BurritOS/src/simulator/machine.rs
2023-03-27 10:21:18 +02:00

735 lines
25 KiB
Rust

//! # Machine
//!
//! This module contains a RISC-V simulator.
//! It supports the base instruction set along
//! with 32bit floating point operations.
//!
//! Basic usage:
//!
//! ```
//! let mut machine = Machine::init_machine();
//! machine.run();
//! ```
use std::{
io::Write,
fs::File
};
use crate::simulator::{
print,
error::MachineError,
decode::*,
interrupt::Interrupt,
global::*,
register::*
};
/// Exceptions
/// todo: is this really supposed to stand in machine.rs?
pub enum ExceptionType {
/// Everything ok
NoException,
/// A program executed a system call
SyscallException,
/// Page fault exception
PagefaultException,
/// Write attempted to a page marked "read-only"
ReadOnlyException,
/// Translation resulted in an invalid physical address (mis-aligned or out-of-bounds)
BusErrorException,
/// Reference which was not mapped in the address space
AddressErrorException,
/// Integer overflow in add or sub
OverflowException,
/// Unimplemented or reserved instruction
IllegalInstrException,
NumExceptionTypes
}
pub const STACK_REG: usize = 2;
/// Number of available Integer registers
pub const NUM_INT_REGS: usize = 32;
/// Number of available Floating Point registers
pub const NUM_FP_REGS: usize = 32;
/// max number of physical pages
pub const NUM_PHY_PAGE : u64 = 400;
/// Must be 2^x
pub const PAGE_SIZE : u64 = 128;
/// Must be a multiple of PAGE_SIZE
pub const MEM_SIZE : usize = (PAGE_SIZE*NUM_PHY_PAGE*100) as usize;
/// RISC-V Simulator
pub struct Machine {
/// Program counter
pub pc : u64,
/// Stack pointer
pub sp: usize,
/// Integer register
pub int_reg : Register<i64>,
/// Floating point register
pub fp_reg : Register<f32>,
/// Heap memory
pub main_memory : Vec<u8>,
/// Shiftmask
pub shiftmask : [u64 ; 64],
/// Debug data
pub registers_trace : String, // for tests
/// todo: document Interrupts
pub interrupt: Interrupt
// futur taille à calculer int memSize = g_cfg->NumPhysPages * g_cfg->PageSize;
//creer une struct cfg(configuration) qui s'initialise avec valeur dans un fichier cfg
}
impl Machine {
/// Machine constructor
pub fn init_machine() -> Machine {
let mut shiftmask : [u64 ; 64] = [0 ; 64];
let mut value : u64 = 0xffffffff;
value = (value << 32) + value;
for item in &mut shiftmask {
*item = value;
value >>= 1;
}
Machine {
pc : 0,
sp: 0,
int_reg : { let mut r = Register::<i64>::init(); r.set_reg(10, -1); r },
fp_reg : Register::<f32>::init(),
main_memory : vec![0_u8; MEM_SIZE],
shiftmask,
interrupt: Interrupt::new(),
registers_trace : String::from("")
}
}
/// Read from main memory of the machine
///
/// `panic!` when size is not 1, 2, 4 or 8
///
/// ### Parameters
///
/// - **machine** which contains the main memory
/// - **size** the number of bytes to read (1, 2, 4, 8)
/// - **address** in the memory to read
pub fn read_memory(&self, size : i32, address : usize) -> u64 {
if ![1, 2, 4, 8].contains(&size) {
panic!("ERROR read_memory : wrong size parameter {size}, must be (1, 2, 4 or 8)");
}
let mut ret: u64 = 0;
for i in 0..size {
ret <<= 8;
ret += self.main_memory[address + i as usize] as u64;
}
ret
}
/// Write to the main memory of the machine
///
/// `panic!` when size is not 1, 2, 4 or 8
///
/// ### Parameters
