BurritOS/src/kernel/thread_manager.rs

640 lines
26 KiB
Rust

//! # Thread manager
//!
//! This module describes the data structure and the methods used for thread scheduling
//! in the BurritOS operating system. A struct named [`ThreadManager`] holds the list of
//! all existing [`Thread`] instances and synchronization objects, such as
//! [`Lock`](crate::kernel::synch::Lock),
//! [`Semaphore`](crate::kernel::synch::Semaphore) and
//! [`Condition`](crate::kernel::synch::Condition).
//!
//! ## Purpose
//!
//! [`ThreadManager`] holds the state of the system processes using the following subcomponents:
//!
//! ### Two lists of threads
//!
//! - **ready_list**: The list of threads ready to be executed
//! - **g_alive**: The list of currently executing threads
//!
//! The difference between the two above lists lies in the state of the threads in question.
//! Ready threads have just been enqueued. They are not being executed yet. The second list is
//! needed because many threads may be executing at a given time. However, only a single thread
//! can be handled by the machine at a time. The system thus needs to keep in memory the alive
//! threads in case the currently running thread finishes or gets rescheduled.
//!
//! ### A list of synchronization objects
//!
//! Locks, Semaphores and Conditions allow resource sharing among running threads. Since resources
//! can only be accessed by a single thread at a time, we need data structures to signal other
//! threads that a resource may be busy or unavailable; say for example that:
//!
//! - Thread **A** wants to write to a file while **B** is currently reading said file.
//! - Thread **A** mutating the state of the file could cause issues for **B**.
//! - Therefore **B** needs to lock the file in question to avoid such issues.
//! - Thread **A** will have to wait for **B** to finish reading the file.
//!
//! These synchronization objects are held in an instance of the ObjAddr structure held by
//! ThreadManager. Their state is mutated depending on the actions of the currently running thread
//! through methods such as [`ThreadManager::sem_p`].
//!
//! ## Usage
//!
//! [`ThreadManager`] is thought as a subcomponent of the [`System`](crate::kernel::system::System) struct.
//! Instanciating [`System`](crate::kernel::system::System) will automatically instanciate a [`ThreadManager`]
//!
//! Manually loading a [`Thread`] into [`ThreadManager`] to execute a program with BurritOS could look like
//! this:
//!
//! ```
//! fn load_thread_manually(args: ...) {
//! let mut system = System::new(args.debug);
//!
//! let thread_exec = Thread::new(args.executable.as_str());
//! let thread_exec = Rc::new(RefCell::new(thread_exec));
//! system.get_thread_manager().get_g_alive().push(Rc::clone(&thread_exec));
//!
//! let owner1 = Process { num_thread: 0 };
//! let owner1 = Rc::new(RefCell::new(owner1));
//! system.get_thread_manager().start_thread(Rc::clone(&thread_exec), owner1, loader.elf_header.entrypoint, ptr, -1);
//!
//! let to_run = system.get_thread_manager().find_next_to_run().unwrap();
//! system.get_thread_manager().switch_to(&mut machine, Rc::clone(&to_run));
//!
//! machine.run(&mut system);
//! }
//! ```
//!
//! ## Imports
//!
//! The [`List`] and [`ObjAddr`] submodules used in this module are defined in the utility
//! module. The source code of [`ObjAddr`] has been decoupled from thread_manager in an effort
//! to keep this module concise.
use std::{
rc::Rc,
cell::{
RefCell,
Ref
}
};
use crate::{
utility::{
list::List,
objaddr::ObjAddr
},
simulator::{
machine::{
NUM_INT_REGS,
NUM_FP_REGS,
Machine
},
interrupt::InterruptStatus,
error::{
MachineOk,
MachineError
}
},
kernel::{
thread::Thread,
process::Process
}
};
/// Using this type alias to simplify struct and method definitions
pub type ThreadRef = Rc<RefCell<Thread>>;
/// # Thread manager
///
/// An instance of this struct is responsible for managing threads on behalf of the system
#[derive(PartialEq)]
pub struct ThreadManager {
/// Current running thread
pub g_current_thread: Option<ThreadRef>,
/// The list of alive threads
pub g_alive: List<ThreadRef>,
/// Thread in ready state waiting to become active
ready_list: List<ThreadRef>,
/// List of objects created by the thread manager (such as Locks and Semaphores)
obj_addrs: ObjAddr,
/// If true, enables debug mode
debug: bool,
sp_max: u64,
}
impl ThreadManager {
/// Thread manager constructor
pub fn new(debug: bool) -> Self {
Self {
g_current_thread: Option::None,
g_alive: List::default(),
ready_list: List::default(),
obj_addrs: ObjAddr::init(),
debug,
sp_max: 0
}
}
/// Mark a thread as aready, but not necessarily running yet.
