use std::{ rc::Rc, cell::{ RefCell, Ref } }; use crate::{ utility::{ list::List, objaddr::ObjAddr }, simulator::{ machine::{ NUM_INT_REGS, NUM_FP_REGS, Machine }, interrupt::InterruptStatus, error::{ MachineOk, MachineError } } }; use super::{thread::Thread, process::Process}; /// # Thread manager /// /// An instance of this struct is responsible for managing threads on behalf of the system #[derive(PartialEq)] pub struct ThreadManager { /// Current running thread pub g_current_thread: Option>>, /// The list of alive threads pub g_alive: List>>, /// Thread in ready state waiting to become active ready_list: List>>, obj_addrs: ObjAddr, debug: bool } impl ThreadManager { /// Thread manager constructor pub fn new(debug: bool) -> Self { Self { g_current_thread: Option::None, g_alive: List::default(), ready_list: List::default(), obj_addrs: ObjAddr::init(), debug } } /// Mark a thread as aready, but not necessarily running yet. /// /// Put it in the ready list, for later scheduling onto the CPU. /// /// ## Pamameter /// /// **thread** is the thread to be put on the read list pub fn ready_to_run(&mut self, thread: Rc>) { self.ready_list.push(thread); } /// Return the next thread to be scheduled onto the CPU. /// If there are no ready threads, return Option::None /// /// Thread is removed from the ready list. /// /// **return** Thread thread to be scheduled pub fn find_next_to_run(&mut self) -> Option>> { self.ready_list.pop() } /// Dispatch the CPU to next_thread. Save the state of the old thread /// and load the state of the new thread. /// /// We assume the state of the previously running thread has already been changed from running to blocked or ready. /// /// Global variable g_current_thread become next_thread /// /// ## Parameter /// /// **next_thread** thread to dispatch to the CPU pub fn switch_to(&mut self, machine: &mut Machine, next_thread: Rc>) { if let Some(old_thread) = self.get_g_current_thread() { let old_thread = old_thread.clone(); self.thread_save_processor_state(machine, old_thread.clone()); // old_thread.save_simulator_state(); if old_thread != next_thread { self.debug(format!("switching from \"{}\" to \"{}\"", old_thread.borrow().get_name(), next_thread.borrow().get_name())); self.thread_restore_processor_state(machine, Rc::clone(&next_thread)); // next_thread.restore_simulator_state(); debug_assert!(!self.ready_list.contains(&next_thread)); self.set_g_current_thread(Some(next_thread)); } } else { self.thread_restore_processor_state(machine, Rc::clone(&next_thread)); // next_thread.restore_simulator_state(); self.set_g_current_thread(Some(next_thread)); } } /// Start a thread, attaching it to a process pub fn start_thread(&mut self, thread: Rc>, owner: Rc>, func_pc: u64, sp_loc: u64, argument: i64) { let mut thread_m = thread.borrow_mut(); assert_eq!(thread_m.process, Option::None); thread_m.process = Option::Some(Rc::clone(&owner)); let ptr = sp_loc; // todo addrspace thread_m.init_thread_context(func_pc, ptr, argument); owner.borrow_mut().num_thread += 1; self.get_g_alive().push(Rc::clone(&thread)); self.ready_to_run(Rc::clone(&thread)); } /// Wait for another thread to finish its execution pub fn thread_join(&mut self, machine: &mut Machine, waiter: Rc>, waiting_for: Rc>) { let waiting_for = Rc::clone(&waiting_for); while self.get_g_alive().contains(&waiting_for) { self.debug(format!("Joining \"{}\" to \"{}\"", waiter.borrow().get_name(), waiting_for.borrow().get_name())); self.thread_yield(machine, Rc::clone(&waiter)); } } /// Relinquish the CPU if any other thread is runnable. /// /// Cannot use yield as a function name -> reserved name in rust pub fn thread_yield(&mut self, machine: &mut Machine, thread: Rc>) { let old_status = machine.interrupt.set_status(crate::simulator::interrupt::InterruptStatus::InterruptOff); self.debug(format!("Yeilding thread: {}", thread.borrow().get_name())); debug_assert_eq!