Skip to content

第一章:数组的概念

1.1 为什么需要数组?

1.1.1 需求分析 1

  • 需要统计某公司 50 个员工的工资情况,例如:计算平均工资、最高工资等。如果使用之前的知识,我们需要声明 50 个变量来分别记录每位员工的工资,即:
c
#include <stdio.h>

int main(){
    
    double num1 = 0;
    double num2 = 0;
    double num3 = 0;
    ...
    printf("请输入第 1 个员工的工资:");
    scanf("%lf",&num1);
    printf("请输入第 2 个员工的工资:");
    scanf("%lf",&num2);
    printf("请输入第 3 个员工的工资:");
    scanf("%lf",&num3);
    ...   
    return 0;
}
  • 这样会感觉特别机械和麻烦(全是复制(Ctrl + c)和粘贴(Ctrl + v),CV 大法);此时,我们就可以将所有的数据全部存储到一个容器(数组)中进行统一管理,并进行其它的操作,如:求最值、求平均值等,如下所示:
c
#include <stdio.h>

int main(){
    // 声明数组
    double nums[50];
    // 数组的长度
    int length = sizeof(nums) / sizeof(double);
    // 使用 for 循环向数组中添加值
    for(int i = 0;i < length;i++){
        printf("请输入第 &d 个员工的工资:",i);
        scanf("%lf",&num[i]);
    }
    // 其它操作,如:求最值,求平均值等
    ...        
    return 0;
}

1.1.2 需求分析 2

  • 在现实生活中,我们会使用很多 APP 或微信小程序等,即:

  • 同样的道理,如果我们使用变量来存储每个商品信息,那么就需要非常多的变量;但是,如果我们将这些商品信息都存储到一个容器(数组)中,进行统一管理;那么,之后的数据处理将会非常方便。

1.1.3 容器的概念

  • 生活中的容器:水杯(装水、饮料的容器)、衣柜(装衣服等物品的容器)、集装箱(装货物等物品的容器)。
  • 程序中的容器:将多个数据存储到一起,并且每个数据称为该容器中的元素。

1.2 什么是数组?

  • 数组(Array)是将多个相同数据类型数据按照一定的顺序排序的集合,并使用一个标识符命名,以及通过编号(索引,亦称为下标)的方式对这些数据进行统一管理。

1.3 数组的相关概念

  • 数组名:本质上是一个标识符常量,命名需要符合标识符规则和规范。
  • 元素:同一个数组中的元素必须是相同的数据类型。
  • 索引(下标):从 0 开始的连续数字。
  • 数组的长度:就是元素的个数。

1.4 数组的特点

  • ① 创建数组的时候,会在内存中开辟一整块连续的空间,占据空间的大小,取决于数组的长度和数组中元素的类型。
  • ② 数组中的元素在内存中是依次紧密排列且有序的。
  • ③ 数组一旦初始化完成,且长度就确定的,并且数组的长度一旦确定,就不能更改
  • ④ 我们可以直接通过索引(下标)来获取指定位置的元素,速度很快。
  • ⑤ 数组名中引用的是这块连续空间的首地址。

第二章:数组的操作(⭐)

2.1 数组的定义

2.1.1 动态初始化

  • 语法:
c
数据类型 数组名[元素个数|长度];

NOTE

  • ① 数据类型:表示的是数组中每一个元素的数据类型。
  • ② 数组名:必须符合标识符规则和规范。
  • ③ 元素个数或长度:表示的是数组中最多可以容纳多少个元素(不能是负数、也不能是 0 )。
  • 示例:
c
#include <stdio.h>

int main() {

    // 先指定元素的个数和类型,再进行初始化

    // 定义数组
    int arr[3];

    // 给数组元素赋值
    arr[0] = 10;
    arr[1] = 20;
    arr[2] = 30;

    return 0;
}

2.1.2 静态初始化 1

  • 语法:
c
数据类型 数组名[元素个数|长度] = {元素1,元素2,...}

NOTE

  • ① 静态部分初始化:如果数组初始化的元素个数小于数组声明的长度,那么就会从数组开始位置依次赋值,不够的就补 0 。
  • ② 静态全部初始化:数组初始化的元素个数等于数组的长度。
  • 技巧:

    • 在 CLion 中可以开启聚合初始化功能,即:

    • 这样,在 CLion 中,将会显示数组初始化中的元素索引,即:

  • 示例:静态部分初识化

c
#include <stdio.h>

int main() {

    // 定义数组和部分初始化:
    // 会将给定的值从数组的开始位置一个个的赋值,没有赋值的地方,用 0 填充
    int arr[5] = {1, 2};

    return 0;
}
  • 示例:静态全部初始化
c
#include <stdio.h>

int main() {

    // 定义数组和全部初始化:数组初始化的元素个数等于数组的长度。
    int arr[5] = {1, 2, 3, 4, 5};

    return 0;
}

2.1.3 静态初始化 2

  • 语法:
c
数据类型 数组名[] = {元素1,元素2,...}

NOTE

没有给出数组中元素的个数,将由系统根据初始化的元素,自动推断出数组中元素的个数。

  • 示例:
c
#include <stdio.h>

int main() {

    // 指定元素的类型,不指定元素个数,同时进行初始化
    int arr[] = {1, 2, 3, 4, 5};

    return 0;
}

2.2 访问数组元素

  • 语法:
c
数组名[索引|下标];

NOTE

假设数组 arr 有 n 个元素,如果使用的数组的下标 < 0> n-1 ,那么将会产生数组越界访问,即超出了数组合法空间的访问;那么,数组的索引范围是 [0,arr.length - 1]

  • 示例:
c
#include <stdio.h>

int main() {

    // 先指定元素的个数和类型,再进行初始化

    // 定义数组
    int arr[3];

    // 给数组元素赋值
    arr[0] = 10;
    arr[1] = 20;
    arr[2] = 30;

    // 访问数组元素
    printf("arr[0] = %d\n", arr[0]); // arr[0] = 10
    printf("arr[1] = %d\n", arr[1]); // arr[1] = 20
    printf("arr[2] = %d\n", arr[2]); // arr[2] = 30

    return 0;
}
  • 示例:
c
#include <stdio.h>

int main() {

    // 定义数组和部分初始化:
    // 会将给定的值从数组的开始位置一个个的赋值,没有赋值的地方,用 0 填充
    int arr[5] = {1, 2};

    // 访问数组元素
    printf("arr[0] = %d\n", arr[0]); // arr[0] = 1
    printf("arr[1] = %d\n", arr[1]); // arr[1] = 2
    printf("arr[2] = %d\n", arr[2]); // arr[2] = 0
    printf("arr[3] = %d\n", arr[3]); // arr[3] = 0
    printf("arr[4] = %d\n", arr[4]); // arr[4] = 0

    return 0;
}
  • 示例:
c
#include <stdio.h>

int main() {

    // 指定元素的类型,不指定元素个数,同时进行初始化
    int arr[] = {1, 2, 3, 4, 5};

    // 访问数组元素
    printf("arr[0] = %d\n", arr[0]); // arr[0] = 1
    printf("arr[1] = %d\n", arr[1]); // arr[1] = 2
    printf("arr[2] = %d\n", arr[2]); // arr[2] = 3
    printf("arr[3] = %d\n", arr[3]); // arr[3] = 4
    printf("arr[4] = %d\n", arr[4]); // arr[4] = 5

    return 0;
}
  • 示例:
c
#include <stdio.h>

int main() {

    // 定义数组和全部初始化:数组初始化的元素个数等于数组的长度。
    int arr[5] = {1, 2, 3, 4, 5};

    // 访问数组元素
    printf("arr[0] = %d\n", arr[0]); // arr[0] = 1
    printf("arr[1] = %d\n", arr[1]); // arr[1] = 2
    printf("arr[2] = %d\n", arr[2]); // arr[2] = 3
    printf("arr[3] = %d\n", arr[3]); // arr[3] = 4
    printf("arr[4] = %d\n", arr[4]); // arr[4] = 5

    return 0;
}

2.3 数组越界

  • 数组下标必须在指定范围内使用,超出范围视为越界。

NOTE

  • ① C 语言是不会做数组下标越界的检查,并且编译器也不会报错;但是,编译器不报错,并不意味着程序就是正确!
  • ② 在其它高级编程语言,如:Java、JavaScript、Rust 等中,如果数组越界访问,编译器是会直接报错的!!!
  • 示例:
c
#include <stdio.h>

int main() {

    // 定义数组和全部初始化:数组初始化的元素个数等于数组的长度。
    int arr[] = {1, 2, 3, 4, 5};

