread** thread to start
|
|
/// **owner** process owner of thread (after the execution of this method)
|
|
/// **func_pc** pc the thread
|
|
/// **sp_loc** stack pointer of the thread, to remove (or move) when mmu will be completed
|
|
/// **argument** value to be place on register[10]
|
|
pub fn start_thread(&mut self, thread: ThreadRef, owner: Rc<RefCell<Process>>, func_pc: u64, sp_loc: u64, argument: i64) {
|
|
self.debug(format!("starting thread \"{}\"", thread.borrow().get_name()));
|
|
|
|
let mut thread_m = thread.borrow_mut();
|
|
assert_eq!(thread_m.process, Option::None);
|
|
thread_m.process = Option::Some(Rc::clone(&owner));
|
|
let ptr = sp_loc; // todo addrspace
|
|
thread_m.init_thread_context(func_pc, ptr, argument);
|
|
owner.borrow_mut().num_thread += 1;
|
|
self.get_g_alive().push(Rc::clone(&thread));
|
|
self.ready_to_run(Rc::clone(&thread));
|
|
}
|
|
|
|
/// Wait for another thread to finish its execution
|
|
///
|
|
/// If the thread you want to wait doesn't exist (isn't alive), execution will resume.
|
|
/// Otherwise, CPU is dispatch to next alive thread if any.
|
|
///
|
|
/// When the thread you want to join finish, it place the waiting thread (self) in ready list
|
|
pub fn thread_join(&mut self, machine: &mut Machine, waiter: ThreadRef, waiting_for: ThreadRef) {
|
|
let waiting_for = Rc::clone(&waiting_for);
|
|
if self.get_g_alive().contains(&waiting_for) {
|
|
waiting_for.borrow_mut().join_thread.push(Rc::clone(&waiter));
|
|
self.thread_yield(machine, Rc::clone(&waiter), false);
|
|
}
|
|
}
|
|
|
|
/// Relinquish the CPU if any other thread is runnable.
|
|
///
|
|
/// If so, put the current thread at the end of the ready list, so it'll be re-scheduled in the future.
|
|
///
|
|
/// **Returns** immediately if there's no other thread ready or return when the current thread has been switched.
|
|
///
|
|
/// Interruptions are disabled during the process, so all the process of looking for a next thread and switching to it is atomic,
|
|
/// and is place at its old status at the end of the method.
|
|
///
|
|
/// Cannot use `yield` as a function name -> reserved name in rust
|
|
///
|
|
/// ## Parameters
|
|
///
|
|
/// **machine** RISC-V simulator
|
|
/// **thread** current thread to be relinquish
|
|
/// **is_ready** true if **thread** should be readded to ready_to_run list, false otherwise. Typically false when joining per example
|
|
pub fn thread_yield(&mut self, machine: &mut Machine, thread: ThreadRef, is_ready: bool) {
|
|
let old_status = machine.interrupt.set_status(crate::simulator::interrupt::InterruptStatus::InterruptOff);
|
|
|
|
self.debug(format!("Yeilding thread: \"{}\"", thread.borrow().get_name()));
|
|
debug_assert_eq!(&Option::Some(Rc::clone(&thread)), self.get_g_current_thread());
|
|
let next_thread = self.find_next_to_run();
|
|
if let Some(next_thread) = next_thread {
|
|
if is_ready {
|
|
self.ready_to_run(thread);
|
|
}
|
|
self.switch_to(machine, next_thread);
|
|
}
|
|
machine.interrupt.set_status(old_status);
|
|
}
|
|
|
|
/// Put the thread to sleep and relinquish the processor because the current thread is blocked (Semaphore, Lock, Condition) or because it finished its execution
|
|
///
|
|
/// Another thread will eventually wake it up and put it back to ready list after it has been unblocked.
|
|
///
|
|
/// Behavior now: At the moment, disk isn't fully develop and not integrated to burritos, so if there's no ready thread, then we stop the OS.
|
|
///
|
|
/// Behaviour in the future: If there are no threads on the ready list, that means there is no thread to run,
|
|
/// we assume this is because at least one thread is waiting for I/O [`interrupt`](crate::simulator::interrupt::Interrupt) (the only reason a new thread can become ready at this point).
|
|
///
|
|
/// We also assume interruption are already disabled, becuase it's called from a synchronization routine for interrupt should be disabled.