///
/// - **machine** contains the memory
/// - **size** the number of bytes to write (1, 2, 4 or 8)
/// - **address** the address to write to
/// - **value** data to be written
pub fn write_memory(&mut self, size: i32, address: usize, value: u64) {
if ![1, 2, 4, 8].contains(&size) {
panic!("ERROR write_memory: WRONG `size` PARAMETER ({size}), must be 1, 2, 4 or 8")
}
for i in 0..size as usize {
let inv_i = size as usize - i - 1;
self.main_memory[address + i] = ((value & 0xff << (8 * inv_i)) >> (inv_i * 8)) as u8;
}
}
/// Write the contains of the main memory of the machine
/// in a file called burritos_memory.txt
///
/// ### Parameters
///
/// - **machine** contains the memory
pub fn extract_memory(&self){
let file_path = "burritos_memory.txt";
let write_to_file = |path| -> std::io::Result<File> {
let mut file = File::create(path)?;
file.write_all(&self.main_memory)?;
Ok(file)
};
match write_to_file(file_path) {
Err(e) => eprintln!("Failed to write memory to file: {}", e),
Ok(_) => println!("Memory extracted to {}", file_path)
};
}
/// Print the status of the machine to the standard output
///
/// ### Parameters
///
/// - **machine** the machine to get the status from
pub fn print_status(&self) {
println!("######### Machine status #########");
for i in (0..32).step_by(3) {
print!(">{0: <4} : {1:<16x} ", print::REG_X[i], self.int_reg.get_reg(i as u8));
print!(">{0: <4} : {1:<16x} ", print::REG_X[i+1], self.int_reg.get_reg((i+1) as u8));
if i+2 < 32 {
print!(">{0: <4} : {1:<16x} ", print::REG_X[i+2], self.int_reg.get_reg((i+2) as u8));
}
println!();
}
println!("________________SP________________");
let sp_index = self.int_reg.get_reg(2);
for i in 0..5 {
println!("SP+{:<2} : {:16x}", i*8, self.read_memory(8, (sp_index + i*8) as usize));
}
println!("##################################");
}
/// Get the state of the registers as a string
///
/// ### Parameters
///
/// - **machine** the machine to read the registers from
pub fn string_registers(&self) -> String {
let mut s = String::from("");
for i in 0..32 {
s.push_str(format!("{} ", self.int_reg.get_reg(i)).as_str());
}
s
}
/// Execute the instructions table of a machine putted in param
///
/// ### Parameters
///
/// - **machine** which contains a table of instructions
pub fn run(&mut self) {
loop {
match Machine::one_instruction(self) {
Ok(()) => (),
Err(e) => panic!("FATAL at pc {} -> {}", self.pc, e)
}
}
}
/// Execute the current instruction
///
/// ### Parameters
///
/// - **machine** which contains a table of instructions and a pc to the actual instruction
pub fn one_instruction(&mut self) -> Result<(), MachineError> {
if self.main_memory.len() <= self.pc as usize {
panic!("ERROR : number max of instructions rushed");
}
let mut val: [u8; 4] = [0; 4];
for i in 0..4 {
val[i] = self.main_memory[self.pc as usize + i];
}
let val = u32::from_be_bytes(val) as u64;
let inst : Instruction = decode(val);
self.print_status();
println!("executing instruction : {:016x} at pc {:x}", val, self.pc);
println!("{}", print::print(decode(val), self.pc as i32));
let trace = Self::string_registers(self);
self.registers_trace.push_str(format!("{}\n", trace).as_str());
self.pc += 4;
match inst.opcode {
// Treatment for: LOAD UPPER IMMEDIATE INSTRUCTION
RISCV_LUI => {