    // 访问数组元素
    printf("arr[0] = %d\n", arr[0]); // arr[0] = 1
    printf("arr[1] = %d\n", arr[1]); // arr[1] = 2
    printf("arr[2] = %d\n", arr[2]); // arr[2] = 3
    printf("arr[3] = %d\n", arr[3]); // arr[3] = 4
    printf("arr[4] = %d\n", arr[4]); // arr[4] = 5
    printf("arr[-1] = %d\n", arr[-1]); // 得到的是不确定的结果
    printf("arr[5] = %d\n", arr[5]); // 得到的是不确定的结果

    return 0;
}

2.4 计算数组的长度

  • 数组长度(元素个数)是在数组定义的时候明确指定且固定的,我们不能在运行的时候直接获取数组长度;但是,我们可以通过 sizeof 运算符间接计算出数组的长度。
  • 计算步骤,如下所示:
    • ① 使用 sizeof 运算符计算出整个数组的字节长度。
    • ② 由于数组成员是同一数据类型;那么,每个元素的字节长度一定相等,那么数组的长度 = 整个数组的字节长度 ÷ 单个元素的字节长度

NOTE

  • ① 在很多编程语言中,都内置了获取数组的长度的属性或方法,如:Java 中的 arr.length 或 Rust 的 arr.len()。
  • ② 但是,C 语言没有内置的获取数组长度的属性或方法,只能通过 sizeof 运算符间接来计算得到。
  • ③ 数组一旦声明定义,其长度固定了,不能动态变化
  • 示例:
c
#include <stdio.h>

int main() {

    // 定义数组和全部初始化:数组初始化的元素个数等于数组的长度。
    int arr[] = {1, 2, 3, 4, 5};

    // 计算数组的长度
    size_t length = sizeof(arr) / sizeof(arr[0]);

    // 遍历数组
    for (int i = 0; i < length; i++) {
        printf("%d \n", arr[i]);
    }

    return 0;
}

2.5 遍历数组

  • 遍历数组是指按顺序访问数组中的每个元素,以便读取或修改它们,编程中一般使用循环结构对数组进行遍历。

  • 示例:声明一个存储有 12、2、31、24、15、36、67、108、29、51 的数组,并遍历数组所有元素

c
#include <stdio.h>

int main() {

    // 定义数组并初始化
    int arr[] = {12, 2, 31, 24, 15, 36, 67, 108, 29, 51};

    // 计算数组的长度
    size_t length = sizeof(arr) / sizeof(int);

    // 遍历数组
    for (int i = 0; i < length; i++) {
        printf("%d\n", arr[i]);
    }

    return 0;
}
  • 示例:声明长度为 10 的 int 类型数组,给数组元素依次赋值为 0 ~ 9 ,并遍历数组所有元素
c
#include <stdio.h>

int main() {

    // 定义数组
    int arr[10];

    // 计算数组的长度
    size_t length = sizeof(arr) / sizeof(int);

    // 给数组的每个元素赋值
    for (int i = 0; i < length; i++) {
        arr[i] = i;
    }

    // 遍历数组
    for (int i = 0; i < length; i++) {
        printf("%d\n", arr[i]);
    }

    return 0;
}

2.6 一维数组的内存分析

2.6.1 数组内存图

  • 假设数组是如下的定义:
c
int arr[] = {1,2,3,4,5};
  • 那么,对应的内存结构,如下所示:

NOTE

  • ① 数组名 arr 就是记录该数组的首地址,即 arr[0] 的地址。
  • ② 数组中的各个元素是连续分布的,假设 arr[0] 的地址是 0xdea7bff880,则 arr[1] 的地址 = arr[0] 的地址 + int 字节数(4) = 0xdea7bff880 + 4 = 0xdea7bff884 ,依次类推...
  • 在 C 语言中,我们可以通过 &arr&arr[0] 等形式获取数组或数组元素的地址,即:
c
#include <stdio.h>

int main() {

    // 定义数组
    int arr[10];

    // 计算数组的长度
    size_t length = sizeof(arr) / sizeof(int);

    // 给数组的每个元素赋值
    for (int i = 0; i < length; i++) {
        arr[i] = i;
    }

    printf("数组的地址是 = %p\n", arr);