|
|
pub fn thread_sleep(&mut self, machine: &mut Machine, thread: ThreadRef) {
|
|
debug_assert_eq!(Option::Some(Rc::clone(&thread)), self.g_current_thread);
|
|
debug_assert_eq!(machine.interrupt.get_status(), InterruptStatus::InterruptOff);
|
|
|
|
self.debug(format!("Sleeping thread {}", thread.borrow().get_name()));
|
|
let mut next_thread = self.find_next_to_run();
|
|
while next_thread.is_none() {
|
|
eprintln!("Nobody to run => idle");
|
|
machine.interrupt.idle();
|
|
if let Some(t) = self.find_next_to_run() {
|
|
next_thread = Some(t);
|
|
} else {
|
|
panic!("Couldn't find next thread to run.\nShutting down...");
|
|
}
|
|
}
|
|
self.switch_to(machine, Rc::clone(&next_thread.unwrap()));
|
|
|
|
}
|
|
|
|
/// Finish the execution of the thread and prepare its deallocation
|
|
///
|
|
/// Called by the thread itself when it finish its execution ([`Exit`](super::exception::SC_EXIT) exception).
|
|
///
|
|
/// We remove the thread from the alive list, and rustc deallocate the thread itself(behaviour different than Nachos)
|
|
///
|
|
/// Interruption are disabled to assume atomicity.
|
|
pub fn thread_finish(&mut self, machine: &mut Machine, thread: ThreadRef, exit_code: i64) {
|
|
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
|
|
assert!(self.g_alive.remove(Rc::clone(&thread)));
|
|
self.debug(format!("Finishing thread {} with code {}", thread.borrow().get_name(), exit_code));
|
|
// g_objets_addrs->removeObject(self.thread) // a ajouté plus tard
|
|
for (_, el) in thread.borrow().join_thread.iter().enumerate() {
|
|
self.ready_to_run(Rc::clone(&el));
|
|
}
|
|
self.thread_sleep(machine, Rc::clone(&thread));
|
|
machine.interrupt.set_status(old_status);
|
|
}
|
|
|
|
/// Save the CPU state of a user program on a context switch.
|
|
///
|
|
/// Save PC and registers
|
|
pub fn thread_save_processor_state(&mut self, machine: &mut Machine, thread: ThreadRef) {
|
|
let mut t = thread.borrow_mut();
|
|
for i in 0..NUM_INT_REGS {
|
|
t.thread_context.int_registers[i] = machine.read_int_register(i);
|
|
}
|
|
for i in 0..NUM_FP_REGS {
|
|
t.thread_context.float_registers[i] = machine.read_fp_register(i);
|
|
}
|
|
t.thread_context.pc = machine.pc;
|
|
}
|
|
|
|
/// Restore the CPU state of a user program on a context switch.
|
|
///
|
|
/// Restore PC and registers
|
|
pub fn thread_restore_processor_state(&self, machine: &mut Machine, thread: ThreadRef) {
|
|
let t: Ref<_> = thread.borrow();
|
|
for i in 0..NUM_INT_REGS {
|
|
machine.write_int_register(i, t.thread_context.int_registers[i]);
|
|
}
|
|
machine.pc = t.thread_context.pc;
|
|
}
|
|
|
|
/// Decrement the value, and wait if it becomes < 0. Checking the
|
|
/// value and decrementing must be done atomically, so we
|
|
/// need to disable interrupts before checking the value.
|
|
///
|
|
/// Note that thread_manager::thread_sleep assumes that interrupts are disabled
|
|
/// when it is called.
|
|
///
|
|
/// ### Parameters
|
|
/// - *id_sema* id of the semaphore, stored in [`ObjAddr`], id given by user program thought exceptions
|
|
/// - *machine* Current state of the machine
|
|
pub fn sem_p(&mut self, id_sema: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
|
|
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
|
|
let thread = match self.get_g_current_thread() {
|
|
Some(thread) => Rc::clone(thread),
|
|
None => Err("sem_p error: current thread should not be None")?
|
|
};
|
|
let sema = match self.get_obj_addrs().search_semaphore(id_sema) {
|
|
Some(sema) => sema,
|
|
None => Err("sem_p error: cannot find semaphore")?
|
|
};
|
|
sema.counter -= 1;
|
|
if sema.counter < 0 {
|
|
sema.waiting_queue.push(thread.clone());
|
|
self.thread_sleep(machine, thread);
|
|
}
|
|
machine.interrupt.set_status(old_status);
|
|
Ok(MachineOk::Ok)
|
|
}
|
|
|
|
/// Increment semaphore value, waking up a waiting thread if any.
|
|
/// As with P(), this operation must be atomic, so we need to disable
|
|
/// interrupts.
|
|
///
|
|
/// scheduler::ready_to_run() assumes that interrupts
|
|
/// are disabled when it is called.