self.int_reg.set_reg(inst.rd, inst.imm31_12 as i64);
Ok(())
},
// Treatment for: ADD UPPER IMMEDIATE TO PC INSTRUCTION
RISCV_AUIPC => {
self.int_reg.set_reg(inst.rd, self.pc as i64 - 4 + inst.imm31_12 as i64);
Ok(())
},
// Treatement for: JUMP AND LINK INSTRUCTIONS (direct jump)
RISCV_JAL => {
self.int_reg.set_reg(inst.rd, self.pc as i64);
self.pc = (self.pc as i64 + inst.imm21_1_signed as i64 - 4) as u64;
Ok(())
},
// Treatment for: JUMP AND LINK REGISTER INSTRUCTIONS (indirect jump)
RISCV_JALR => {
let tmp = self.pc;
self.pc = (self.int_reg.get_reg(inst.rs1) + inst.imm12_I_signed as i64) as u64 & 0xfffffffe;
self.int_reg.set_reg(inst.rd, tmp as i64);
Ok(())
},
// Treatment for: BRANCH INSTRUCTIONS
RISCV_BR => self.branch_instruction(inst),
// Treatment for: LOAD INSTRUCTIONS
RISCV_LD => self.load_instruction(inst),
// Treatment for: STORE INSTRUCTIONS
RISCV_ST => self.store_instruction(inst),
// Treatment for: OPI INSTRUCTIONS
RISCV_OPI => self.opi_instruction(inst),
// Treatment for: OP INSTRUCTIONS
RISCV_OP => self.op_instruction(inst),
// Treatment for OPIW INSTRUCTIONS
RISCV_OPIW => self.opiw_instruction(inst),
// Treatment for: OPW INSTRUCTIONS
RISCV_OPW => self.opw_instruction(inst),
// Treatment for: FLOATING POINT INSTRUCTIONS
RISCV_FP => self.fp_instruction(inst),
// Treatment for: SYSTEM CALLS
RISCV_SYSTEM => Err(MachineError::new(format!("{:x}: System opcode\npc: {:x}", inst.opcode, self.pc).as_str())),
// Default case
_ => Err(MachineError::new(format!("{:x}: Unknown opcode\npc: {:x}", inst.opcode, self.pc).as_str()))
}
}
/// Treatement for Branch instructions
fn branch_instruction(&mut self, inst: Instruction) -> Result<(), MachineError> {
match inst.funct3 {
RISCV_BR_BEQ => {
if self.int_reg.get_reg(inst.rs1) == self.int_reg.get_reg(inst.rs2) {
self.pc = (self.pc as i64 + inst.imm13_signed as i64 - 4) as u64;
}
},
RISCV_BR_BNE => {
if self.int_reg.get_reg(inst.rs1) != self.int_reg.get_reg(inst.rs2) {
self.pc = (self.pc as i64 + inst.imm13_signed as i64 - 4) as u64;
}
},
RISCV_BR_BLT => {
if self.int_reg.get_reg(inst.rs1) < self.int_reg.get_reg(inst.rs2) {
self.pc = (self.pc as i64 + inst.imm13_signed as i64 - 4) as u64;
}
},
RISCV_BR_BGE => {
if self.int_reg.get_reg(inst.rs1) >= self.int_reg.get_reg(inst.rs2) {
self.pc = (self.pc as i64 + inst.imm13_signed as i64 - 4) as u64;
}
},
RISCV_BR_BLTU => {
if self.int_reg.get_reg(inst.rs1) < self.int_reg.get_reg(inst.rs2) {
self.pc = (self.pc as i64 + inst.imm13_signed as i64 - 4) as u64;
}
},
RISCV_BR_BGEU => {
if self.int_reg.get_reg(inst.rs1) >= self.int_reg.get_reg(inst.rs2) {
self.pc = (self.pc as i64 + inst.imm13_signed as i64 - 4) as u64;
}
},
_ => {
panic!("In BR switch case, this should never happen... Instr was {}", inst.value);
}
}
Ok(())
}
/// Executes RISC-V Load Instructions on the machine
fn load_instruction(&mut self, inst: Instruction) -> Result<(), MachineError> {
let mut set_reg = |rd, size| {
let val = self.read_memory(size, (self.int_reg.get_reg(inst.rs1) + inst.imm12_I_signed as i64) as usize) as i64;
self.int_reg.set_reg(rd, val);
Ok(())
};
match inst.funct3 {
RISCV_LD_LB | RISCV_LD_LBU => set_reg(inst.rd, 1),
RISCV_LD_LH | RISCV_LD_LHU => set_reg(inst.rd, 2),
RISCV_LD_LW | RISCV_LD_LWU => set_reg(inst.rd, 4),