    // 遍历数组
    for (int i = 0; i < length; i++) {
        printf("数组元素 %d 的地址是 = %p\n", arr[i], &arr[i]);
    }

    return 0;
}

2.6.2 数组的注意事项

  • C 语言规定,数组一旦声明,数组名指向的地址将不可更改。因为在声明数组的时候,编译器会自动会数组分配内存地址,这个地址和数组名是绑定的,不可更改。

WARNING

如果之后试图更改数组名对应的地址,编译器就会报错。

  • 示例:错误演示
c
int num[5]; // 声明数组
// 使用大括号重新赋值是不允许的,必须在数组声明的时候赋值,否则编译将会报错
num = {1,2,3,4,5} ; // 报错
  • 示例:错误演示
c
int num[] = {1,2,3,4,5};
// 使用大括号重新赋值是不允许的,必须在数组声明的时候赋值,否则编译将会报错
num = {2,3,4,5,6}; // 报错
  • 示例:错误演示
c
int num[5];

num = NULL; // 报错,需要和 Java 区别一下,在 C 中不可以
  • 示例:错误演示
c
int a[] = {1,2,3,4,5} 

int b[5] = a ; // 报错,需要和 Java 区别一下,在 C 中不可以

2.7 数组应用案例

2.7.1 应用示例

  • 需求:计算数组中所有元素的和以及平均数。

  • 示例:

c
#include <stdio.h>

int main() {

    // 定义数组并初始化
    int arr[] = {12, 2, 31, 24, 15, 36, 67, 108, 29, 51};

    // 计算数组的长度
    size_t length = sizeof(arr) / sizeof(int);

    // 变量保存总和
    int sum = 0;

    // 遍历数组
    for (int i = 0; i < length; i++) {
        sum += arr[i];
    }

    double avg = (double)sum / length;
    printf("数组的和为:%d\n", sum); // 数组的和为:375
    printf("数组的平均值为:%.2lf\n", avg); //数组的平均值为:37.50

    return 0;
}

2.7.2 应用示例

  • 需求:计算数组的最值(最大值和最小值)。

NOTE

思路:

  • ① 假设数组中的第一个元素是最大值或最小值,并使用变量 max 或 min 保存。
  • ② 遍历数组中的每个元素:
    • 如果有元素比最大值还要大,就让变量 max 保存最大值。
    • 如果有元素比最小值还要小,就让变量 min 保存最小值。
  • 示例:
c
#include <stdio.h>

int main() {

    // 定义数组并初始化
    int arr[] = {12, 2, 31, 24, 15, -36, 67, 108, 29, 51};

    // 计算数组的长度
    size_t length = sizeof(arr) / sizeof(int);

    // 定义最大值
    int max = arr[0];
    // 定义最小值
    int min = arr[0];

    // 遍历数组
    for (int i = 0; i < length; i++) {
        if (arr[i] >= max) {
            max = arr[i];
        }
        if (arr[i] <= min) {
            min = arr[i];
        }
    }

    printf("数组的最大值为:%d\n", max); // 数组的最大值为:108
    printf("数组的最小值为:%d\n", min); // 数组的最小值为:-36

    return 0;
}

2.7.3 应用示例

  • 需求:统计数组中某个元素出现的次数,要求:使用无限循环,如果输入的数字是 0 ,就退出。

  • 示例:

c
#include <stdio.h>

int main() {

    // 定义数组并初始化
    int arr[] = {12, 2, 31, 24, 2, -36, 67, 108, 29, 51};

    // 计算数组的长度
    size_t length = sizeof(arr) / sizeof(int);

    // 遍历数组
    printf("当前数组中的元素是:");
    for (int i = 0; i < length; i++) {
        printf("%d ", arr[i]);
    }

    printf("\n");

    // 无限循环
    while (true) {
        // 统计的数字
        int num;
        // 统计数字出现的次数
        int count = 0;
        // 输入数字
        printf("请输入要统计的数字:");
        scanf("%d", &num);

        // 0 作为结束条件
        if (num == 0) {
            break;
        }

        // 遍历数组,并计数
        for (int i = 0; i < length; i++) {
            if (arr[i] == num) {
                count++;
            }
        }

        printf("您输入的数字 %d 在数组中出现了 %d\n", num, count);
    }

    return 0;
}

2.7.4 应用示例

  • 需求:将数组 a 中的全部元素复制到数组 b 中。

  • 示例:

c
#include <stdio.h>

#define  SIZE 10

int main() {

    // 定义数组并初始化
    int a[] = {12, 2, 31, 24, 15, -36, 67, 108, 29, 51};
    int b[SIZE];

    // 复制数组
    for (int i = 0; i < SIZE; i++) {
        b[i] = a[i];
    }

    // 打印数组 b 中的全部元素
    for (int i = 0; i < SIZE; i++) {
        printf("%d ", b[i]);
    }

    return 0;
}

2.7.5 应用示例

  • 需求:数组对称位置的元素互换。

NOTE

思路:假设数组一共有 10 个元素,那么:

  • a[0] 和 a[9] 互换。
  • a[1] 和 a[8] 互换。
  • ...

