use std::{rc::Rc, cell::{RefCell, Ref}}; use crate::{utility::list::List, simulator::{machine::{NUM_INT_REGS, NUM_FP_REGS, Machine}, interrupt::InterruptStatus}}; use super::{thread::Thread, mgerror::ErrorCode, process::Process}; pub const SIMULATORSTACKSIZE: usize = 32 * 1024; /// # Thread manager /// /// An instance of this struct is responsible for managing threads on behalf of the system #[derive(PartialEq)] pub struct ThreadManager { /// Current running thread pub g_current_thread: Option>>, /// The thread to be destroyed next pub g_thread_to_be_destroyed: Option>>, /// The list of alive threads pub g_alive: List>>, /// Thread in ready state waiting to become active ready_list: List>>, } impl ThreadManager { /// Thread manager constructor pub fn new() -> Self { Self { g_current_thread: Option::None, g_thread_to_be_destroyed: Option::None, g_alive: List::default(), ready_list: List::default(), } } /// Mark a thread as aready, but not necessarily running yet. /// /// Put it in the ready list, for later scheduling onto the CPU. /// /// ## Pamameter /// /// **thread** is the thread to be put on the read list pub fn ready_to_run(&mut self, thread: Rc>) { self.ready_list.push(thread); } /// Return the next thread to be scheduled onto the CPU. /// If there are no ready threads, return Option::None /// /// Thread is removed from the ready list. /// /// **return** Thread thread to be scheduled pub fn find_next_to_run(&mut self) -> Option>> { self.ready_list.pop() } /// Dispatch the CPU to next_thread. Save the state of the old thread /// and load the state of the new thread. /// /// We assume the state of the previously running thread has already been changed from running to blocked or ready. /// /// Global variable g_current_thread become next_thread /// /// ## Parameter /// /// **next_thread** thread to dispatch to the CPU pub fn switch_to(&mut self, machine: &mut Machine, next_thread: Rc>) { match self.get_g_current_thread() { Some(old) => { let old1 = Rc::clone(old); let old2 = Rc::clone(old); self.thread_save_processor_state(machine, old1); // old_thread.save_simulator_state(); if old2 != next_thread { self.thread_restore_processor_state(machine, Rc::clone(&next_thread)); // next_thread.restore_simulator_state(); self.set_g_current_thread(Some(next_thread)); } }, None => { self.thread_restore_processor_state(machine, Rc::clone(&next_thread)); // next_thread.restore_simulator_state(); self.set_g_current_thread(Some(next_thread)); } } } /// Start a thread, attaching it to a process pub fn start_thread(&mut self, thread: Rc>, owner: Process, func_pc: u64, sp_loc: u64, argument: i64) { let mut thread_m = thread.borrow_mut(); assert_eq!(thread_m.process, Option::None); thread_m.process = Option::Some(owner); let ptr = sp_loc; // todo addrspace thread_m.init_thread_context(func_pc, ptr, argument); let base_stack_addr: [i8; SIMULATORSTACKSIZE] = [0; SIMULATORSTACKSIZE]; // todo AllocBoundedArray thread_m.init_simulator_context(base_stack_addr); thread_m.process.as_mut().unwrap().num_thread += 1; self.get_g_alive().push(Rc::clone(&thread)); self.ready_to_run(Rc::clone(&thread)); } /// Wait for another thread to finish its execution pub fn thread_join(&mut self, machine: &mut Machine, id_thread: Rc>) { while self.get_g_alive().contains(&Rc::clone(&id_thread)) { self.thread_yield(machine, Rc::clone(&id_thread)); } } /// Relinquish the CPU if any other thread is runnable. /// /// Cannot use yield as a function name -> reserved name in rust pub fn thread_yield(&mut self, machine: &mut Machine, thread: Rc>) { let old_status = machine.interrupt.set_status(crate::simulator::interrupt::InterruptStatus::InterruptOff); assert_eq!(Option::Some(Rc::clone(&thread)), self.g_current_thread); let next_thread = self.find_next_to_run(); if let Some(next_thread) = next_thread { self.ready_to_run(thread); self.switch_to(machine, next_thread); } machine.interrupt.set_status(old_status); } /// Put the thread to sleep and relinquish the processor pub fn thread_sleep(&mut self, machine: &mut Machine, thread: Rc>) { debug_assert_eq!