RISCV_LD_LD => set_reg(inst.rd, 8),
_ => Err(MachineError::new(format!("In LD switch case, this should never happen... Instr was {}", inst.value).as_str()))
}
}
/// Executes RISC-V Store Instructions on the machine
fn store_instruction(&mut self, inst: Instruction) -> Result<(), MachineError> {
let mut store = |size| {
self.write_memory(
size,
(self.int_reg.get_reg(inst.rs1) + inst.imm12_S_signed as i64) as usize,
self.int_reg.get_reg(inst.rs2) as u64
);
Ok(())
};
match inst.funct3 {
RISCV_ST_STB => store(1),
RISCV_ST_STH => store(2),
RISCV_ST_STW => store(4),
RISCV_ST_STD => store(8),
_ => Err(MachineError::new(format!("In ST switch case, this should never happen... Instr was {}", inst.value).as_str()))
}
}
/// Executes RISC-V Integer Register-Immediate Instructions on the machine
fn opi_instruction(&mut self, inst: Instruction) -> Result<(), MachineError> {
match inst.funct3 {
RISCV_OPI_ADDI => self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) + inst.imm12_I_signed as i64),
RISCV_OPI_SLTI => self.int_reg.set_reg(inst.rd, (self.int_reg.get_reg(inst.rs1) < inst.imm12_I_signed as i64) as i64),
RISCV_OPI_XORI => self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) ^ inst.imm12_I_signed as i64),
RISCV_OPI_ORI => self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) | inst.imm12_I_signed as i64),
RISCV_OPI_ANDI => self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) & inst.imm12_I_signed as i64),
RISCV_OPI_SLLI => self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) << inst.shamt),
RISCV_OPI_SRI => if inst.funct7_smaller == RISCV_OPI_SRI_SRLI {
self.int_reg.set_reg(inst.rd, (self.int_reg.get_reg(inst.rs1) >> inst.shamt) & self.shiftmask[inst.shamt as usize] as i64);
} else { // SRAI
self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) >> inst.shamt);
},
_ => panic!("In OPI switch case, this should never happen... Instr was %x\n {}", inst.value)
}
Ok(())
}
/// Executes simple RISC-V mathematical operations on the machine
fn op_instruction(&mut self, inst: Instruction) -> Result<(), MachineError> {
let long_result: i128;
let unsigned_reg1: u64;
let unsigned_reg2: u64;
if inst.funct7 == 1 {
match inst.funct3 {
RISCV_OP_M_MUL => {
long_result = (self.int_reg.get_reg(inst.rs1) * self.int_reg.get_reg(inst.rs2)) as i128;
self.int_reg.set_reg(inst.rd, (long_result & 0xffffffffffffffff) as i64)
},
RISCV_OP_M_MULH => {
long_result = (self.int_reg.get_reg(inst.rs1) * self.int_reg.get_reg(inst.rs2)) as i128;
self.int_reg.set_reg(inst.rd, ((long_result >> 64) & 0xffffffffffffffff) as i64)
},
RISCV_OP_M_MULHSU => {
unsigned_reg2 = self.int_reg.get_reg(inst.rs2) as u64;
long_result = (self.int_reg.get_reg(inst.rs1) as u64 * unsigned_reg2) as i128;
self.int_reg.set_reg(inst.rd, ((long_result >> 64) & 0xffffffffffffffff) as i64)
},
RISCV_OP_M_MULHU => {
unsigned_reg1 = self.int_reg.get_reg(inst.rs1) as u64;
unsigned_reg2 = self.int_reg.get_reg(inst.rs2) as u64;
long_result = (unsigned_reg1 * unsigned_reg2) as i128;
self.int_reg.set_reg(inst.rd, ((long_result >> 64) & 0xffffffffffffffff) as i64);
},
RISCV_OP_M_DIV => self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) / self.int_reg.get_reg(inst.rs2)),
_ => panic!("RISCV_OP : funct7 = 1 (Multiplication) :: Error\n")
}
} else {