///
/// Put it in the ready list, for later scheduling onto the CPU.
///
/// ## Pamameter
///
/// **thread** is the thread to be put on the read list
pub fn ready_to_run(&mut self, thread: ThreadRef) {
self.ready_list.push(thread);
}
/// Return the next thread to be scheduled onto the CPU.
/// If there are no ready threads, return Option::None
///
/// Thread is removed from the ready list.
///
/// **return** Thread thread to be scheduled
pub fn find_next_to_run(&mut self) -> Option<ThreadRef> {
self.ready_list.pop()
}
/// Dispatch the CPU to next_thread. Save the state of the old thread
/// and load the state of the new thread.
///
/// We assume the state of the previously running thread has already been changed from running to blocked or ready.
///
/// Global variable g_current_thread become next_thread
///
/// ## Parameter
///
/// **next_thread** thread to dispatch to the CPU
pub fn switch_to(&mut self, machine: &mut Machine, next_thread: ThreadRef) {
if let Some(old_thread) = self.get_g_current_thread() {
let old_thread = old_thread.clone();
self.thread_save_processor_state(machine, old_thread.clone());
// old_thread.save_simulator_state();
if old_thread != next_thread {
self.debug(format!("switching from \"{}\" to \"{}\"", old_thread.borrow().get_name(), next_thread.borrow().get_name()));
self.thread_restore_processor_state(machine, Rc::clone(&next_thread));
// next_thread.restore_simulator_state();
debug_assert!(!self.ready_list.contains(&next_thread));
self.set_g_current_thread(Some(next_thread));
}
} else {
self.thread_restore_processor_state(machine, Rc::clone(&next_thread));
// next_thread.restore_simulator_state();
self.set_g_current_thread(Some(next_thread));
}
}
/// Start a thread, attaching it to a process
pub fn start_thread(&mut self, thread: ThreadRef, owner: Rc<RefCell<Process>>, func_pc: u64, sp_loc: u64, argument: i64) {
self.debug(format!("starting thread \"{}\"", thread.borrow().get_name()));
let mut thread_m = thread.borrow_mut();
assert_eq!(thread_m.process, Option::None);
thread_m.process = Option::Some(Rc::clone(&owner));
let ptr = sp_loc; // todo addrspace
thread_m.init_thread_context(func_pc, ptr, argument);
owner.borrow_mut().num_thread += 1;
self.get_g_alive().push(Rc::clone(&thread));
self.ready_to_run(Rc::clone(&thread));
}
/// Wait for another thread to finish its execution
pub fn thread_join(&mut self, machine: &mut Machine, waiter: ThreadRef, waiting_for: ThreadRef) {
let waiting_for = Rc::clone(&waiting_for);
if self.get_g_alive().contains(&waiting_for) {
waiting_for.borrow_mut().join_thread.push(Rc::clone(&waiter));
self.thread_yield(machine, Rc::clone(&waiter), false);
}
}
/// Relinquish the CPU if any other thread is runnable.
///
/// Cannot use yield as a function name -> reserved name in rust
///
/// ## Parameters
///
/// **is_ready** true if **thread** should be readded to ready_to_run list, false otherwise. Typically false when joining per example
pub fn thread_yield(&mut self, machine: &mut Machine, thread: ThreadRef, is_ready: bool) {
let old_status = machine.interrupt.set_status(crate::simulator::interrupt::InterruptStatus::InterruptOff);
self.debug(format!("Yeilding thread: \"{}\"", thread.borrow().get_name()));
debug_assert_eq!(&Option::Some(Rc::clone(&thread)), self.get_g_current_thread());
let next_thread = self.find_next_to_run();
if let Some(next_thread) = next_thread {
if is_ready {
self.ready_to_run(thread);
}
self.switch_to(machine, next_thread);
}
machine.interrupt.set_status(old_status);
}
/// Put the thread to sleep and relinquish the processor
pub fn thread_sleep(&mut self, machine: &mut Machine, thread: ThreadRef) {
debug_assert_eq!(Option::Some(Rc::clone(&thread)), self.g_current_thread);
debug_assert_eq!(machine.interrupt.get_status(), InterruptStatus::InterruptOff);
self.debug(format!("Sleeping thread {}", thread.borrow().get_name()));
let mut next_thread = self.find_next_to_run();
while next_thread.is_none() {
eprintln!("Nobody to run => idle");
machine.interrupt.idle();
next_thread = self.find_next_to_run();
}
self.switch_to(machine, Rc::clone(&next_thread.unwrap()));
}
/// Finish the execution of the thread and prepare its deallocation
pub fn thread_finish(&mut self, machine: &mut Machine, thread: ThreadRef) {
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
assert!(self.g_alive.remove(Rc::clone(&thread)));
self.debug(format!("Finishing thread {}", thread.borrow().get_name()));
// g_objets_addrs->removeObject(self.thread) // a ajouté plus tard
for (_, el) in thread.borrow().join_thread.iter().enumerate() {
self.ready_to_run(Rc::clone(&el));
}
self.thread_sleep(machine, Rc::clone(&thread));
machine.interrupt.set_status(old_status);
}
/// Save the CPU state of a user program on a context switch.