规律就是 a[i] <--互换--> arr[arr.length -1 -i]

  • 示例:
c
#include <stdio.h>

int main() {

    // 原始数组
    int arr[] = {12, 2, 31, 24, 15, -36, 67, 108, 29, 51};

    // 计算数组的长度
    size_t SIZE = sizeof(arr) / sizeof(arr[0]);
    
    // 打印原始数组中的全部元素
    printf("原始数组:");
    for (int i = 0; i < SIZE; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");

    // 交换数组
    for (int i = 0; i < SIZE / 2; i++) {
        int temp          = arr[i];
        arr[i]            = arr[SIZE - 1 - i];
        arr[SIZE - 1 - i] = temp;
    }

    // 打印交换后的数组
    printf("交换后数组:");
    for (int i = 0; i < SIZE; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");

    return 0;
}
  • 示例:
c
#include <stdio.h>

int main() {

    // 原始数组
    int arr[] = {12, 2, 31, 24, 15, -36, 67, 108, 29, 51};

    // 计算数组的长度
    size_t SIZE = sizeof(arr) / sizeof(arr[0]);

    // 打印原始数组中的全部元素
    printf("原始数组:");
    for (int i = 0; i < SIZE; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");

    // 交换数组
    for (int i = 0, j = SIZE - 1 - i; i < SIZE / 2; i++, j--) {
        int temp = arr[i];
        arr[i]   = arr[j];
        arr[j]   = temp;
    }

    // 打印交换后的数组
    printf("交换后数组:");
    for (int i = 0; i < SIZE; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");

    return 0;
}

2.7.6 应用示例

  • 需求:将数组中的最大值移动到数组的最末尾。

NOTE

思路:从数组的下标 0 开始依次遍历到 length - 1 ,如果 i 下标当前的值比 i+1 下标的值大,则交换;否则,就不交换。

  • 示例:
c
#include <stdio.h>

int main() {

    // 原始数组
    int arr[] = {12, 2, 31, -24, 15, -36, 67, 891, 29, 51};

    // 计算数组的长度
    size_t length = sizeof(arr) / sizeof(arr[0]);

    // 打印原始数组中的全部元素
    printf("原始数组:");
    for (int i = 0; i < length; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");

    // 移动最大值到数组的最后一个位置
    for (int i = 0; i < length - 1; i++) {
        if (arr[i] > arr[i + 1]) {
            int temp   = arr[i];
            arr[i]     = arr[i + 1];
            arr[i + 1] = temp;
        }
    }

    // 打印移动之后的数组
    printf("移动之后的数组:");
    for (int i = 0; i < length; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");

    return 0;
}

2.7.7 应用示例

  • 需求:实现冒泡排序,即将数组的元素从小到大排列。

NOTE

思路:一层循环,能实现最大值移动到数组的最后;那么,二层循环(控制内部循环数组的长度)就能实现将数组的元素从小到大排序。

  • 示例:
c
#include <stdio.h>

int main() {

    // 原始数组
    int arr[] = {12, 2, 31, -24, 15, -36, 67, 891, 29, 51};

    // 计算数组的长度
    size_t length = sizeof(arr) / sizeof(arr[0]);

    // 打印原始数组中的全部元素
    printf("原始数组:");
    for (int i = 0; i < length; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");

    for (int j = 0; j < length - 1; j++) {
        for (int i = 0; i < length - 1 - j; i++) {
            if (arr[i] > arr[i + 1]) {
                int temp = arr[i];
                arr[i] = arr[i + 1];
                arr[i + 1] = temp;
            }
        }
    }

    // 打印移动之后的数组
    printf("移动之后的数组:");
    for (int i = 0; i < length; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");

    return 0;
}

第三章:多维数组(⭐)

3.1 概述

3.1.1 引入

  • 我们在数学、物理和计算机科学等学科中学习过一维坐标二维坐标以及三维坐标

  • 其中,一维坐标通常用于描述在线段或直线上的点的位置,主要应用有:

    • 数轴:一维坐标可以用来表示数轴上的数值位置,这在基础数学和初等代数中非常常见。

    • 时间轴:时间可以看作是一维的,它可以用一维坐标表示,例如:秒、分钟、小时等。

    • 统计数据:一维坐标常用于表示单变量的数据集,如:测量身高、体重、温度等。

  • 其中,二维坐标用于描述平面上的点的位置。主要应用包括:

    • 几何学:在几何学中,二维坐标用于表示平面图形的顶点、边和面积等。

    • 地图和导航:地理坐标系统(经纬度)使用二维坐标来表示地球表面的任意位置。

    image-20240724112326592

    • 图形设计和计算机图形学:二维坐标在绘制图形、设计图案和用户界面中非常重要。

    • 物理学:二维运动和场,例如:在描述物体在平面上的运动轨迹时使用二维坐标。

  • 其中,三维坐标用于描述空间中点的位置。主要应用包括:

    • 几何学:三维坐标在空间几何中用于表示立体图形的顶点、边、面和体积。

    • 计算机图形学:三维建模和动画需要使用三维坐标来创建和操控虚拟对象。

    • 工程和建筑设计:在设计建筑物、机械部件和其他工程项目时,使用三维坐标来精确定位和规划。

    • 物理学:三维空间中的力、运动和场,例如:描述物体在空间中的位置和运动轨迹。

  • 总而言之,一维、二维和三维坐标系统在不同的领域中各有其重要的应用,从基础数学到高级科学和工程技术,它们帮助我们更好地理解和描述世界的结构和行为。

3.1.2 多维数组

  • 在 C 语言中,多维数组就是数组嵌套,即:在数组中包含数组,数组中的每一个元素还是一个数组类型,如下所示:

NOTE

  • ① 如果数组中嵌套的每一个元素是一个常量值,那么该数组就是一维数组。
  • ② 如果数组中嵌套的每一个元素是一个一维数组,那么该数组就是二维数组。
  • ③ 如果数组中前台的每一个元素是一个二维数组,那么该数组就是三维数组.
  • ④ 依次类推...
  • 一维数组和多维数组的理解:
    • 从内存角度看:一维数组或多维数组都是占用的一整块连续的内存空间。
    • 从数据操作角度看:
      • 一维数组可以直接通过下标访问到数组中的某个元素,即:0、1、...
      • 二维数组要想访问某个元素,先要获取某个一维数组,然后在一维数组中获取对应的数据。

NOTE

  • ① C 语言中的一维数组或多维数组都是占用的一整块连续的内存空间,其它编程语言可不是这样的,如:Java 等。
  • ② 在实际开发中,最为常用的就是二维数组或三维数组了,以二维数组居多!!!

3.2 二维数组的定义

3.2.1 动态初始化

  • 语法:
c
数据类型 数组名[几个⼀维数组元素][每个⼀维数组中有几个具体的数据元素];

NOTE

  • ① 二维数组在实际开发中,最为常见的应用场景就是表格或矩阵了。
  • ② 几个一维数组元素 = 行数。
  • ③ 每个⼀维数组中有几个具体的数据元素 = 列数。
  • 示例:
c
#include <stdio.h>

int main() {

    // 定义二维数组并初始化
    int arr[3][4] = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}};

    // 输出二维数组中的元素
    printf("%d ", arr[0][0]);
    printf("%d ", arr[0][1]);
    printf("%d ", arr[0][2]);
    printf("%d \n", arr[0][3]);
    printf("%d ", arr[1][0]);
    printf("%d ", arr[1][1]);
    printf("%d ", arr[1][2]);
    printf("%d \n", arr[1][3]);
    printf("%d ", arr[2][0]);
    printf("%d ", arr[2][1]);
    printf("%d ", arr[2][2]);
    printf("%d ", arr[2][3]);

    return 0;
}

3.2.2 静态初始化 1

  • 语法:
c
数据类型 数组名[行数][列数] = {{元素1,元素2,...},{元素3,...},...}

NOTE

  • ① 行数 = 几个一维数组元素。
  • ② 列数 = 每个⼀维数组中有几个具体的数据元素。
  • 示例:
c
#include <stdio.h>

int main() {

    // 定义二维数组并初始化
    int arr[3][4] = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}};