|
|
///
|
|
/// ### Parameters
|
|
/// - *id_sema* id of the semaphore, stored in [`ObjAddr`], id given by user program thought exceptions
|
|
/// - **machine** the machine where the threads are executed
|
|
pub fn sem_v(&mut self, id_sema: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
|
|
let sema = match self.get_obj_addrs().search_semaphore(id_sema) {
|
|
Some(sema) => sema,
|
|
None => Err("sem_v error: cannot find semaphore")?
|
|
};
|
|
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
|
|
sema.counter += 1;
|
|
if let Some(thread) = sema.waiting_queue.pop() {
|
|
self.ready_to_run(thread)
|
|
}
|
|
machine.interrupt.set_status(old_status);
|
|
Ok(MachineOk::Ok)
|
|
}
|
|
|
|
|
|
/// Wait until the lock become free. Checking the
|
|
/// state of the lock (free or busy) and modify it must be done
|
|
/// atomically, so we need to disable interrupts before checking
|
|
/// the value of free.
|
|
///
|
|
/// Note that thread_manager::thread_seep assumes that interrupts are disabled
|
|
/// when it is called.
|
|
///
|
|
/// ### Parameters
|
|
/// - **id** id of the lock, stored in [`ObjAddr`], id given by user program thought exceptions
|
|
/// - **machine** the machine where the threads are executed
|
|
pub fn lock_acquire(&mut self, id: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
|
|
let current_thread = match self.get_g_current_thread() {
|
|
Some(thread) => Rc::clone(thread),
|
|
None => Err("lock_acquire error: current_thread should not be None.")?
|
|
};
|
|
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
|
|
if let Some(lock) = self.get_obj_addrs().search_lock(id) {
|
|
if lock.free {
|
|
lock.free = false;
|
|
lock.owner = Some(current_thread)
|
|
} else {
|
|
lock.waiting_queue.push(current_thread.clone());
|
|
self.thread_sleep(machine, current_thread);
|
|
}
|
|
} else {
|
|
Err("lock_acquire error: cannot find Lock.")?
|
|
}
|
|
machine.interrupt.set_status(old_status);
|
|
Ok(MachineOk::Ok)
|
|
}
|
|
|
|
/// Release lock hold by current thread and wake up a waiter if necessary, placing it on ready list, this thread now hold the lock.
|
|
///
|
|
/// If no thread is waiting for the lock, the lock is released
|
|
pub fn lock_release(&mut self, id: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
|
|
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
|
|
let current_thread = match self.get_g_current_thread() {
|
|
Some(thread) => Rc::clone(thread),
|
|
None => Err(String::from("lock_release error: current_thread should not be None."))?
|
|
};
|
|
let mut lock = match self.get_obj_addrs().search_lock(id) {
|
|
Some(lock) => lock,
|
|
None => Err(String::from("lock_release error: cannot find lock."))?
|
|
};
|
|
if let Some(lock_owner) = &lock.owner {
|
|
if current_thread.eq(lock_owner) { // is_held_by_current_thread
|
|
match lock.waiting_queue.pop() {
|
|
Some(th) => {
|
|
lock.owner = Some(Rc::clone(&th));
|
|
self.ready_to_run(Rc::clone(&th));
|
|
},
|
|
None => {
|
|
lock.free = true;
|
|
lock.owner = None;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
// self.get_obj_addrs().update_lock(id, lock);
|
|
|
|
machine.interrupt.set_status(old_status);
|
|
Ok(MachineOk::Ok)
|
|
}
|
|
|
|
/// Return currently running thread
|
|
pub fn get_g_current_thread(&mut self) -> &Option<ThreadRef> {
|
|
&self.g_current_thread
|
|
}
|
|
|
|
/// Return list of alive threads
|
|
pub fn get_g_alive(&mut self) -> &mut List<ThreadRef> {
|
|
&mut self.g_alive
|
|
}
|
|
|
|
/// Set currently running thread
|
|
pub fn set_g_current_thread(&mut self, thread: Option<ThreadRef>) {
|
|
self.g_current_thread = thread
|
|
}
|
|
|
|
/// Returns a mutable reference to the ObjAddr field of this thread_manager
|
|
pub fn get_obj_addrs(&mut self) -> &mut ObjAddr {
|
|
&mut self.obj_addrs
|
|
}
|
|
|
|
/// Prints debug messages if self.debug is set to true.