(&Option::Some(Rc::clone(&thread)), self.get_g_current_thread()); let next_thread = self.find_next_to_run(); if let Some(next_thread) = next_thread { self.ready_to_run(thread); self.switch_to(machine, next_thread); } machine.interrupt.set_status(old_status); } /// Put the thread to sleep and relinquish the processor pub fn thread_sleep(&mut self, machine: &mut Machine, thread: Rc>) { debug_assert_eq!(Option::Some(Rc::clone(&thread)), self.g_current_thread); debug_assert_eq!(machine.interrupt.get_status(), InterruptStatus::InterruptOff); let mut next_thread = self.find_next_to_run(); while next_thread.is_none() { eprintln!("Nobody to run => idle"); machine.interrupt.idle(); next_thread = self.find_next_to_run(); } self.switch_to(machine, Rc::clone(&next_thread.unwrap())); } /// Finish the execution of the thread and prepare its deallocation pub fn thread_finish(&mut self, machine: &mut Machine, thread: Rc>) { let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff); assert_eq!(self.g_alive.remove(Rc::clone(&thread)), true); self.debug(format!("Sleeping thread {}", thread.borrow().get_name())); // g_objets_addrs->removeObject(self.thread) // a ajouté plus tard self.thread_sleep(machine, Rc::clone(&thread)); machine.interrupt.set_status(old_status); } /// Save the CPU state of a user program on a context switch. pub fn thread_save_processor_state(&mut self, machine: &mut Machine, thread: Rc>) { let mut t = thread.borrow_mut(); for i in 0..NUM_INT_REGS { t.thread_context.int_registers[i] = machine.read_int_register(i); } for i in 0..NUM_FP_REGS { t.thread_context.float_registers[i] = machine.read_fp_register(i); } t.thread_context.pc = machine.pc; } /// Restore the CPU state of a user program on a context switch. pub fn thread_restore_processor_state(&self, machine: &mut Machine, thread: Rc>) { let t: Ref<_> = thread.borrow(); for i in 0..NUM_INT_REGS { machine.write_int_register(i, t.thread_context.int_registers[i]); } machine.pc = t.thread_context.pc; } /// Decrement the value, and wait if it becomes < 0. Checking the /// value and decrementing must be done atomically, so we /// need to disable interrupts before checking the value. /// /// Note that thread_manager::thread_sleep assumes that interrupts are disabled /// when it is called. /// /// ### Parameters /// - *id_sema* id of the semaphore, stored in [`ObjAddr`], id given by user program thought exceptions /// - *machine* Current state of the machine pub fn sem_p(&mut self, id_sema: i32, machine: &mut Machine) -> Result { let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff); let thread = match self.get_g_current_thread() { Some(thread) => Rc::clone(thread), None => Err("sem_p error: current thread should not be None")? }; let sema = match self.get_obj_addrs().search_semaphore(id_sema) { Some(sema) => sema, None => Err("sem_p error: cannot find semaphore")? }; sema.counter -= 1; if sema.counter < 0 { sema.waiting_queue.push(thread.clone()); self.thread_sleep(machine, thread); } machine.interrupt.set_status(old_status); Ok(MachineOk::Ok) } /// Increment semaphore value, waking up a waiting thread if any. /// As with P(), this operation must be atomic, so we need to disable /// interrupts. /// /// scheduler::ready_to_run() assumes that interrupts /// are disabled when it is called. /// /// ### Parameters /// - *id_sema* id of the semaphore, stored in [`ObjAddr`], id given by user program thought exceptions /// - **machine** the machine where the threads are executed pub fn sem_v(&mut self, id_sema: i32, machine: &mut Machine) -> Result { let sema = match self.get_obj_addrs().search_semaphore(id_sema) { Some(sema) => sema, None => Err("sem_v error: cannot find semaphore")? }; let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff); sema.counter += 1; match sema.waiting_queue.pop() { Some(thread) => self.ready_to_run(thread), None => () } machine.interrupt.set_status(old_status); Ok(MachineOk::Ok) } /// Wait until the lock