pub fn thread_save_processor_state(&mut self, machine: &mut Machine, thread: ThreadRef) {
let mut t = thread.borrow_mut();
for i in 0..NUM_INT_REGS {
t.thread_context.int_registers[i] = machine.read_int_register(i);
}
for i in 0..NUM_FP_REGS {
t.thread_context.float_registers[i] = machine.read_fp_register(i);
}
t.thread_context.pc = machine.pc;
}
/// Restore the CPU state of a user program on a context switch.
pub fn thread_restore_processor_state(&self, machine: &mut Machine, thread: ThreadRef) {
let t: Ref<_> = thread.borrow();
for i in 0..NUM_INT_REGS {
machine.write_int_register(i, t.thread_context.int_registers[i]);
}
machine.pc = t.thread_context.pc;
}
/// Decrement the value, and wait if it becomes < 0. Checking the
/// value and decrementing must be done atomically, so we
/// need to disable interrupts before checking the value.
///
/// Note that thread_manager::thread_sleep assumes that interrupts are disabled
/// when it is called.
///
/// ### Parameters
/// - *id_sema* id of the semaphore, stored in [`ObjAddr`], id given by user program thought exceptions
/// - *machine* Current state of the machine
pub fn sem_p(&mut self, id_sema: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
let thread = match self.get_g_current_thread() {
Some(thread) => Rc::clone(thread),
None => Err("sem_p error: current thread should not be None")?
};
let sema = match self.get_obj_addrs().search_semaphore(id_sema) {
Some(sema) => sema,
None => Err("sem_p error: cannot find semaphore")?
};
sema.counter -= 1;
if sema.counter < 0 {
sema.waiting_queue.push(thread.clone());
self.thread_sleep(machine, thread);
}
machine.interrupt.set_status(old_status);
Ok(MachineOk::Ok)
}
/// Increment semaphore value, waking up a waiting thread if any.
/// As with P(), this operation must be atomic, so we need to disable
/// interrupts.
///
/// scheduler::ready_to_run() assumes that interrupts
/// are disabled when it is called.
///
/// ### Parameters
/// - *id_sema* id of the semaphore, stored in [`ObjAddr`], id given by user program thought exceptions
/// - **machine** the machine where the threads are executed
pub fn sem_v(&mut self, id_sema: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
let sema = match self.get_obj_addrs().search_semaphore(id_sema) {
Some(sema) => sema,
None => Err("sem_v error: cannot find semaphore")?
};
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
sema.counter += 1;
if let Some(thread) = sema.waiting_queue.pop() {
self.ready_to_run(thread)
}
machine.interrupt.set_status(old_status);
Ok(MachineOk::Ok)
}
/// Wait until the lock become free. Checking the
/// state of the lock (free or busy) and modify it must be done
/// atomically, so we need to disable interrupts before checking
/// the value of free.
///
/// Note that thread_manager::thread_seep assumes that interrupts are disabled
/// when it is called.
///
/// ### Parameters
/// - **id** id of the lock, stored in [`ObjAddr`], id given by user program thought exceptions
/// - **machine** the machine where the threads are executed
pub fn lock_acquire(&mut self, id: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
let current_thread = match self.get_g_current_thread() {
Some(thread) => Rc::clone(thread),
None => Err("lock_acquire error: current_thread should not be None.")?
};
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
if let Some(lock) = self.get_obj_addrs().search_lock(id) {
if lock.free {
lock.free = false;
lock.owner = Some(current_thread)
} else {
lock.waiting_queue.push(current_thread.clone());
self.thread_sleep(machine, current_thread);
}
} else {
Err("lock_acquire error: cannot find Lock.")?