|
|
fn debug(&self, message: String) {
|
|
if self.debug {
|
|
println!("{}", message);
|
|
}
|
|
}
|
|
|
|
pub fn get_sp_max(&self) -> u64 {
|
|
self.sp_max
|
|
}
|
|
|
|
pub fn set_sp_max(&mut self, sp_max: u64) {
|
|
self.sp_max = sp_max;
|
|
}
|
|
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use std::{rc::Rc, cell::RefCell};
|
|
|
|
use crate::{simulator::{machine::Machine, loader}, kernel::{system::System, thread::Thread, process::Process, thread_manager::ThreadManager, synch::Semaphore}, utility::cfg::get_debug_configuration};
|
|
use crate::kernel::synch::Lock;
|
|
|
|
#[test]
|
|
fn test_thread_context() {
|
|
let mut machine = Machine::new(true, get_debug_configuration());
|
|
|
|
let (loader, ptr) = loader::Loader::new("./target/guac/halt.guac", &mut machine, 0).expect("IO Error");
|
|
let start_pc = loader.elf_header.entrypoint;
|
|
let system = &mut System::new(true);
|
|
|
|
let thread1 = Thread::new("th1");
|
|
let thread1 = Rc::new(RefCell::new(thread1));
|
|
system.get_thread_manager().get_g_alive().push(Rc::clone(&thread1));
|
|
|
|
let owner1 = Process { num_thread: 0 };
|
|
let owner1 = Rc::new(RefCell::new(owner1));
|
|
system.get_thread_manager().start_thread(Rc::clone(&thread1), owner1, loader.elf_header.entrypoint, ptr + machine.page_size, -1);
|
|
debug_assert_eq!(thread1.borrow_mut().thread_context.pc, start_pc);
|
|
debug_assert!(system.get_thread_manager().get_g_alive().contains(&Rc::clone(&thread1)));
|
|
|
|
let to_run = system.get_thread_manager().find_next_to_run().unwrap();
|
|
debug_assert_eq!(to_run, Rc::clone(&thread1));
|
|
|
|
system.get_thread_manager().switch_to(&mut machine, Rc::clone(&to_run));
|
|
debug_assert_eq!(system.get_thread_manager().g_current_thread, Option::Some(Rc::clone(&thread1)));
|
|
debug_assert_eq!(machine.pc, loader.elf_header.entrypoint);
|
|
|
|
machine.run(system);
|
|
}
|
|
|
|
#[test]
|
|
fn test_lock_single(){
|
|
let mut machine = Machine::new(true, get_debug_configuration());
|
|
let mut thread_manager = ThreadManager::new(true);
|
|
let lock = Lock::new();
|
|
let lock_id = thread_manager.get_obj_addrs().add_lock(lock);
|
|
let thread = Rc::new(RefCell::new(Thread::new("test_lock")));
|
|
let thread_test = thread.clone();
|
|
thread_manager.ready_to_run(Rc::clone(&thread));
|
|
thread_manager.set_g_current_thread(Some(thread));
|
|
|
|
thread_manager.lock_acquire(lock_id, &mut machine).expect("lock acquire return an error: ");
|
|
{
|
|
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
|
|
assert_eq!(lock.owner,Some(thread_test));
|
|
assert!(!lock.free);
|
|
assert!(lock.waiting_queue.is_empty());
|
|
}
|
|
|
|
thread_manager.lock_release(lock_id, &mut machine).expect("lock release return an error: ");
|
|
{
|
|
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
|
|
assert_eq!(lock.owner, None);
|
|
assert!(lock.free);
|
|
assert!(lock.waiting_queue.is_empty());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_lock_multiple() {
|
|
let mut machine = Machine::new(true, get_debug_configuration());
|
|
let mut thread_manager = ThreadManager::new(true);
|
|
let lock = Lock::new();
|
|
let lock_id = thread_manager.get_obj_addrs().add_lock(lock);
|
|
let thread_1 = Rc::new(RefCell::new(Thread::new("test_lock_1")));
|
|
let thread_2 = Rc::new(RefCell::new(Thread::new("test_lock_2")));
|
|
thread_manager.ready_to_run(thread_1.clone());
|
|
thread_manager.ready_to_run(thread_2.clone());
|
|
thread_manager.set_g_current_thread(Some(thread_1.clone()));
|
|
|
|
thread_manager.lock_acquire(lock_id, &mut machine).expect("lock acquire return an error at first iteration: ");
|
|
{
|
|
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
|
|
assert_eq!(lock.owner,Some(thread_1.clone()));
|
|
assert!(!lock.free);
|
|
assert!(lock.waiting_queue.is_empty());
|
|
}
|
|
|
|
thread_manager.set_g_current_thread(Some(thread_2.clone()));
|
|
thread_manager.lock_acquire(lock_id, &mut machine).expect("lock acquire return an error at second iteration: ");
|
|
{
|
|
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
|
|
assert_eq!(lock.owner,Some(thread_1.clone()));