match inst.funct3 {
RISCV_OP_ADD => if inst.funct7 == RISCV_OP_ADD_ADD {
self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) + self.int_reg.get_reg(inst.rs2))
} else {
self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) - self.int_reg.get_reg(inst.rs2))
},
RISCV_OP_SLL => self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) << (self.int_reg.get_reg(inst.rs2) & 0x3f)),
RISCV_OP_SLT => if self.int_reg.get_reg(inst.rs1) < self.int_reg.get_reg(inst.rs2) {
self.int_reg.set_reg(inst.rd, 1)
} else {
self.int_reg.set_reg(inst.rd, 0)
},
RISCV_OP_SLTU => {
unsigned_reg1 = self.int_reg.get_reg(inst.rs1) as u64;
unsigned_reg2 = self.int_reg.get_reg(inst.rs2) as u64;
if unsigned_reg1 < unsigned_reg2 {
self.int_reg.set_reg(inst.rd, 1)
} else {
self.int_reg.set_reg(inst.rd, 0)
}
},
RISCV_OP_XOR => self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) ^ self.int_reg.get_reg(inst.rs2)),
RISCV_OP_SR => self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) >> self.int_reg.get_reg(inst.rs2)), // RISCV_OP_SR_SRL inaccessible
RISCV_OP_OR => self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) | self.int_reg.get_reg(inst.rs2)),
RISCV_OP_AND => self.int_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) & self.int_reg.get_reg(inst.rs2)),
_ => panic!("RISCV_OP undefined case\n")
}
}
Ok(())
}
/// Exectutes simple RISC-V *iw instructions on the machine
fn opiw_instruction(&mut self, inst: Instruction) -> Result<(), MachineError> {
let local_data = self.int_reg.get_reg(inst.rs1);
match inst.funct3 {
RISCV_OPIW_ADDIW => {
let result = local_data + inst.imm12_I_signed as i64;
self.int_reg.set_reg(inst.rd, result)
},
RISCV_OPIW_SLLIW => {
let result = local_data << inst.shamt;
self.int_reg.set_reg(inst.rd, result)
},
RISCV_OPIW_SRW => {
let result = if inst.funct7 == RISCV_OPIW_SRW_SRLIW {
(local_data >> inst.shamt) & self.shiftmask[32 + inst.shamt as usize] as i64
} else { // SRAIW
local_data >> inst.shamt
};
self.int_reg.set_reg(inst.rd, result)
},
_ => panic!("In OPI switch case, this should never happen... Instr was {}\n", inst.value),
}
Ok(())
}
/// Executes simple RISC-V *w instructions on the machine
fn opw_instruction(&mut self, inst: Instruction) -> Result<(), MachineError> {
if inst.funct7 == 1 { // rv64m
let local_data_a = self.int_reg.get_reg(inst.rs1) & 0xffffffff;
let local_data_b = self.int_reg.get_reg(inst.rs2) & 0xffffffff;
let local_data_a_unsigned = self.int_reg.get_reg(inst.rs1) & 0xffffffff;
let local_data_b_unsigned = self.int_reg.get_reg(inst.rs2) & 0xffffffff;
// Match case for multiplication operations (in standard extension RV32M)
match inst.funct3 {
RISCV_OPW_M_MULW => self.int_reg.set_reg(inst.rd, local_data_a * local_data_b),
RISCV_OPW_M_DIVW => self.int_reg.set_reg(inst.rd, local_data_a / local_data_b),
RISCV_OPW_M_DIVUW => self.int_reg.set_reg(inst.rd, local_data_a_unsigned / local_data_b_unsigned),
RISCV_OPW_M_REMW => self.int_reg.set_reg(inst.rd, local_data_a % local_data_b),
RISCV_OPW_M_REMUW => self.int_reg.set_reg(inst.rd, local_data_a_unsigned % local_data_b_unsigned),
_ => panic!("this instruction ({}) doesn't exists", inst.value)
}
} else { // others rv64 OPW operations
let local_dataa = self.int_reg.get_reg(inst.rs1) & 0xffffffff;