}
machine.interrupt.set_status(old_status);
Ok(MachineOk::Ok)
}
/// Wake up a waiter if necessary, or release it if no thread is waiting.
pub fn lock_release(&mut self, id: i32, machine: &mut Machine) -> Result<MachineOk, MachineError> {
let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff);
let current_thread = match self.get_g_current_thread() {
Some(thread) => Rc::clone(thread),
None => Err(String::from("lock_release error: current_thread should not be None."))?
};
let mut lock = match self.get_obj_addrs().search_lock(id) {
Some(lock) => lock,
None => Err(String::from("lock_release error: cannot find lock."))?
};
if let Some(lock_owner) = &lock.owner {
if current_thread.eq(lock_owner) { // is_held_by_current_thread
match lock.waiting_queue.pop() {
Some(th) => {
lock.owner = Some(Rc::clone(&th));
self.ready_to_run(Rc::clone(&th));
},
None => {
lock.free = true;
lock.owner = None;
}
}
}
};
// self.get_obj_addrs().update_lock(id, lock);
machine.interrupt.set_status(old_status);
Ok(MachineOk::Ok)
}
/// Currently running thread
pub fn get_g_current_thread(&mut self) -> &Option<ThreadRef> {
&self.g_current_thread
}
/// List of alive threads
pub fn get_g_alive(&mut self) -> &mut List<ThreadRef> {
&mut self.g_alive
}
/// Set currently running thread
pub fn set_g_current_thread(&mut self, thread: Option<ThreadRef>) {
self.g_current_thread = thread
}
/// Returns a mutable reference to the ObjAddr field of this thread_manager
pub fn get_obj_addrs(&mut self) -> &mut ObjAddr {
&mut self.obj_addrs
}
/// Prints debug messages if self.debug is set to true.
fn debug(&self, message: String) {
if self.debug {
println!("{}", message);
}
}
pub fn get_sp_max(&self) -> u64 {
self.sp_max
}
pub fn set_sp_max(&mut self, sp_max: u64) {
self.sp_max = sp_max;
}
}
#[cfg(test)]
mod test {
use std::{rc::Rc, cell::RefCell};
use crate::{simulator::{machine::Machine, loader}, kernel::{system::System, thread::Thread, process::Process, thread_manager::ThreadManager, synch::Semaphore}, utility::cfg::get_debug_configuration};
use crate::kernel::synch::Lock;
#[test]
fn test_thread_context() {
let mut machine = Machine::new(true, get_debug_configuration());
let (loader, ptr) = loader::Loader::new("./target/guac/halt.guac", &mut machine, 0).expect("IO Error");
let start_pc = loader.elf_header.entrypoint;
let system = &mut System::new(true);
let thread1 = Thread::new("th1");
let thread1 = Rc::new(RefCell::new(thread1));
system.get_thread_manager().get_g_alive().push(Rc::clone(&thread1));
let owner1 = Process { num_thread: 0 };
let owner1 = Rc::new(RefCell::new(owner1));
system.get_thread_manager().start_thread(Rc::clone(&thread1), owner1, loader.elf_header.entrypoint, ptr + machine.page_size, -1);
debug_assert_eq!(thread1.borrow_mut().thread_context.pc, start_pc);
debug_assert!(system.get_thread_manager().get_g_alive().contains(&Rc::clone(&thread1)));
let to_run = system.get_thread_manager().find_next_to_run().unwrap();
debug_assert_eq!(to_run, Rc::clone(&thread1));
system.get_thread_manager().switch_to(&mut machine, Rc::clone(&to_run));
debug_assert_eq!(system.get_thread_manager().g_current_thread, Option::Some(Rc::clone(&thread1)));
debug_assert_eq!(machine.pc, loader.elf_header.entrypoint);
machine.run(system);
}
#[test]
fn test_lock_single(){
let mut machine = Machine::new(true, get_debug_configuration());
let mut thread_manager = ThreadManager::new(true);
let lock = Lock::new();
let lock_id = thread_manager.get_obj_addrs().add_lock(lock);
let thread = Rc::new(RefCell::new(Thread::new("test_lock")));
let thread_test = thread.clone();
thread_manager.ready_to_run(Rc::clone(&thread));
thread_manager.set_g_current_thread(Some(thread));
thread_manager.lock_acquire(lock_id, &mut machine).expect("lock acquire return an error: ");
{
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
assert_eq!(lock.owner,Some(thread_test));
assert!(!lock.free);
assert!(lock.waiting_queue.is_empty());
}
thread_manager.lock_release(lock_id, &mut machine).expect("lock release return an error: ");
{
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
assert_eq!(lock.owner, None);
assert!(lock.free);
assert!(lock.waiting_queue.is_empty());
}
}
#[test]
fn test_lock_multiple() {
let mut machine = Machine::new(true, get_debug_configuration());