become free. Checking the /// state of the lock (free or busy) and modify it must be done /// atomically, so we need to disable interrupts before checking /// the value of free. /// /// Note that thread_manager::thread_seep assumes that interrupts are disabled /// when it is called. /// /// ### Parameters /// - **id** id of the lock, stored in [`ObjAddr`], id given by user program thought exceptions /// - **machine** the machine where the threads are executed pub fn lock_acquire(&mut self, id: i32, machine: &mut Machine) -> Result { let current_thread = match self.get_g_current_thread() { Some(thread) => Rc::clone(thread), None => Err("lock_acquire error: current_thread should not be None.")? }; let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff); if let Some(lock) = self.get_obj_addrs().search_lock(id) { if lock.free { lock.free = false; lock.owner = Some(current_thread) } else { lock.waiting_queue.push(current_thread.clone()); self.thread_sleep(machine, current_thread); } } else { Err("lock_acquire error: cannot find Lock.")? } machine.interrupt.set_status(old_status); Ok(MachineOk::Ok) } /// Wake up a waiter if necessary, or release it if no thread is waiting. pub fn lock_release(&mut self, id: i32, machine: &mut Machine) -> Result { let current_thread = match self.get_g_current_thread() { Some(thread) => Rc::clone(&thread), None => Err(String::from("lock_release error: current_thread should not be None."))? }; let mut lock = match self.get_obj_addrs().search_lock(id).cloned() { Some(lock) => lock, None => Err(String::from("lock_release error: cannot find lock."))? }; let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff); if let Some(lock_owner) = &lock.owner { if Rc::ptr_eq(¤t_thread, lock_owner) { if let Some(thread) = lock.waiting_queue.pop() { let clone = Rc::clone(&thread); lock.owner = Some(thread); self.ready_to_run(clone); lock.free = true; } else { lock.free = true; lock.owner = None; } } }; machine.interrupt.set_status(old_status); Ok(MachineOk::Ok) } /// Currently running thread pub fn get_g_current_thread(&mut self) -> &Option>> { &self.g_current_thread } /// List of alive threads pub fn get_g_alive(&mut self) -> &mut List>> { &mut self.g_alive } /// Set currently running thread pub fn set_g_current_thread(&mut self, thread: Option>>) { self.g_current_thread = thread } pub fn get_obj_addrs(&mut self) -> &mut ObjAddr { &mut self.obj_addrs } fn debug(&self, message: String) { if self.debug { println!("{}", message); } } } #[cfg(test)] mod test { use std::{rc::Rc, cell::RefCell}; use crate::{simulator::{machine::Machine, loader}, kernel::{system::System, thread::Thread, process::Process, thread_manager::ThreadManager, synch::Semaphore}, utility::cfg::get_debug_configuration}; use crate::kernel::synch::Lock; #[test] fn test_thread_context() { let mut machine = Machine::new(true, get_debug_configuration()); let (loader, ptr) = loader::Loader::new("./target/guac/halt.guac", &mut machine, 0).expect("IO Error"); let start_pc = loader.elf_header.entrypoint; let system = &mut System::new(true); let thread1 = Thread::new("th1"); let thread1 = Rc::new(RefCell::new(thread1)); system.get_thread_manager().get_g_alive().push(Rc::clone(&thread1)); let owner1 = Process { num_thread: 0 }; let owner1 = Rc::new(RefCell::new(owner1)); system.get_thread_manager().start_thread(Rc::clone(&thread1), owner1, loader.elf_header.entrypoint, ptr, -1); debug_assert_eq!(thread1.borrow_mut().thread_context.pc, start_pc); debug_assert!(system.get_thread_manager().get_g_alive().contains(&Rc::clone(&thread1))); let to_run = system.get_thread_manager().find_next_to_run().unwrap(); debug_assert_eq!(to_run, Rc::clone(&thread1)); system.get_thread_manager().switch_to(&mut machine, Rc::clone(&to_run)); debug_assert_eq!(system.get_thread_manager().g_current_thread, Option::Some(Rc::clone(&thread1))); debug_assert_eq!