Add a new method: Naive CNN
This commit is contained in:
92
scripts/train_cnn.py
Normal file
92
scripts/train_cnn.py
Normal file
@ -0,0 +1,92 @@
|
||||
import numpy as np
|
||||
from sawaw import SAWAWEntry, SentimentResult
|
||||
from pathlib import Path
|
||||
import torch
|
||||
from loguru import logger
|
||||
from tqdm import tqdm
|
||||
|
||||
from methods.tokenizer import to_vec
|
||||
from methods.model import SentimentAspectCNN
|
||||
# Load the data from semeval dataset
|
||||
path = Path("./data/restaurant_train.raw")
|
||||
content = path.read_text()
|
||||
|
||||
def parse_content(content: str):
|
||||
'''I 'm partial to the $T$ .
|
||||
Gnocchi
|
||||
1'''
|
||||
lines = content.split("\n")
|
||||
entries = []
|
||||
for i in range(0, len(lines), 3):
|
||||
if i + 2 >= len(lines):
|
||||
break
|
||||
sentence, aspect_word, sentiment = lines[i], lines[i+1], lines[i+2]
|
||||
sentence_replaced = sentence.replace("$T$", aspect_word)
|
||||
entries.append(SAWAWEntry(sentence_replaced, [aspect_word], [SentimentResult(int(sentiment)+1)]))
|
||||
return entries
|
||||
|
||||
entries = parse_content(content)
|
||||
logger.info("Loaded {} entries from {}", len(entries), path)
|
||||
|
||||
# Load the tokenizer
|
||||
max_len = 80
|
||||
data_vectors, sentiment_gts = [], []
|
||||
for entry in tqdm(entries):
|
||||
data_vector, sentiment_gt = to_vec(entry, max_len=max_len, should_return_sentiment=True) # shape: (num_of_aspect_words, 80, 26); (num_of_aspect_words, )
|
||||
data_vectors.append(data_vector)
|
||||
sentiment_gts.append(sentiment_gt)
|
||||
|
||||
data_vectors = torch.cat(data_vectors, dim=0)
|
||||
sentiment_gts = torch.Tensor(sentiment_gts).unsqueeze(1) # shape: (num_of_aspect_words, 1)
|
||||
|
||||
# Train the model
|
||||
embedding_dim = 26 # 25 for word embeddings + 1 for aspect indicator
|
||||
num_filters = 88
|
||||
filter_sizes = [3, 4, 3]
|
||||
output_dim = 1
|
||||
dropout = 0.2
|
||||
|
||||
model = SentimentAspectCNN(embedding_dim, num_filters, filter_sizes, output_dim, dropout)
|
||||
model.train()
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
criterion = torch.nn.BCELoss()
|
||||
|
||||
batch_size = 16
|
||||
from torch.utils.data import TensorDataset, DataLoader
|
||||
dataset = TensorDataset(data_vectors, sentiment_gts)
|
||||
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
||||
|
||||
try:
|
||||
epochs = 100
|
||||
for epoch in range(epochs):
|
||||
epoch_loss = 0
|
||||
for batch in tqdm(dataloader):
|
||||
data_vectors, sentiment_gts = batch
|
||||
optimizer.zero_grad()
|
||||
outputs = model(data_vectors)
|
||||
loss = criterion(outputs, sentiment_gts)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
epoch_loss += loss.item()
|
||||
logger.info("Epoch {}: loss={}", epoch, epoch_loss)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
logger.info("Training stopped by user")
|
||||
# Save the model
|
||||
torch.save(model.state_dict(), "./data/model.pt")
|
||||
logger.info("Model saved to {}", "./data/model.pt")
|
||||
|
||||
# Test the model to find the best threshold
|
||||
model.eval()
|
||||
|
||||
for threshold in np.arange(0.1, 1, 0.1):
|
||||
logger.info("Testing with threshold={}", threshold)
|
||||
num_correct = 0
|
||||
num_total = 0
|
||||
for batch in tqdm(dataloader):
|
||||
data_vectors, sentiment_gts = batch
|
||||
outputs = model(data_vectors)
|
||||
outputs = outputs > threshold
|
||||
num_correct += torch.sum(outputs == sentiment_gts).item()
|
||||
num_total += len(sentiment_gts)
|
||||
logger.info("Accuracy: {}", num_correct / num_total)
|
Reference in New Issue
Block a user