let mut thread_manager = ThreadManager::new(true);
let lock = Lock::new();
let lock_id = thread_manager.get_obj_addrs().add_lock(lock);
let thread_1 = Rc::new(RefCell::new(Thread::new("test_lock_1")));
let thread_2 = Rc::new(RefCell::new(Thread::new("test_lock_2")));
thread_manager.ready_to_run(thread_1.clone());
thread_manager.ready_to_run(thread_2.clone());
thread_manager.set_g_current_thread(Some(thread_1.clone()));
thread_manager.lock_acquire(lock_id, &mut machine).expect("lock acquire return an error at first iteration: ");
{
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
assert_eq!(lock.owner,Some(thread_1.clone()));
assert!(!lock.free);
assert!(lock.waiting_queue.is_empty());
}
thread_manager.set_g_current_thread(Some(thread_2.clone()));
thread_manager.lock_acquire(lock_id, &mut machine).expect("lock acquire return an error at second iteration: ");
{
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
assert_eq!(lock.owner,Some(thread_1.clone()));
assert!(!lock.free);
assert_eq!(lock.waiting_queue.iter().count(),1);
}
thread_manager.lock_release(lock_id, &mut machine).expect("lock release return an error at first iteration: ");
{
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
assert_eq!(lock.owner, Some(thread_2.clone()));
assert!(!lock.free);
assert!(lock.waiting_queue.is_empty());
}
thread_manager.set_g_current_thread(Some(thread_2.clone()));
thread_manager.lock_release(lock_id, &mut machine).expect("lock release return an error at second iteration: ");
{
let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap();
assert!(lock.waiting_queue.is_empty());
assert_eq!(lock.owner, None);
assert!(lock.free);
}
}
#[test]
fn test_semaphore_single() {
// Init
let mut machine = Machine::new(true, get_debug_configuration());
let mut thread_manager = ThreadManager::new(true);
let semaphore = Semaphore::new(1);
let sema_id = thread_manager.get_obj_addrs().add_semaphore(semaphore);
let thread = Rc::new(RefCell::new(Thread::new("test_semaphore")));
thread_manager.ready_to_run(Rc::clone(&thread));
thread_manager.set_g_current_thread(Some(thread));
// P
thread_manager.sem_p(sema_id, &mut machine).expect("semaphore P return an error: ");
{
let semaphore = thread_manager.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 0);
assert!(semaphore.waiting_queue.is_empty());
}
// V
thread_manager.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
{
let semaphore = thread_manager.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 1);
assert!(semaphore.waiting_queue.is_empty());
}
}
#[test]
fn test_semaphore_multiple() {
// Init
let mut tm = ThreadManager::new(true);
let mut machine = Machine::new(true, get_debug_configuration());
let semaphore = Semaphore::new(2);
let sema_id = tm.get_obj_addrs().add_semaphore(semaphore);
let thread1 = Rc::new(RefCell::new(Thread::new("test_semaphore_1")));
let thread2 = Rc::new(RefCell::new(Thread::new("test_semaphore_2")));
let thread3 = Rc::new(RefCell::new(Thread::new("test_semaphore_3")));
// let mut borrow_tm = tm.borrow_mut();
// let scheduler = &mut tm.g_scheduler;
tm.ready_to_run(Rc::clone(&thread1));
tm.ready_to_run(Rc::clone(&thread2));
tm.ready_to_run(Rc::clone(&thread3));
// P
tm.set_g_current_thread(Some(Rc::clone(&thread1)));
tm.sem_p(sema_id, &mut machine).expect("semaphore P return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 1);
assert!(semaphore.waiting_queue.is_empty());
}
tm.set_g_current_thread(Some(Rc::clone(&thread2)));
tm.sem_p(sema_id, &mut machine).expect("semaphore P return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 0);
assert!(semaphore.waiting_queue.is_empty());
}
tm.set_g_current_thread(Some(Rc::clone(&thread3)));
tm.sem_p( sema_id, &mut machine).expect("semaphore P return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, -1);
assert!(semaphore.waiting_queue.iter().count() == 1);
}
// V
tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 0);
assert!(semaphore.waiting_queue.is_empty());
}
tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 1);
assert!(semaphore.waiting_queue.is_empty());
}
tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: ");
{
let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap();
assert_eq!(semaphore.counter, 2);
assert!(semaphore.waiting_queue.is_empty());
}
}
}