let local_datab = self.int_reg.get_reg(inst.rs2) & 0xffffffff;
// Match case for base OP operation
match inst.funct3 {
RISCV_OPW_ADDSUBW => if inst.funct7 == RISCV_OPW_ADDSUBW_ADDW {
self.int_reg.set_reg(inst.rd, local_dataa + local_datab);
} else { // SUBW
self.int_reg.set_reg(inst.rd, local_dataa - local_datab);
},
RISCV_OPW_SLLW => self.int_reg.set_reg(inst.rd, local_dataa << (local_datab & 0x1f)),
RISCV_OPW_SRW => if inst.funct7 == RISCV_OPW_SRW_SRLW {
self.int_reg.set_reg(inst.rd, local_dataa >> (local_datab & 0x1f) & self.shiftmask[32 + local_datab as usize] as i64)
} else { // SRAW
self.int_reg.set_reg(inst.rd, local_dataa >> (local_datab & 0x1f))
},
_ => panic!("this instruction ({}) doesn't exists", inst.value)
}
}
Ok(())
}
/// Executes simple RISC-V floating point instructions on the machine
fn fp_instruction(&mut self, inst: Instruction) -> Result<(), MachineError> {
match inst.funct7 {
RISCV_FP_ADD => self.fp_reg.set_reg(inst.rd, self.fp_reg.get_reg(inst.rs1) + self.fp_reg.get_reg(inst.rs2)),
RISCV_FP_SUB => self.fp_reg.set_reg(inst.rd, self.fp_reg.get_reg(inst.rs1) - self.fp_reg.get_reg(inst.rs2)),
RISCV_FP_MUL => self.fp_reg.set_reg(inst.rd, self.fp_reg.get_reg(inst.rs1) * self.fp_reg.get_reg(inst.rs2)),
RISCV_FP_DIV => self.fp_reg.set_reg(inst.rd, self.fp_reg.get_reg(inst.rs1) / self.fp_reg.get_reg(inst.rs2)),
RISCV_FP_SQRT => self.fp_reg.set_reg(inst.rd, self.fp_reg.get_reg(inst.rs1).sqrt()),
RISCV_FP_FSGN => {
let local_float = self.fp_reg.get_reg(inst.rs1);
match inst.funct3 {
RISCV_FP_FSGN_J => if self.fp_reg.get_reg(inst.rs2) < 0f32 {
self.fp_reg.set_reg(inst.rd, -local_float)
} else {
self.fp_reg.set_reg(inst.rd, local_float)
},
RISCV_FP_FSGN_JN => if self.fp_reg.get_reg(inst.rs2) < 0f32 {
self.fp_reg.set_reg(inst.rd, local_float)
} else {
self.fp_reg.set_reg(inst.rd, -local_float)
},
RISCV_FP_FSGN_JX => if (self.fp_reg.get_reg(inst.rs2) < 0.0 && self.fp_reg.get_reg(inst.rs1) >= 0.0) ||
(self.fp_reg.get_reg(inst.rs2) >= 0.0 && self.fp_reg.get_reg(inst.rs1) < 0.0) {
self.fp_reg.set_reg(inst.rd, -local_float)
} else {
self.fp_reg.set_reg(inst.rd, local_float)
},
_ => panic!("this instruction ({}) doesn't exists", inst.value)
}
},
RISCV_FP_MINMAX => {
let r1 = self.fp_reg.get_reg(inst.rs1);
let r2 = self.fp_reg.get_reg(inst.rs2);
match inst.funct3 {
RISCV_FP_MINMAX_MIN => self.fp_reg.set_reg(inst.rd, if r1 < r2 {r1} else {r2}),
RISCV_FP_MINMAX_MAX => self.fp_reg.set_reg(inst.rd, if r1 > r2 {r1} else {r2}),
_ => panic!("this instruction ({}) doesn't exists", inst.value)
}
},
RISCV_FP_FCVTW => {
if inst.rs2 == RISCV_FP_FCVTW_W {
self.int_reg.set_reg(inst.rd, self.fp_reg.get_reg(inst.rs1) as i64)
} else {
self.int_reg.set_reg(inst.rd, (self.fp_reg.get_reg(inst.rs1) as u64) as i64)
}
},
RISCV_FP_FCVTS => {
if inst.rs2 == RISCV_FP_FCVTS_W {
self.fp_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) as f32);
} else {
self.fp_reg.set_reg(inst.rd, (self.int_reg.get_reg(inst.rs1) as u32) as f32);
}
},
RISCV_FP_FMVW => self.fp_reg.set_reg(inst.rd, self.int_reg.get_reg(inst.rs1) as f32),
RISCV_FP_FMVXFCLASS => {
if inst.funct3 == RISCV_FP_FMVXFCLASS_FMVX {
self.int_reg.set_reg(inst.rd, self.fp_reg.get_reg(inst.rs1) as i64);
} else {
panic!("Fclass instruction is not handled in riscv simulator");
}
},
RISCV_FP_FCMP => {