|
|
assert!(!lock.free);
|
|
assert_eq!(lock.waiting_queue.iter().count(),1);
|
|
}
|
|
|
|
thread_manager.lock_release(lock_id, &mut machine).expect("lock release return an error at first iteration: ");
|
|
{
|
|
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
|
|
assert_eq!(lock.owner, Some(thread_2.clone()));
|
|
assert!(!lock.free);
|
|
assert!(lock.waiting_queue.is_empty());
|
|
}
|
|
|
|
thread_manager.set_g_current_thread(Some(thread_2.clone()));
|
|
thread_manager.lock_release(lock_id, &mut machine).expect("lock release return an error at second iteration: ");
|
|
{
|
|
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
|
|
assert!(lock.waiting_queue.is_empty());
|
|
assert_eq!(lock.owner, None);
|
|
assert!(lock.free);
|
|
}
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn test_semaphore_single() {
|
|
// Init
|
|
let mut machine = Machine::new(true, get_debug_configuration());
|
|
let mut thread_manager = ThreadManager::new(true);
|
|
let semaphore = Semaphore::new(1);
|
|
let sema_id = thread_manager.get_obj_addrs().add_semaphore(semaphore);
|
|
let thread = Rc::new(RefCell::new(Thread::new("test_semaphore")));
|
|
thread_manager.ready_to_run(Rc::clone(&thread));
|
|
thread_manager.set_g_current_thread(Some(thread));
|
|
// P
|
|
thread_manager.sem_p(sema_id, &mut machine).expect("semaphore P return an error: ");
|
|
{
|
|
let semaphore = thread_manager.get_obj_addrs().search_semaphore(sema_id).unwrap();
|
|
assert_eq!(semaphore.counter, 0);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
}
|
|
// V
|
|
thread_manager.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
|
|
{
|
|
let semaphore = thread_manager.get_obj_addrs().search_semaphore(sema_id).unwrap();
|
|
assert_eq!(semaphore.counter, 1);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_semaphore_multiple() {
|
|
// Init
|
|
let mut tm = ThreadManager::new(true);
|
|
let mut machine = Machine::new(true, get_debug_configuration());
|
|
let semaphore = Semaphore::new(2);
|
|
let sema_id = tm.get_obj_addrs().add_semaphore(semaphore);
|
|
let thread1 = Rc::new(RefCell::new(Thread::new("test_semaphore_1")));
|
|
let thread2 = Rc::new(RefCell::new(Thread::new("test_semaphore_2")));
|
|
let thread3 = Rc::new(RefCell::new(Thread::new("test_semaphore_3")));
|
|
|
|
// let mut borrow_tm = tm.borrow_mut();
|
|
// let scheduler = &mut tm.g_scheduler;
|
|
tm.ready_to_run(Rc::clone(&thread1));
|
|
tm.ready_to_run(Rc::clone(&thread2));
|
|
tm.ready_to_run(Rc::clone(&thread3));
|
|
// P
|
|
tm.set_g_current_thread(Some(Rc::clone(&thread1)));
|
|
tm.sem_p(sema_id, &mut machine).expect("semaphore P return an error: ");
|
|
{
|
|
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
|
|
assert_eq!(semaphore.counter, 1);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
}
|
|
|
|
tm.set_g_current_thread(Some(Rc::clone(&thread2)));
|
|
tm.sem_p(sema_id, &mut machine).expect("semaphore P return an error: ");
|
|
{
|
|
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
|
|
assert_eq!(semaphore.counter, 0);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
}
|
|
|
|
tm.set_g_current_thread(Some(Rc::clone(&thread3)));
|
|
tm.sem_p( sema_id, &mut machine).expect("semaphore P return an error: ");
|
|
{
|
|
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
|
|
assert_eq!(semaphore.counter, -1);
|
|
assert!(semaphore.waiting_queue.iter().count() == 1);
|
|
}
|
|
|
|
// V
|
|
tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
|
|
{
|
|
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
|
|
assert_eq!(semaphore.counter, 0);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
}
|
|
|
|
tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
|
|
{
|
|
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
|
|
assert_eq!(semaphore.counter, 1);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
}
|
|
|
|
tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
|
|
{
|
|
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
|
|
assert_eq!(semaphore.counter, 2);
|
|
assert!(semaphore.waiting_queue.is_empty());
|
|
}
|
|
|
|
}
|
|
|
|
} |