    // 输出二维数组中的元素
    printf("%d ", arr[0][0]);
    printf("%d ", arr[0][1]);
    printf("%d ", arr[0][2]);
    printf("%d \n", arr[0][3]);
    printf("%d ", arr[1][0]);
    printf("%d ", arr[1][1]);
    printf("%d ", arr[1][2]);
    printf("%d \n", arr[1][3]);
    printf("%d ", arr[2][0]);
    printf("%d ", arr[2][1]);
    printf("%d ", arr[2][2]);
    printf("%d ", arr[2][3]);

    return 0;
}

3.2.3 静态初始化 2

  • 语法:
c
数据类型 数组名[][列数] = {{元素1,元素2,...},{元素3,...},...}

NOTE

  • ① 列数 = 每个⼀维数组中有几个具体的数据元素。
  • ② 可以不指定行数,必须指定列数,编译器会根据元素的个数和列的个数,自动推断出行数!!!
  • 示例:
c
#include <stdio.h>

int main() {

    // 定义二维数组
    int arr[][4] = {{1, 2, 3, 4}, {5, 6}, {9, 10, 11, 12}};

    // 输出二维数组中的元素
    printf("%d ", arr[0][0]);
    printf("%d ", arr[0][1]);
    printf("%d ", arr[0][2]);
    printf("%d \n", arr[0][3]);
    printf("%d ", arr[1][0]);
    printf("%d \n", arr[1][1]);
    printf("%d ", arr[2][0]);
    printf("%d ", arr[2][1]);
    printf("%d ", arr[2][2]);
    printf("%d ", arr[2][3]);

    return 0;
}

3.3 二维数组的理解

  • 如果二维数组是这么定义的,即:
c
int arr[3][4];
  • 那么,这个二维数组 arr 可以看做是 3 个一维数组组成,它们分别是 arr[0]arr[1]arr[2]。这 3 个一维数组都各有 4 个元素,如:一维数组 arr[0] 中的元素是 arr[0][0]arr[0][1]arr[0][2]arr[0][3],即:

3.4 二维数组的遍历

  • 访问二维数组的元素,需要使用两个下标(索引),一个用于访问行(第一维),另一个用于访问列(第二维),我们通常称为行下标(行索引)或列下标(列索引)。
  • 所以,遍历二维数组,需要使用双层循环结构。

NOTE

如果一个二维数组是这么定义的,即:int arr[3][4],那么:

  • 行的长度 = sizeof(arr) / sizeof(arr[0]) ,因为 arr 是二维数组的的内存空间;而 arr[0]arr[1]arr[2] 是二维数组中一维数组的内存空间 。
  • 列的长度 = sizeof(arr[0]) / sizeof(arr[0][0]),因为arr[0]arr[1]arr[2] 是二维数组中一维数组的内存空间 ,而 arr[0][0]arr[0][1]、... 是一维数组中元素的内存空间。
  • 示例:
c
#include <stdio.h>

int main() {

    // 定义二维数组
    int arr[][4] = {{1, 2, 3, 4}, {5, 6}, {9, 10, 11, 12}};

    // 获取行列数
    int row = sizeof(arr) / sizeof(arr[0]);
    int col = sizeof(arr[0]) / sizeof(arr[0][0]);

    // 打印二维数组元素
    for (int i = 0; i < row; i++) {
        for (int j = 0; j < col; j++) {
            printf("%d ", arr[i][j]);
        }
        printf("\n");
    }

    return 0;
}

3.5 二维数组的内存分析

  • 矩阵形式(如:3 行 4 列形式)表示二维数组,是逻辑上的概念,能形象地表示出行列关系。而在内存中,各元素是连续存放的,不是二维的,是线性的。

  • C 语言中,二维数组中元素排列的顺序是按行存放的。即:先顺序存放第一行的元素,再存放第二行的元素。例如:数组a[3][4] 在内存中的存放,如下所示:

3.6 二维数组的应用案例

  • 需求:现在有三个班,每个班五名同学,用二维数组保存他们的成绩,并求出每个班级平均分、以及所有班级平均分,数据要求从控制台输入。

  • 示例:

c
#include <stdio.h>

int main() {

    // 定义二维数组,用于保存成绩
    double arr[3][5];

    // 获取二维数组的行数和列数
    int row = sizeof(arr) / sizeof(arr[0]);
    int col = sizeof(arr[0]) / sizeof(arr[0][0]);

    // 从控制台输入成绩
    for (int i = 0; i < row; i++) {
        for (int j = 0; j < col; j++) {
            printf("请输入第%d个班级的第%d个学生的成绩:", i + 1, j + 1);
            scanf("%lf", &arr[i][j]);
        }
    }