(machine.pc, loader.elf_header.entrypoint); machine.run(system); } #[test] fn test_lock(){ let mut machine = Machine::new(true, get_debug_configuration()); let mut thread_manager = ThreadManager::new(true); let lock = Lock::new(); let lock_id = thread_manager.get_obj_addrs().add_lock(lock); let thread = Rc::new(RefCell::new(Thread::new("test_lock"))); thread_manager.ready_to_run(Rc::clone(&thread)); thread_manager.set_g_current_thread(Some(thread)); thread_manager.lock_acquire(lock_id, &mut machine).expect("lock acquire return an error: "); { let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap(); assert!(!lock.free); assert!(lock.waiting_queue.is_empty()); } thread_manager.lock_release(lock_id, &mut machine).expect("lock release return an error: "); { let lock = thread_manager.get_obj_addrs().search_lock(lock_id).unwrap(); assert!(!lock.free); assert!(lock.waiting_queue.is_empty()); } } #[test] fn test_semaphore_single() { // Init let mut machine = Machine::new(true, get_debug_configuration()); let mut thread_manager = ThreadManager::new(true); let semaphore = Semaphore::new(1); let sema_id = thread_manager.get_obj_addrs().add_semaphore(semaphore); let thread = Rc::new(RefCell::new(Thread::new("test_semaphore"))); thread_manager.ready_to_run(Rc::clone(&thread)); thread_manager.set_g_current_thread(Some(thread)); // P thread_manager.sem_p(sema_id, &mut machine).expect("semaphore P return an error: "); { let semaphore = thread_manager.get_obj_addrs().search_semaphore(sema_id).unwrap(); assert_eq!(semaphore.counter, 0); assert!(semaphore.waiting_queue.is_empty()); } // V thread_manager.sem_v(sema_id, &mut machine).expect("semaphore V return an error: "); { let semaphore = thread_manager.get_obj_addrs().search_semaphore(sema_id).unwrap(); assert_eq!(semaphore.counter, 1); assert!(semaphore.waiting_queue.is_empty()); } } #[test] fn test_semaphore_multiple() { // Init let mut tm = ThreadManager::new(true); let mut machine = Machine::new(true, get_debug_configuration()); let semaphore = Semaphore::new(2); let sema_id = tm.get_obj_addrs().add_semaphore(semaphore); let thread1 = Rc::new(RefCell::new(Thread::new("test_semaphore_1"))); let thread2 = Rc::new(RefCell::new(Thread::new("test_semaphore_2"))); let thread3 = Rc::new(RefCell::new(Thread::new("test_semaphore_3"))); // let mut borrow_tm = tm.borrow_mut(); // let scheduler = &mut tm.g_scheduler; tm.ready_to_run(Rc::clone(&thread1)); tm.ready_to_run(Rc::clone(&thread2)); tm.ready_to_run(Rc::clone(&thread3)); // P tm.set_g_current_thread(Some(Rc::clone(&thread1))); tm.sem_p(sema_id, &mut machine).expect("semaphore P return an error: "); { let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap(); assert_eq!(semaphore.counter, 1); assert!(semaphore.waiting_queue.is_empty()); } tm.set_g_current_thread(Some(Rc::clone(&thread2))); tm.sem_p(sema_id, &mut machine).expect("semaphore P return an error: "); { let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap(); assert_eq!(semaphore.counter, 0); assert!(semaphore.waiting_queue.is_empty()); } tm.set_g_current_thread(Some(Rc::clone(&thread3))); tm.sem_p( sema_id, &mut machine).expect("semaphore P return an error: "); { let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap(); assert_eq!(semaphore.counter, -1); assert!(semaphore.waiting_queue.iter().count() == 1); } // V tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: "); { let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap(); assert_eq!(semaphore.counter, 0); assert!(semaphore.waiting_queue.is_empty()); } tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: "); { let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap(); assert_eq!(semaphore.counter, 1); assert!(semaphore.waiting_queue.is_empty()); } tm.sem_v(sema_id, &mut machine).expect("semaphore V return an error: "); { let semaphore = tm.get_obj_addrs().search_semaphore(sema_id).unwrap(); assert_eq!(semaphore.counter, 2); assert!(semaphore.waiting_queue.is_empty()); } } }