(Option::Some(Rc::clone(&thread)), self.g_current_thread); debug_assert_eq!(machine.interrupt.get_status(), InterruptStatus::InterruptOff); let mut next_thread = self.find_next_to_run(); while next_thread.is_none() { eprintln!("Nobody to run => idle"); machine.interrupt.idle(); next_thread = self.find_next_to_run(); } self.switch_to(machine, Rc::clone(&next_thread.unwrap())); } /// Finish the execution of the thread and prepare its deallocation pub fn thread_finish(&mut self, machine: &mut Machine, thread: Rc>) { let old_status = machine.interrupt.set_status(InterruptStatus::InterruptOff); self.g_thread_to_be_destroyed = Option::Some(Rc::clone(&thread)); self.g_alive.remove(Rc::clone(&thread)); // g_objets_addrs->removeObject(self.thread) // a ajouté plus tard self.thread_sleep(machine, Rc::clone(&thread)); machine.interrupt.set_status(old_status); } /// Save the CPU state of a user program on a context switch. pub fn thread_save_processor_state(&mut self, machine: &mut Machine, thread: Rc>) { let mut t = thread.borrow_mut(); for i in 0..NUM_INT_REGS { t.thread_context.int_registers[i] = machine.read_int_register(i); } for i in 0..NUM_FP_REGS { t.thread_context.float_registers[i] = machine.read_fp_register(i); } t.thread_context.pc = machine.pc; } /// Restore the CPU state of a user program on a context switch. pub fn thread_restore_processor_state(&self, machine: &mut Machine, thread: Rc>) { let t: Ref<_> = thread.borrow(); for i in 0..NUM_INT_REGS { machine.write_int_register(i, t.thread_context.int_registers[i]); } machine.pc = t.thread_context.pc; } /// Currently running thread pub fn get_g_current_thread(&mut self) -> &Option>> { &self.g_current_thread } /// Thread to be destroyed by [...] /// /// TODO: Finish the comment with the relevant value pub fn get_g_thread_to_be_destroyed(&mut self) -> &Option>> { &self.g_thread_to_be_destroyed } /// List of alive threads pub fn get_g_alive(&mut self) -> &mut List>> { &mut self.g_alive } /// Set currently running thread pub fn set_g_current_thread(&mut self, thread: Option>>) { self.g_current_thread = thread } /// Set thread to be destroyed next pub fn set_g_thread_to_be_destroyed(&mut self, thread: Option>>) { self.g_thread_to_be_destroyed = thread } } #[cfg(test)] mod test { use std::{rc::Rc, cell::RefCell}; use crate::{simulator::{machine::Machine, loader}, kernel::{system::System, thread::{Thread, self}, process::Process}}; #[test] #[ignore = "Pas encore terminé, contient des bugs"] fn test_thread_context() { let mut machine = Machine::init_machine(); let (loader, ptr1) = loader::Loader::new("./test/riscv_instructions/simple_arithmetics/unsigned_addition", &mut machine, 0).expect("IO Error"); println!("{}", ptr1); let (loader2, ptr2) = loader::Loader::new("./test/riscv_instructions/syscall_tests/halt", &mut machine, ptr1 as usize).expect("IO Error"); let start_pc = loader.elf_header.entrypoint; let system = &mut System::default(); let thread1 = Thread::new("th1"); let thread1 = Rc::new(RefCell::new(thread1)); system.get_thread_manager().get_g_alive().push(Rc::clone(&thread1)); let thread2 = Thread::new("th2"); let thread2 = Rc::new(RefCell::new(thread2)); system.get_thread_manager().get_g_alive().push(Rc::clone(&thread1)); let owner1 = Process { num_thread: 0 }; system.get_thread_manager().start_thread(Rc::clone(&thread1), owner1, loader.elf_header.entrypoint, ptr1, -1); debug_assert_eq!(thread1.borrow_mut().thread_context.pc, start_pc); debug_assert!(system.get_thread_manager().get_g_alive().contains(&Rc::clone(&thread1))); let owner2 = Process { num_thread: 0 }; system.get_thread_manager().start_thread(Rc::clone(&thread2), owner2, ptr1 + loader2.elf_header.entrypoint, ptr2 , -1); let to_run = system.get_thread_manager().find_next_to_run().unwrap(); debug_assert_eq!(to_run, Rc::clone(&thread1)); system.get_thread_manager().switch_to(&mut machine, Rc::clone(&to_run)); debug_assert_eq!(system.get_thread_manager().g_current_thread, Option::Some(Rc::clone(&thread1))); debug_assert_eq!(machine.pc, loader.elf_header.entrypoint); machine.run(system); } }