    // 总分
    double totalSum = 0;

    // 遍历数组,求总分和各个班级的平均分
    for (int i = 0; i < row; i++) {
        double sum = 0;
        for (int j = 0; j < col; j++) {
            totalSum += arr[i][j];
            sum += arr[i][j];
        }
        printf("第%d个班级的总分为:%.2lf\n", i + 1, sum);
        printf("第%d个班级的平均分为:%.2lf\n", i + 1, sum / col);
    }

    printf("所有班级的总分为:%.2lf\n", totalSum);
    printf("所有班级的平均分为:%.2lf\n", totalSum / (row * col));

    return 0;
}

第四章:字符串(⭐)

4.1 概述

  • 在实际开发中,我们除了经常处理整数、浮点数、字符等,还经常和字符串打交道,如:"Hello World""Hi" 等。

NOTE

像这类"Hello World""Hi"等格式 ,使用双引号引起来的一串字符称为字符串字面值,简称字符串。

  • 对于整数、浮点数和字符,C 语言中都提供了对应的数据类型。但是,对于字符串,C 语言并没有提供对应的数据类型,而是用字符数组来存储这类文本类型的数据,即字符串:
c
char str[32];
  • 字符串不像整数、浮点数以及字符那样有固定的大小,字符串是不定长的,如:"Hello World""Hi" 等的长度就是不一样的。在 C 语言中,规定了字符串的结尾必须是 \0 ,这种字符串也被称为 C 风格的字符串,如:
c
"HelloWorld" // 在 C 语言中,底层存储就是 HelloWorld\0
  • 其对应的图示,如下所示:

  • \0 在 ASCII 码表中是第 0 个字符,用 NUL 表示,称为空字符串,该字符既不能显示,也不是控制字符,输出该字符不会有任何效果,它在 C 语言中仅作为字符串的结束标志。

NOTE

在现代化的高级编程语言中,都提供了字符串对应的类型,如:Java 中的 String(JDK 11 之前,底层也是通过 char[] 数组来实现的) 。

4.2 字符数组(字符串)的定义

4.2.1 标准写法

  • 显示在字符串的结尾添加 \0作为字符串的结束标识。

  • 示例:

c
#include <stdio.h>

int main() {
    // 禁用 stdout 缓冲区
    setbuf(stdout, NULL);

    // 字符数组,不是字符串
    char c1[] = {'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd'};
    // C 风格的字符串
    char c2[] = {'H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd', '\0'};

    return 0;
}

4.2.2 简化写法(推荐)

  • 字符串写成数组的形式,非常麻烦。C 语言中提供了一种简化写法,即:双引号中的字符,会自动视为字符数组。

NOTE

简化写法会自动在末尾添加 \0 字符,强烈推荐使用。

  • 示例:
c
#include <stdio.h>

int main() {
    // 禁用 stdout 缓冲区
    setbuf(stdout, NULL);

    char c1[] = {"Hello World"}; // 注意使用双引号,非单引号
    char c2[] = "Hello World";   //  //可以省略一对 {} 来初始化数组元素
    

    return 0;
}

4.3 字符串的输入和输出

  • 对于字符串的输入和输出,同样可以使用 scanfprintf 函数来实现,并且其格式占位符是 %s

NOTE

之前提到,对于 scanf 函数而言,%s 默认是匹配到空格或 Enter 键,如果我们输入的字符串是 Hello World,就只能得到 Hello ;如果要实现匹配到换行,则可以在输入的时候,将格式占位符 %s替换为 %[^\n]

  • 示例:
c
#include <stdio.h>

int main() {
    // 禁用 stdout 缓冲区
    setbuf(stdout, NULL);

    char c1[] = {"Hello World"}; // 注意使用双引号,非单引号
    char c2[] = "Hello World";   //  //可以省略一对 {} 来初始化数组元素

    printf("c1 = %s\n", c1); // c1 = Hello World
    printf("c2 = %s\n", c2); // c2 = Hello World

    return 0;
}
  • 示例:
c
#include <stdio.h>

int main() {
    // 禁用 stdout 缓冲区
    setbuf(stdout, NULL);

    char str[32];

    printf("请输入字符串:");
    scanf("%[^\n]", str);

    printf("字符串是:%s\n", str);

    return 0;
}

Released under the MIT License.