match inst.funct3 {
RISCV_FP_FCMP_FEQ => self.int_reg.set_reg(inst.rd, (self.fp_reg.get_reg(inst.rs1) == self.fp_reg.get_reg(inst.rs2)) as i64),
RISCV_FP_FCMP_FLT => self.int_reg.set_reg(inst.rd, (self.fp_reg.get_reg(inst.rs1) < self.fp_reg.get_reg(inst.rs2)) as i64),
RISCV_FP_FCMP_FLE => self.int_reg.set_reg(inst.rd, (self.fp_reg.get_reg(inst.rs1) <= self.fp_reg.get_reg(inst.rs2)) as i64),
_ => panic!("this instruction ({}) doesn't exists", inst.value)
}
},
_ => panic!("this instruction ({}) doesn't exists", inst.value)
}
Ok(())
}
/// print memory FOR DEBUG
///
/// "@"adress [16 bytes]
pub fn print_memory(&self, from: usize, to: usize) {
for i in from..to {
if i%16 == 0 {
print!("\n@{:04x} ", i);
}
print!("{:02x}", self.main_memory[i]);
}
println!();
}
/// Get value from int register
pub fn read_int_register(&self, index: usize) -> i64 {
self.int_reg.get_reg(index as u8)
}
/// Get value from float register
pub fn read_fp_register(&self, index: usize) -> f32 {
self.fp_reg.get_reg(index as u8)
}
/// Write into int register
pub fn write_int_register(&mut self, index: usize, value: i64) {
self.int_reg.set_reg(index as u8, value);
}
/// Write info float register
pub fn write_fp_register(&mut self, index: usize, value: f32) {
self.fp_reg.set_reg(index as u8, value);
}
}
#[cfg(test)]
mod test {
use std::fs;
use crate::simulator::{machine::Machine, mem_cmp};
macro_rules! get_full_path {
($prefix: expr, $test_name:expr) => {{
let mut s = String::from("test/machine/");
s.push_str($prefix);
s.push_str($test_name);
s.push_str(".txt");
&s.to_owned()
}}
}
macro_rules! init_test {
($a:expr) => {{
let mut m = Machine::init_machine();
let end_file_name = { let mut s = String::from($a); s.push_str("End"); s };
let memory_before = mem_cmp::MemChecker::from(get_full_path!("memory", $a)).unwrap();
let memory_after = mem_cmp::MemChecker::from(get_full_path!("memory", &end_file_name)).unwrap();
mem_cmp::MemChecker::fill_memory_from_mem_checker(&memory_before, &mut m);
Machine::run(&mut m);
let expected_trace = fs::read_to_string(get_full_path!("reg_trace", $a)).unwrap();
assert!(mem_cmp::MemChecker::compare_machine_memory(&memory_after, &m));
assert!(expected_trace.contains(m.registers_trace.as_str()));
}};
}
#[test]
fn test_init_machine() {
let _ = Machine::init_machine();
}
#[test]
fn test_read_memory() {
let mut m = Machine::init_machine();
m.main_memory[4] = 43;
m.main_memory[5] = 150;
assert_eq!((43 << 8) + 150, m.read_memory(2, 4));
}
#[test]
fn test_write_memory() {
let mut m = Machine::init_machine();
m.write_memory(2, 6, (43 << 8) + 150);
assert_eq!(43, m.main_memory[6]);
assert_eq!(150, m.main_memory[7]);
m.write_memory(4, 8, (52 << 24) + (20 << 16) + (43 << 8) + 150);
assert_eq!(52, m.main_memory[8]);
assert_eq!(20, m.main_memory[9]);
assert_eq!(43, m.main_memory[10]);
assert_eq!(150, m.main_memory[11]);
}
#[test]
fn test_comp() {
init_test!("Comp")
}
#[test]
fn test_add() {
init_test!("Add")
}
#[test]
fn test_div() {
init_test!("Div")
}
#[test]
fn test_if() {
init_test!("If")
}
#[test]
fn test_jump() {
init_test!("Jump")
}
#[test]
fn test_mul() {
init_test!("Mult")
}
#[test]
fn test_ret() {
init_test!("Ret")
}
#[test]
fn test_sub() {
init_test!("Sub")
}
#[test]
fn test_switch() {
init_test!("Switch")
}
}